AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (21.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent advances in transition metal phosphide materials: Synthesis and applications in supercapacitors

Ge LiaYu FengaYi YangaXiaoliang Wua( )Xiumei SongbLichao Tanb,c( )
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, PR China
Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, PR China
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
Show Author Information

Abstract

Supercapacitors (SCs) are considered promising energy storge systems because of their outstanding power density, fast charge and discharge rate and long-term cycling stability. The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors. As the battery-type materials, transition metal phosphides (TMPs) possess high theoretical specific capacity, good electrical conductivity and superior structural stability, which have been extensively studied to be electrode materials for supercapacitors. In this review, we summarize the up-to-date progress on TMPs materials from diversified synthetic methods, diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors. In the end, we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.

References

[1]

B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future, Energy Environ. Sci. 4 (2011) 3287–3295.

[2]

P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage, Nat. Mater. 11 (2012) 19–29.

[3]

M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652–657.

[4]
P. Simon, Y. Gogotsi, Materials for Electrochemical Capacitors, Nanoscience and Technology, Co-Published with Macmillan Publishers Ltd, UK, 2009, pp. 320–329.
[5]

Y. Zhao, M. Zhao, X. Ding, Z. Liu, H. Tian, H. Shen, X. Zu, S. Li, L. Qiao, One-step colloid fabrication of nickel phosphides nanoplate/nickel foam hybrid electrode for high-performance asymmetric supercapacitors, Chem. Eng. J. 373 (2019) 1132–1143.

[6]

J.R. Miller, P. Simon, Electrochemical capacitors for energy management, Science 321 (2008) 651–652.

[7]

T. Kou, B. Yao, T. Liu, Y. Li, Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors, J. Mater. Chem. 5 (2017) 17151–17173.

[8]

P. Forouzandeh, V. Kumaravel, S.C. Pillai, Electrode materials for supercapacitors: a review of recent advances, Catalysts 10 (2020) 969.

[9]

S.T. Aziz, S. Kumar, S. Riyajuddin, K. Ghosh, G.D. Nessim, D.P. Dubal, Bimetallic phosphides for hybrid supercapacitors, J. Phys. Chem. Lett. 12 (2021) 5138–5149.

[10]

H. Tan, Z. Liu, D. Chao, P. Hao, D. Jia, Y. Sang, H. Liu, H.J. Fan, Partial nitridation-induced electrochemistry enhancement of ternary oxide nanosheets for fiber energy storage device, Adv. Energy Mater. 8 (2018), 1800685.

[11]

F. Cheng, X. Yang, S. Zhang, W. Lu, Boosting the supercapacitor performances of activated carbon with carbon nanomaterials, J. Power Sources 450 (2020), 227678.

[12]

X. Yu, S. Yun, J.S. Yeon, P. Bhattacharya, L. Wang, S.W. Lee, X. Hu, H.S. Park, Emergent pseudocapacitance of 2D nanomaterials, Adv. Energy Mater. 8 (2018), 1702930.

[13]

X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage, Natl. Sci. Rev. 4 (2017), 453–489.

[14]

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science 347 (2015), 1246501.

[15]

N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Asymmetric supercapacitor electrodes and devices, Adv. Mater. 29 (2017), 1605336.

[16]

X. Wang, H.-M. Kim, Y. Xiao, Y.-K. Sun, Nanostructured metal phosphide-based materials for electrochemical energy storage, J. Mater. Chem. 4 (2016) 14915–14931.

[17]

J.W. Long, D. Bélanger, T. Brousse, W. Sugimoto, M.B. Sassin, O. Crosnier, Asymmetric electrochemical capacitors—stretching the limits of aqueous electrolytes, MRS Bull. 36 (2011) 513–522.

[18]

Z. Liang, C. Qu, W. Zhou, R. Zhao, H. Zhang, B. Zhu, W. Guo, W. Meng, Y. Wu, W. Aftab, Q. Wang, R. Zou, Synergistic effect of Co-Ni hybrid phosphide nanocages for ultrahigh capacity fast energy storage, Adv. Sci. 6 (2019), 1802005.

[19]

P. Yu, Z. Zhang, L. Zheng, F. Teng, L. Hu, X. Fang, A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors, Adv. Energy Mater. 6 (2016), 1601111.

[20]

S. Peng, L. Li, H.B. Wu, S. Madhavi, X.W. Lou, Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors, Adv. Energy Mater. 5 (2015), 1401172.

[21]

P. Zhang, B.Y. Guan, L. Yu, X.W.D. Lou, Formation of double-shelled zinc-cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors, Angew Chem. Int. Ed. Engl. 56 (2017) 7141–7145.

[22]

B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors, Adv. Mater. 29 (2017), 1605051.

[23]

C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor, Nano Lett. 13 (2013) 2078–2085.

[24]

H. Hu, B. Guan, B. Xia, X.W. Lou, Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties, J. Am. Chem. Soc. 137 (2015) 5590–5595.

[25]

Y. Cheng, H. Zhang, C.V. Varanasi, J. Liu, Improving the performance of cobalt–nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches, Energy Environ. Sci. 6 (2013) 3314–3321.

