AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Effects of Fe solid solute on grain boundaries of bi-crystal Cu: A molecular dynamics simulation

Shuohan YangHongwei Bao( )Huizhong BaiYan LiHaodong XuFei Ma( )
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049, Shaanxi, China
Show Author Information

Abstract

Grain boundaries (GBs) play a crucial role on the structural stability and mechanical properties of Cu and its alloys. In this work, molecular dynamics (MD) simulations are employed to study the effects of Fe solutes on the formation energy, excess volume, dislocations and melting behaviors of GBs in CuFe alloys. It is illustrated that Fe solute affects the structural stability of Cu GBs substantially, the formation energy of GBs is reduced, but the thickness and melting point of GBs are increased, that is, the structural stability of Cu GBs is significantly improved owing to the Fe solutes. A strong scaling law exists between the formation energy, excess volume, thickness and melting point of GBs. Therefore, Fe solid solute plays an important role in the characteristics of GBs in bi-crystal Cu.

References

[1]

A.H. Alami, A.A. Hawili, Synthesis, characterization and applications of FeCu alloys [J], Appl. Surf. Sci. Adv. 1 (2020), 100027.

[2]

X. Wang, S. Qiu, J. Feng, et al., Confined Fe–Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction[J], Adv. Mater. 32 (40) (2020), 2004382.

[3]

H. Liu, X. Wang, W. Cui, et al., The effect of dislocations on irradiation-induced vacancy-like defects in FeCu alloy and reactor pressure vessel steel[J], J. Nucl. Mater. 524 (2019) 80–89.

[4]

G. Shi, X. Chen, H. Jiang, et al., Strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy[J], Mater. Sci. Eng., A 636 (2015) 43–47.

[5]

Z.W. Wu, Y. Chen, L. Meng, Microstructure and properties of Cu–Fe microcomposites with prior homogenizing treatments[J], J. Alloys Compd. 481 (1–2) (2009) 236–240.

[6]

Z. Wu, Y. Chen, L. Meng, et al., Effect of Fe content on the microstructure and mechanical and electrical properties of Cu-Fe in situ composites[J], J. Mater. Eng. Perform. 30 (8) (2021) 5939–5946.

[7]

M.A. Turchanin, P.G. Agraval, I.V. Nikolaenko, Thermodynamics of alloys and phase equilibria in the copper-iron system[J], J. Phase Equil. 24 (4) (2003) 307–319.

[8]

P. Zhang, X. Yuan, Y. Li, et al., Influence of minor Ag addition on the microstructure and properties of powder metallurgy Cu-10 wt% Fe alloy[J], J. Alloys Compd. 904 (2022), 163983.

[9]

S.S. El-Egamy, Corrosion and corrosion inhibition of Cu–20% Fe alloy in sodium chloride solution[J], Corrosion Sci. 50 (4) (2008) 928–937.

[10]

S. Liu, J. Jie, Z. Guo, et al., Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions[J], J. Alloys Compd. 742 (2018) 99–106.

[11]

V.V. Sanin, M.R. Filonov, V.I. Yukhvid, et al., Production of the 70% Cu–30% Fe alloy by SHS metallurgy and electrometallurgy: comparative analysis of microstructures[J], Russ. J. Non-Ferrous Metals 61 (1) (2020) 119–125.

[12]

K. Uenishi, K.F. Kobayashi, S. Nasu, et al., Mechanical alloying in the Fe-Cu system [J], Int. J. Mater. Res. 83 (2) (1992) 132–135.

[13]

M. Mojtahedi, M. Goodarzi, M.R. Aboutalebi, et al., Investigation on the formation of Cu–Fe nano crystalline super-saturated solid solution developed by mechanical alloying[J], J. Alloys Compd. 550 (2013) 380–388.

[14]

F. Wang, K. Wakoh, Y. Li, et al., Study of microstructure evolution and properties of Cu-Fe microcomposites produced by a pre-alloyed powder method[J], Mater. Des. 126 (2017) 64–72.

[15]

P. Zhang, Q. Lei, X. Yuan, et al., Microstructure and mechanical properties of a Cu-Fe-Nb alloy with a high product of the strength times the elongation[J], Mater. Today Commun. 25 (2020), 101353.

[16]

S.F. Abbas, K.T. Park, T.S. Kim, Effect of composition and powder size on magnetic properties of rapidly solidified copper-iron alloys, J. Alloys Compd. 741 (2018) 1188–1195.