[26]

N. Zhang, Y. Li, J. Xu, J. Li, B. Wei, Y. Ding, I. Amorim, R. Thomas, S.M. Thalluri, Y. Liu, G. Yu, L. Liu, High-performance flexible solid-state asymmetric supercapacitors based on bimetallic transition metal phosphide nanocrystals, ACS Nano 13 (2019) 10612–10621.

[27]

X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors, Small 13 (2017), 1701530.

[28]

Z. Yang, L. Liu, X. Wang, S. Yang, X. Su, Stability and electronic structure of the Co–P compounds from first-principle calculations, J. Alloys Compd. 509 (2011) 165–171.

[29]

S. Carenco, D. Portehault, C. Boissiere, N. Mezailles, C. Sanchez, Nanoscaled metal borides and phosphides: recent developments and perspectives, Chem. Rev. 113 (2013) 7981–8065.

[30]

Y. Lan, H. Zhao, Y. Zong, X. Li, Y. Sun, J. Feng, Y. Wang, X. Zheng, Y. Du, Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes, Nanoscale 10 (2018) 11775–11781.

[31]

H. Liang, C. Xia, Q. Jiang, A.N. Gandi, U. Schwingenschlögl, H.N. Alshareef, Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors, Nano Energy 35 (2017) 331–340.

[32]

B. Yang, A. Nie, Y. Chang, Y. Cheng, F. Wen, J. Xiang, L. Li, Z. Liu, Y. Tian, Metallic layered germanium phosphide GeP5 for high rate flexible all-solid-state supercapacitors, J. Mater. Chem. 6 (2018) 19409–19416.

[33]

K. Zhou, W. Zhou, L. Yang, J. Lu, S. Cheng, W. Mai, Z. Tang, L. Li, S. Chen, Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach, Adv. Funct. Mater. 25 (2015) 7530–7538.

[34]

M. Sun, H. Liu, J. Qu, J. Li, Earth-rich transition metal phosphide for energy conversion and storage, Adv. Energy Mater. 6 (2016), 1600087.

[35]

S.T. Oyama, T. Gott, H. Zhao, Y.-K. Lee, Transition metal phosphide hydroprocessing catalysts: a review, Catal. Today 143 (2009) 94–107.

[36]

S. Tian, X. Li, A. Wang, R. Prins, Y. Chen, Y. Hu, Facile preparation of Ni2P with a sulfur-containing surface layer by low-temperature reduction of Ni2P2S6, Angew. Chem. Int. Ed. 55 (2016) 4030–4034.

[37]

Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction, Chem. Soc. Rev. 45 (2016) 1529–1541.

[38]

S. Carenco, D. Portehault, C. Boissière, N. Mézailles, C. Sanchez, Nanoscaled metal borides and phosphides: recent developments and perspectives, Chem. Rev. 113 (2013) 7981–8065.

[39]

J.-H. Chen, K.H. Whitmire, A structural survey of the binary transition metal phosphides and arsenides of the d-block elements, Coord. Chem. Rev. 355 (2018) 271–327.

[40]

Y. Lv, X. Wang, Nonprecious metal phosphides as catalysts for hydrogen evolution, oxygen reduction and evolution reactions, Catal. Sci. Technol. 7 (2017) 3676–3691.

[41]

Y. Li, Z. Dong, L. Jiao, Multifunctional transition metal-based phosphides in energy-related electrocatalysis, Adv. Energy Mater. 10 (2020), 1902104.

[42]

H. Liu, X. Liu, S. Wang, H.-K. Liu, L. Li, Transition metal based battery-type electrodes in hybrid supercapacitors: a review, Energy Storage Mater. 28 (2020) 122–145.

[43]

J. Gu, Y. Peng, T. Zhou, J. Ma, H. Pang, Y. Yamauchi, Porphyrin-based framework materials for energy conversion, Nano Research Energy 1 (2022), 9120009.

[44]

C. Liu, Y. Bai, W. Li, F. Yang, G. Zhang, H. Pang, In situ growth of three-dimensional mxene/metal–organic framework composites for high-performance supercapacitors, Angew. Chem. Int. Ed. 61 (2022), e202116282.

[45]

T. Chen, F. Wang, S. Cao, Y. Bai, S. Zheng, W. Li, S. Zhang, S.-X. Hu, H. Pang, In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel–zinc batteries, Adv. Mater. 34 (2022), 2201779.

[46]

P.E.R. Blanchard, A.P. Grosvenor, R.G. Cavell, A. Mar, X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M = Cr−Ni), Chem. Mater. 20 (2008) 7081–7088.

[47]

J.F. Callejas, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction, Chem. Mater. 28 (2016) 6017–6044.

[48]

Z. Li, Y. Zheng, Q. Liu, Y. Wang, D. Wang, Z. Li, P. Zheng, Z. Liu, Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries, J. Mater. Chem. 8 (2020) 19113–19132.

[49]

Y.-M. Hu, M.-C. Liu, Y.-X. Hu, Q.-Q. Yang, L.-B. Kong, L. Kang, One-pot hydrothermal synthesis of porous nickel cobalt phosphides with high conductivity for advanced energy conversion and storage, Electrochim. Acta 215 (2016) 114–125.

[50]

Y. Zhang, L. Li, H. Su, W. Huang, X. Dong, Binary metal oxide: advanced energy storage materials in supercapacitors, J. Mater. Chem. 3 (2015) 43–59.

[51]

X. Li, X. Wang, W. Yang, Z. Zhu, R. Zhao, Q. Li, H. Li, J. Xu, G. Zhao, H. Li, S. Li, Three-dimensional hierarchical flowerlike FeP wrapped with N-doped carbon possessing improved Li+ diffusion kinetics and cyclability for lithium-ion batteries, ACS Appl. Mater. Interfaces 11 (2019) 39961–39969.

[52]

Y. Lu, T. Wang, X. Li, G. Zhang, H. Xue, H. Pang, Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials, RSC Adv. 6 (2016) 87188–87212.

[53]

D. Wang, L.-B. Kong, M.-C. Liu, Y.-C. Luo, L. Kang, An approach to preparing Ni–P with different phases for use as supercapacitor electrode materials, Chem. Eur J. 21 (2015) 17897–17903.

[54]

W. Li, X. Li, J. Yu, J. Liao, B. Zhao, L. Huang, A. Ali, H. Zhang, J.H. Wang, Z. Guo, M. Liu, A self-healing layered GeP anode for high-performance Li-ion batteries enabled by low formation energy, Nano Energy 61 (2019) 594–603.

[55]

W.-J. Li, Q.-R. Yang, S.-L. Chou, J.-Z. Wang, H.-K. Liu, Cobalt phosphide as a new anode material for sodium storage, J. Power Sources 294 (2015) 627–632.

[56]

J.Y. Jang, Y. Lee, Y. Kim, J. Lee, S.-M. Lee, K.T. Lee, N.-S. Choi, Interfacial architectures based on a binary additive combination for high-performance Sn4P3 anodes in sodium-ion batteries, J. Mater. Chem. 3 (2015) 8332–8338.

[57]

Z. Zhang, S. Liu, J. Xiao, S. Wang, Fiber-based multifunctional nickel phosphide electrodes for flexible energy conversion and storage, J. Mater. Chem. 4 (2016) 9691–9699.

[58]

W. Li, L. Gan, K. Guo, L. Ke, Y. Wei, H. Li, G. Shen, T. Zhai, Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries, Nanoscale 8 (2016) 8666–8672.

[59]

R. Prins, M.E. Bussell, Metal phosphides: preparation, characterization and catalytic reactivity, Catal. Lett. 142 (2012) 1413–1436.

[60]

J. Ryu, N. Jung, J.H. Jang, H.-J. Kim, S.J. Yoo, In situ transformation of hydrogen-evolving CoP nanoparticles: toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units, ACS Catal. 5 (2015) 4066–4074.

[61]

S. Duan, R. Wang, Au/Ni12P5 core/shell nanocrystals from bimetallic heterostructures: in situ synthesis, evolution and supercapacitor properties, NPG Asia Mater. 6 (2014), e122 e122.

[62]

F. Walsh, C. Ponce de Leon, A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology, Trans. IMF 92 (2014) 83–98.

[63]

M. Kong, H. Song, J. Zhou, Metal–organophosphine framework-derived N, P-codoped carbon-confined Cu3P nanopaticles for superb Na-ion storage, Adv. Energy Mater. 8 (2018), 1801489.

[64]

Y. Gan, C. Wang, X. Chen, P. Liang, H. Wan, X. Liu, Q. Tan, H. Wu, H. Rao, H. Wang, J. Zhang, Y. Wang, P.A. van Aken, H. Wang, High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices, Chem. Eng. J. 392 (2020), 123661.

[65]

J. Song, J. Xiang, C. Mu, B. Wang, F. Wen, C. Su, C. Wang, Z. Liu, Facile synthesis and excellent electrochemical performance of CoP nanowire on carbon cloth as bifunctional electrode for hydrogen evolution reaction and supercapacitor, Sci. China Mater. 60 (2017) 1179–1186.

[66]

M. Kong, Z. Wang, W. Wang, M. Ma, D. Liu, S. Hao, R. Kong, G. Du, A.M. Asiri, Y. Yao, X. Sun, NiCoP nanoarray: a superior pseudocapacitor electrode with high areal capacitance, Chem. Eur J. 23 (2017) 4435–4441.

[67]

X. Chen, M. Cheng, D. Chen, R. Wang, Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors, ACS Appl. Mater. Interfaces 8 (2016) 3892–3900.

[68]

J. Jiang, Z. Li, X. He, Y. Hu, F. Li, P. Huang, C. Wang, Novel skutterudite CoP3–based asymmetric supercapacitor with super high energy density, Small 16 (2020), 2000180.

[69]

T.T. Nguyen, J. Balamurugan, N.H. Kim, J.H. Lee, Hierarchical 3D Zn–Ni–P nanosheet arrays as an advanced electrode for high-performance all-solid-state asymmetric supercapacitors, J. Mater. Chem. 6 (2018) 8669–8681.

[70]

S. Li, M. Hua, Y. Yang, W. Huang, X. Lin, L. Ci, J. Lou, P. Si, Self-supported multidimensional Ni–Fe phosphide networks with holey nanosheets for high-performance all-solid-state supercapacitors, J. Mater. Chem. 7 (2019) 17386–17399.

[71]

J. Li, Z. Liu, Q. Zhang, Y. Cheng, B. Zhao, S. Dai, H.-H. Wu, K. Zhang, D. Ding, Y. Wu, M. Liu, M.-S. Wang, Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors, Nano Energy 57 (2019) 22–33.

[72]

R. Niu, G. Wang, Y. Ding, S. Tang, X. Hu, J. Zhu, Hexagonal prism arrays constructed using ultrathin porous nanoflakes of carbon doped mixed-valence Co–Mn–Fe phosphides for ultrahigh areal capacitance and remarkable cycling stability, J. Mater. Chem. 7 (2019) 4431–4437.

[73]

Y. Hu, M. Liu, Q. Yang, L. Kong, L. Kang, Facile synthesis of high electricalconductive CoP via solid-state synthetic routes for supercapacitors, J. Energy Chem. 26 (2017) 49–55.

[74]

Y.-C. Chen, Z.-B. Chen, Y.-G. Lin, Y.-K. Hsu, Synthesis of copper phosphide nanotube arrays as electrodes for asymmetric supercapacitors, ACS Sustain. Chem. Eng. 5 (2017) 3863–3870.

[75]

A. Mohammadi Zardkhoshoui, S.S. Hosseiny Davarani, A rational design of nanoporous Cu–Co–Ni–P nanotube arrays and CoFe2Se4 nanosheet arrays for flexible solid-state asymmetric devices, Dalton Trans. 49 (2020) 10028–10041.

[76]

X. Lei, S. Ge, Y. Tan, Z. Wang, J. Li, X. Li, G. Hu, X. Zhu, M. Huang, Y. Zhu, B. Xiang, High capacity and energy density of Zn–Ni–Co–P nanowire arrays as an advanced electrode for aqueous asymmetric supercapacitor, ACS Appl. Mater. Interfaces 12 (2020) 9158–9168.

[77]

S. Liu, K.V. Sankar, A. Kundu, M. Ma, J.-Y. Kwon, S.C. Jun, Honeycomb-like interconnected network of nickel phosphide heteronanoparticles with superior electrochemical performance for supercapacitors, ACS Appl. Mater. Interfaces 9 (2017) 21829–21838.

[78]

A.A. Saleh, A. Amer, D.M. Sayed, N.K. Allam, A facile electrosynthesis approach of Mn-Ni-Co ternary phosphides as binder-free active electrode materials for high-performance electrochemical supercapacitors, Electrochim. Acta (2021) 380.

[79]

D. Wang, L.B. Kong, M.C. Liu, W.B. Zhang, Y.C. Luo, L. Kang, Amorphous Ni–P materials for high performance pseudocapacitors, J. Power Sources 274 (2015) 1107–1113.

[80]

C. An, Y. Wang, L. Li, F. Qiu, Y. Xu, C. Xu, Y. Huang, L.J.H. Yuan, Effects of highly crumpled graphene nanosheets on the electrochemical performances of pseudocapacitor electrode materials, Electrochim. Acta 133 (2014) 180–187.

[81]

S.-B. Duan, R.-M. Wang, Controlled growth of Au/Ni bimetallic nanocrystals with different nanostructures, Rare Met. 36 (2017) 229–235.

[82]

M.-C. Liu, Y.-M. Hu, W.-Y. An, Y.-X. Hu, L.-Y. Niu, L.-B. Kong, L. Kang, Construction of high electrical conductive nickel phosphide alloys with controllable crystalline phase for advanced energy storage, Electrochim. Acta 232 (2017) 387–395.

[83]

S. Wang, Z. Huang, R. Li, X. Zheng, F. Lu, T. He, Template-assisted synthesis of NiP@CoAl-LDH nanotube arrays with superior electrochemical performance for supercapacitors, Electrochim. Acta 204 (2016) 160–168.

[84]

Y.-M. Hu, M.-C. Liu, Y.-X. Hu, Q.-Q. Yang, L.-B. Kong, W. Han, J.-J. Li, L. Kang, Design and synthesis of Ni2P/Co3V2O8 nanocomposite with enhanced electrochemical capacitive properties, Electrochim. Acta 190 (2016) 1041–1049.

[85]

Y. Jin, C. Zhao, L. Wang, Q. Jiang, C. Ji, X. He, Preparation of mesoporous Ni2P nanobelts with high performance for electrocatalytic hydrogen evolution and supercapacitor, Int. J. Hydrogen Energy 43 (2018) 3697–3704.

[86]

Z. Chen, A. Shan, H. Ye, Y. Cui, R. Wang, C. Chen, Ultrathin Ni12P5 nanoplates for supercapacitor applications, J. Alloys Compd. 782 (2019) 545–555.

[87]

Y. Gan, C. Wang, X. Chen, P. Liang, H. Wan, X. Liu, Q. Tan, H. Wu, H. Rao, H. Wang, High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices, Chem. Eng. J. 392 (2020), 123661.

[88]

X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection, ACS Nano 6 (2012) 3206–3213.

[89]

H. Xing, W. He, Y. Liu, G. Long, Y. Sun, J. Feng, W. Feng, Y. Zhou, Y. Zong, X. Li, X. Zhu, X. Zheng, Ultrathin and highly crumpled/porous CoP nanosheet arrays anchored on graphene boosts the capacitance and their synergistic effect toward high-performance battery-type hybrid supercapacitors, ACS Appl. Mater. Interfaces 13 (2021) 26373–26383.

[90]

W. Song, J. Wu, G. Wang, S. Tang, G. Chen, M. Cui, X. Meng, Rich-mixed-valence NixCo3−xPy porous nanowires interwelded junction-free 3D network architectures for ultrahigh areal energy density supercapacitors, Adv. Funct. Mater. 28 (2018), 1804620.

[91]

T. Dang, G. Zhang, Q. Li, Z. Cao, G. Zhang, H. Duan, Ultrathin hetero-nanosheets assembled hollow Ni-Co-P/C for hybrid supercapacitors with enhanced rate capability and cyclic stability, J. Colloid Interface Sci. 577 (2020) 368–378.

[92]

Q. Zhang, W.-B. Zhang, P. Hei, Z. Hou, T. Yang, J. Long, CoP nanoprism arrays: pseudocapacitive behavior on the electrode-electrolyte interface and electrochemical application as an anode material for supercapacitors, Appl. Surf. Sci. 527 (2020), 146682.

[93]

W. Wang, L. Zhang, G. Xu, H. Song, L. Yang, C. Zhang, J. Xu, D. Jia, Structure-designed synthesis of CoP microcubes from metal–organic frameworks with enhanced supercapacitor properties, Inorg. Chem. 57 (2018) 10287–10294.

[94]

P. Shi, R. Chen, L. Li, J. An, L. Hua, J. Zhou, B. Liu, P. Chen, W. Huang, G. Sun, Holey nickel hydroxide nanosheets for wearable solid-state fiber-supercapacitors, Nanoscale 10 (2018) 5442–5448.

[95]

N. Zhang, Y. Li, J. Xu, J. Li, B. Wei, Y. Ding, I. Amorim, R. Thomas, S.M. Thalluri, Y. Liu, High-performance flexible solid-state asymmetric supercapacitors based on bimetallic transition metal phosphide nanocrystals, ACS Nano 13 (2019) 10612–10621.

[96]

X. Zhou, H. Dai, X. Huang, Y. Ren, Q. Wang, W. Wang, W. Huang, X. Dong, Porous trimetallic fluoride Ni–Co–M (M = Mn, Fe, Cu, Zn) nanoprisms as electrodes for asymmetric supercapacitors, Mater. Today Energy 17 (2020), 100429.

[97]

L. Zhang, D. Shi, T. Liu, M. Jaroniec, J. Yu, Nickel-based materials for supercapacitors, Mater. Today 25 (2019) 35–65.

[98]

Z. Liang, C. Qu, W. Zhou, R. Zhao, H. Zhang, B. Zhu, W. Guo, W. Meng, Y. Wu, W. Aftab, Synergistic effect of Co–Ni hybrid phosphide nanocages for ultrahigh capacity fast energy storage, Adv. Sci. 6 (2019), 1802005.

[99]

L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, M. Liu, Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors, Nano Lett. 13 (2013) 3135–3139.

[100]

G. Qu, P. Sun, G. Xiang, J. Yin, Q. Wei, C. Wang, X. Xu, Moss-like nickel-cobalt phosphide nanostructures for highly flexible all-solid-state hybrid supercapacitors with excellent electrochemical performances, Appl. Mater. Today 20 (2020), 100713.

[101]

R. Liu, L. Chen, F. Mo, H. Song, G. Yang, C. Chen, X. Wu, Y. Huang, Z. Fan, Porous cobalt-nickel phosphides prepared from Al-doped NiCo-LDH precursors for supercapacitor and electrocatalysis applications, Chem. Eng. J. 455 (2023), 140545.

[102]

Z. Liang, C. Qu, W. Zhou, R. Zhao, H. Zhang, B. Zhu, W. Guo, W. Meng, Y. Wu, W. Aftab, Q. Wang, R. Zou, Synergistic effect of Co–Ni hybrid phosphide nanocages for ultrahigh capacity fast energy storage, Adv. Sci. 6 (2019), 1802005.

[103]

P. Yue, Y. Zhang, X. Wu, Defective ZnCoNiP nanosheets derived from metal-organic-frameworks as electrodes for high-performance supercapacitors, J. Energy Storage 58 (2023), 106320.

[104]

A.A. Saleh, A. Amer, D.M. Sayed, N.K. Allam, A facile electrosynthesis approach of Mn-Ni-Co ternary phosphides as binder-free active electrode materials for high-performance electrochemical supercapacitors, Electrochim. Acta 380 (2021), 138197.

[105]

Y. Yang, Y. Zhou, Z. Hu, W. Wang, X. Zhang, L. Qiang, Q. Wang, 3D thin-wall cell structure nickel-cobalt-molybdenum ternary phosphides on carbon cloth as high-performance electrodes for asymmetric supercapacitors, J. Alloys Compd. 772 (2019) 683–692.

[106]

C. Yin, C. Yang, M. Jiang, C. Deng, L. Yang, J. Li, D. Qian, A novel and facile one-pot solvothermal synthesis of PEDOT–PSS/Ni–Mn–Co–O hybrid as an advanced supercapacitor electrode material, ACS Appl. Mater. Interfaces 8 (2016) 2741–2752.

[107]

A.E. Elkholy, F.E.-T. Heakal, N.K. Allam, A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors, Electrochim. Acta 296 (2019) 59–68.

[108]

A.E. Fahim, R.A. Hameed, N.K. Allam, Synthesis and characterization of core–shell structured M@Pd/SnO2–graphene [M= Co, Ni or Cu] electrocatalysts for ethanol oxidation in alkaline solution, New J. Chem. 42 (2018) 6144–6160.

[109]

P.W. Menezes, A. Indra, A. Bergmann, P. Chernev, C. Walter, H. Dau, P. Strasser, M. Driess, Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water, J. Mater. Chem. 4 (2016) 10014–10022.

[110]

X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei, J. Liu, X. Sun, Hierarchical ZnxCo3–xO4 nanoarrays with high activity for electrocatalytic oxygen evolution, Chem. Mater. 26 (2014) 1889–1895.

[111]

X.Y. Lei, S.C. Ge, Y.H. Tan, Z. Wang, J. Li, X.F. Li, G.J. Hu, X.Q. Zhu, M. Huang, Y.W. Zhu, B. Xiang, High capacity and energy density of Zn-Ni-Co-P nanowire arrays as an advanced electrode for aqueous asymmetric supercapacitor, ACS Appl. Mater. Interfaces 12 (2020) 9158–9168.

[112]

Y.B. Tan, J.-M. Lee, Graphene for supercapacitor applications, J. Mater. Chem. 1 (2013) 14814–14843.

[113]

Y. Shao, Y. Zhao, H. Li, C. Xu, Three-dimensional hierarchical NixCo1–xO/Niy Co2–yP@C hybrids on nickel foam for excellent supercapacitors, ACS Appl. Mater. Interfaces 8 (2016) 35368–35376.

[114]

Q. Zong, H. Yang, Q. Wang, Q. Zhang, Y. Zhu, H. Wang, Q. Shen, Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors, Chem. Eng. J. 361 (2019) 1–11.

[115]

Y. Zhang, Y. Zhang, D. Zhang, L. Sun, Urchin-like NiCo2O4 nanoneedles grown on mesocarbon microbeads with synergistic electrochemical properties as electrodes for symmetric supercapacitors, Dalton Trans. 46 (2017) 9457–9465.

[116]

S. Wang, Q. Wang, W. Zeng, M. Wang, L. Ruan, Y. Ma, A new free-standing aqueous zinc-ion capacitor based on MnO2–CNTs cathode and MXene anode, Nano-Micro Lett. 11 (2019) 1–12.

[117]

H. Si, L. Sun, Y. Zhang, Y. Zhang, L. Bai, Y. Zhang, Carbon-coated MoO2 nanoclusters anchored on RGO sheets as high-performance electrodes for symmetric supercapacitors, Dalton Trans. 48 (2019) 285–295.

[118]

L. Peng, X. Zheng, L. Li, L. Zhang, N. Yang, K. Xiong, H. Chen, J. Li, Z. Wei, Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction, Appl. Catal. B Environ. 245 (2019) 122–129.

[119]

Y. Liu, X. Xu, Z. Shao, Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application, Energy Storage Mater. 26 (2020) 1–22.

[120]

R. Dai, W. Sun, L.-P. Lv, M. Wu, H. Liu, G. Wang, Y. Wang, Bimetal-organic-framework derivation of ball-cactus-like Ni-Sn-P@C-CNT as long-cycle anode for lithium ion battery, Small 13 (2017), 1700521.

[121]

C. Ma, Y. Hou, K. Jiang, L. Zhao, T. Olsen, Y. Fan, J. Jiang, Z. Xu, Z. Ma, D. Legut, H. Xiong, X.-Z. Yuan, In situ cross-linking construction of 3D mesoporous bimetallic phosphide-in-carbon superstructure with atomic interface toward enhanced sodium ion storage performance, Chem. Eng. J. 413 (2021), 127449.

[122]

J. Gu, L. Sun, Y. Zhang, Q. Zhang, X. Li, H. Si, Y. Shi, C. Sun, Y. Gong, Y. Zhang, MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors, Chem. Eng. J. 385 (2020), 123454.

[123]

C. Zhao, C. Yu, S. Liu, J. Yang, X. Fan, H. Huang, J. Qiu, 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li–O2 batteries, Adv. Funct. Mater. 25 (2015) 6913–6920.

[124]

C. Zhao, C. Yu, B. Qiu, S. Zhou, M. Zhang, H. Huang, B. Wang, J. Zhao, X. Sun, J. Qiu, Ultrahigh rate and long-life sodium-ion batteries enabled by engineered surface and near-surface reactions, Adv. Mater. 30 (2018), 1702486.

[125]

Y. Zhang, L. Sun, L. Zhang, X. Li, J. Gu, H. Si, L. Wu, Y. Shi, C. Sun, Y. Zhang, Highly porous oxygen-doped NiCoP immobilized in reduced graphene oxide for supercapacitive energy storage, Compos. B Eng. 182 (2020), 107611.

[126]

V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang, A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment, Energy Environ. Sci. 7 (2014) 1564–1596.

[127]

Q. Zong, C. Liu, H. Yang, Q. Zhang, G. Cao, Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors, Nano Today 38 (2021), 101201.

[128]

Q. Zong, H. Yang, Q. Wang, Q. Zhang, J. Xu, Y. Zhu, H. Wang, H. Wang, F. Zhang, Q. Shen, NiCo2O4/NiCoP nanoflake-nanowire arrays: a homogeneous hetero-structure for high performance asymmetric hybrid supercapacitors, Dalton Trans. 47 (2018) 16320–16328.

[129]

D. Li, H. Baydoun, C.N. Verani, S.L. Brock, Efficient water oxidation using CoMnP nanoparticles, J. Am. Chem. Soc. 138 (2016) 4006–4009.

[130]

R. Zhang, X. Wang, S. Yu, T. Wen, X. Zhu, F. Yang, X. Sun, X. Wang, W. Hu, Ternary NiCo2Px nanowires as PH-universal electrocatalysts for highly efficient hydrogen evolution reaction, Adv. Mater. 29 (2017), 1605502.

[131]

H. Xuan, Y. Guan, X. Han, X. Liang, Z. Xie, P. Han, Y. Wu, Hierarchical MnCo-LDH/rGO@NiCo2S4 heterostructures on Ni foam with enhanced electrochemical properties for battery-supercapacitors, Electrochim. Acta 335 (2020), 135691.

[132]

F. Chen, H. Wang, S. Ji, V. Linkov, R. Wang, Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors, Chem. Eng. J. 345 (2018) 48–57.

[133]

L. Wan, D. Chen, J. Liu, Y. Zhang, J. Chen, M. Xie, C. Du, Construction of FeNiP@CoNi-layered double hydroxide hybrid nanosheets on carbon cloth for high energy asymmetric supercapacitors, J. Power Sources 465 (2020), 228293.

[134]

Y. Shao, Y. Zhao, H. Li, C. Xu, Three-dimensional hierarchical NixCo1–xO/NiyCo2–yP@C hybrids on nickel foam for excellent supercapacitors, ACS Appl. Mater. Interfaces 8 (2016) 35368–35376.

[135]

L. Zeng, K. Sun, X. Wang, Y. Liu, Y. Pan, Z. Liu, D. Cao, Y. Song, S. Liu, C. Liu, Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity, Nano Energy 51 (2018) 26–36.

[136]

R. Ding, M. Zhang, Y. Yao, H. Gao, Crystalline NiCo2S4 nanotube array coated with amorphous NiCoxSy for supercapacitor electrodes, J. Colloid Interface Sci. 467 (2016) 140–147.

[137]

Y. Zhu, F. Wang, H. Zhang, X. Lv, Z. Hu, H. Han, X. Fan, J. Ji, X. Guo, PPy@NiCo2S4 nanosheets anchored on graphite foam with bicontinuous conductive network for high-areal capacitance and high-rate electrodes, J. Alloys Compd. 747 (2018) 276–282.

[138]

L. Wan, C. He, D. Chen, J. Liu, Y. Zhang, C. Du, M. Xie, J. Chen, In situ grown NiFeP@NiCo2S4 nanosheet arrays on carbon cloth for asymmetric supercapacitors, Chem. Eng. J. 399 (2020), 125778.

[139]

X. Lei, S. Ge, T.-Y. Yang, Y. Lu, Y.-L. Chueh, B. Xiang, Ni–Mo–S@Ni–P composite materials as binder-free electrodes for aqueous asymmetric supercapacitors with enhanced performance, J. Power Sources 477 (2020), 229022.

[140]

H. Pang, C. Wei, Y. Ma, S. Zhao, G. Li, J. Zhang, J. Chen, S. Li, Nickel phosphite superstructures assembled by nanotubes: original application for effective electrode materials of supercapacitors, ChemPlus Chem. 78 (2013) 546–553.

[141]

H.C. Chen, S. Jiang, B. Xu, C. Huang, Y. Hu, Y. Qin, M. He, H. Cao, Sea-urchin-like nickel–cobalt phosphide/phosphate composites as advanced battery materials for hybrid supercapacitors, J. Mater. Chem. 7 (2019) 6241–6249.

[142]

X. Wang, Y. Fang, B. Shi, F. Huang, F. Rong, R. Que, Three-dimensional NiCo2O4@NiCo2O4 core–shell nanocones arrays for high-performance supercapacitors, Chem. Eng. J. 344 (2018) 311–319.

[143]

T.H. Gu, N.H. Kwon, K.G. Lee, X. Jin, S.J. Hwang, 2D inorganic nanosheets as versatile building blocks for hybrid electrode materials for supercapacitor, Coord. Chem. Rev. 421 (2020), 213439.

[144]

P. Bandyopadhyay, G. Saeed, N. Hoon Kim, S. Mun Jeong, J. Hee Lee, Fabrication of hierarchical Zn–Ni–Co–S nanowire arrays and graphitic carbon nitride/graphene for solid-state asymmetric supercapacitors, Appl. Surf. Sci. 542 (2021), 148564.

[145]

G.Q. Zhang, H.B. Wu, H.E. Hoster, M.B. Chan-Park, X.W. Lou, Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors, Energy Environ. Sci. 5 (2012) 9453–9456.

[146]

H. Liang, J. Lin, H. Jia, S. Chen, J. Qi, J. Cao, T. Lin, W. Fei, J. Feng, Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors, J. Mater. Chem. 6 (2018) 15040–15046.

[147]

Y. Zhu, Q. Zong, Q. Zhang, H. Yang, Q. Wang, H. Wang, Three-dimensional core-shell NiCoP@NiCoP array on carbon cloth for high performance flexible asymmetric supercapacitor, Electrochim. Acta 299 (2019) 441–450.

[148]

J.-J. Zhou, X. Han, K. Tao, Q. Li, Y.-L. Li, C. Chen, L. Han, Shish-kebab type MnCo2O4@Co3O4 nanoneedle arrays derived from MnCo-LDH@ZIF-67 for high-performance supercapacitors and efficient oxygen evolution reaction, Chem. Eng. J. 354 (2018) 875–884.

[149]

Q. Ke, C. Guan, X. Zhang, M. Zheng, Y.-W. Zhang, Y. Cai, H. Zhang, J. Wang, Surface-charge-mediated formation of H-TiO2@Ni(OH)2 heterostructures for high-performance supercapacitors, Adv. Mater. 29 (2017), 1604164.

[150]

S. Thiel, G. Hammerl, A. Schmehl, C.W. Schneider, J. Mannhart, Tunable quasi-two-dimensional electron gases in oxide heterostructures, Science 313 (2006) 1942–1945.

[151]

J. Xing, J. Du, X. Zhang, Y. Shao, T. Zhang, C. Xu, A Ni-P@NiCo LDH core–shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors, Dalton Trans. 46 (2017) 10064–10072.

[152]

D. Khalafallah, M. Zhi, Z. Hong, Bi-Fe chalcogenides anchored carbon matrix and structured core–shell Bi-Fe-P@Ni-P nanoarchitectures with appealing performances for supercapacitors, J. Colloid Interface Sci. 606 (2022) 1352–1363.

[153]

P. He, X.-Y. Yu, X.W. Lou, Carbon-incorporated nickel–cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution, Angew. Chem. Int. Ed. 56 (2017) 3897–3900.

[154]

L. Feng, H. Xue, Advances in transition-metal phosphide applications in electrochemical energy storage and catalysis, Chemelectrochem 4 (2017) 20–34.

[155]

H. Wan, L. Li, Y. Chen, J. Gong, M. Duan, C. Liu, J. Zhang, H. Wang, One pot synthesis of Ni12P5 hollow nanocapsules as efficient electrode materials for oxygen evolution reactions and supercapacitor applications, Electrochim. Acta 229 (2017) 380–386.

[156]

P. Justin, S.K. Meher, G.R. Rao, Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis, J. Phys. Chem. C 114 (2010) 5203–5210.

[157]

S. Ding, T. Zhu, J.S. Chen, Z. Wang, C. Yuan, X.W. Lou, Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance, J. Mater. Chem. 21 (2011) 6602–6606.

[158]

L. Hu, Q. Chen, Hollow/porous nanostructures derived from nanoscale metal–organic frameworks towards high performance anodes for lithium-ion batteries, Nanoscale 6 (2014) 1236–1257.

[159]

L. Yu, H. Hu, H.B. Wu, X.W. Lou, Complex hollow nanostructures: synthesis and energy-related applications, Adv. Mater. 29 (2017), 1604563.

[160]

X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures, Chem. Rev. 116 (2016) 10983–11060.

[161]

Z. Wang, H. Wang, S. Ji, X. Wang, P. Zhou, S. Huo, V. Linkov, R. Wang, Hollow-structured NiCoP nanorods as high-performance electrodes for asymmetric supercapacitors, Mater. Des. 193 (2020), 108807.

[162]

S.E. Moosavifard, S.K. Kaverlavani, J. Shamsi, A. Bakouei, Hierarchical multi-shelled nanoporous mixed copper cobalt phosphide hollow microspheres as a novel advanced electrode for high-performance asymmetric supercapacitors, J. Mater. Chem. 5 (2017) 18429–18433.

[163]

M. Amiri, S.E. Moosavifard, S.S.H. Davarani, S.K. Kaverlavani, M. Shamsipur, MnCoP hollow nanocubes as novel electrode material for asymmetric supercapacitors, Chem. Eng. J. 420 (2021), 129910.

[164]

X.H. Huang, J.P. Tu, C.Q. Zhang, F. Zhou, Hollow microspheres of NiO as anode materials for lithium-ion batteries, Electrochim. Acta 55 (2010) 8981–8985.

[165]

D. Guo, Y. Zhang, W. Sun, D. Chu, B. Li, L. Tan, H. Ma, H. Pang, X. Wang, L. Zhang, Facile dual-ligand modulation tactic toward nickel-cobalt sulfides/phosphides/selenides as supercapacitor electrodes with long-term durability and electrochemical activity, ACS Appl. Mater. Interfaces 11 (2019) 41580–41587.

Nano Materials Science
Pages 174-192
Cite this article:
Li G, Feng Y, Yang Y, et al. Recent advances in transition metal phosphide materials: Synthesis and applications in supercapacitors. Nano Materials Science, 2024, 6(2): 174-192. https://doi.org/10.1016/j.nanoms.2023.03.003

141

Views

4

Downloads

16

Crossref

7

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 27 January 2023
Accepted: 06 March 2023
Published: 19 April 2023
© 2024 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return