[17]

S. Jin, X. Lian, T. Zhu, Y. Gong, P. Zhang, X. Cao, R. Yu, B. Wang, Irradiation evolution of Cu precipitates in Fe1.0Cu alloy studied by positron annihilation spectroscopy, J. Nucl. Mater. 499 (2018) 65–70.

[18]

X.-M. Bai, H. Ke, Y. Zhang, B.W. Spencer, Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at%Cu alloy under neutron irradiation, J. Nucl. Mater. 495 (2017) 442–454.

[19]

S. Jin, P. Zhang, E. Lu, L. Guo, B. Wang, X. Cao, Correlation between Cu precipitates and irradiation defects in Fe–Cu model alloys investigated by positron annihilation spectroscopy, Acta Mater. 103 (2016) 658–664.

[20]

B. Gludovatz, S. Wurster, A. Hoffmann, et al., Fracture toughness of polycrystalline tungsten alloys[J], Int. J. Refract. Metals Hard Mater. 28 (6) (2010) 674–678.

[21]

C.L. Briant, Grain boundary structure, chemistry, and failure[J], Mater. Sci. Technol. 17 (11) (2001) 1317–1323.

[22]

T. Frolov, Q. Zhu, T. Oppelstrup, et al., Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects[J], Acta Mater. 159 (2018) 123–134.

[23]

Q. Huang, Q. Zhu, Y. Chen, et al., Twinning-assisted dynamic adjustment of grain boundary mobility[J], Nat. Commun. 12 (1) (2021) 1–10.

[24]

V. Borovikov, M.I. Mendelev, A.H. King, Effects of Ag and Zr solutes on dislocation emission from Σ11 (332)[110] symmetric tilt grain boundaries in Cu: bigger is not always better[J], Int. J. Plast. 109 (2018) 79–87.

[25]

H. Sun, L.K. Béland, A molecular dynamics study of path-dependent grain boundary properties in nanocrystals prepared using different methods[J], Scripta Mater. 205 (2021), 114183.

[26]

T. Watanabe, An approach to grain boundary design for strong and ductile polycrystals[J], Res. Mech. 11 (1) (1984) 47–84.

[27]

E.A. Holm, D.L. Olmsted, S.M. Foiles, Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni[J], Scripta Mater. 63 (9) (2010) 905–908.

[28]

R. Freitas, R.E. Rudd, M. Asta, et al., Free energy of grain boundary phases: atomistic calculations for Σ 5 (310)[001] grain boundary in Cu[J], Phys. Rev. Mater. 2 (9) (2018), 093603.

[29]

D.L. Olmsted, S.M. Foiles, E.A. Holm, Survey of computed grain boundary properties in face-centered cubic metals: Ⅰ. Grain boundary energy[J], Acta Mater. 57 (13) (2009) 3694–3703.

[30]

F. Liu, R. Kirchheim, Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation[J], J. Cryst. Growth 264 (1–3) (2004) 385–391.

[31]

P. Parajuli, D. Romeu, V. Hounkpati, et al., Misorientation dependence grain boundary complexions in <111> symmetric tilt Al grain boundaries[J], Acta Mater. 181 (2019) 216–227.

[32]

S. Chandra, A. Alankar, N.N. Kumar, et al., An atomistic analysis of the effect of grain boundary and the associated deformation mechanisms during plain strain compression of a Cu bicrystal[J], Comput. Mater. Sci. 202 (2022), 110953.

[33]

T. Shimokawa, T. Niiyama, T. Miyaki, et al., A novel work hardening mechanism of nanoscale materials by grain boundary transformation[J], Acta Mater. 224 (2022), 117536.

[34]

P.J. Othen, M.L. Jenkins, G.D.W. Smith, High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe, Philos. Mag. A 70 (1994) 1–24.

[35]

S. Shu, B.D. Wirth, P.B. Wells, D.D. Morgan, G.R. Odette, Multi-technique characterization of the precipitates in thermally aged and neutron irradiated Fe-Cu and Fe-Cu-Mn model alloys: atom probe tomography reconstruction implications, Acta Mater. 146 (2018) 237–252.

[36]

S. Jeon, T. Heo, S.-Y. Hwang, J. Ciston, K.C. Bustillo, B.W. Reed, J. Ham, S. Kang, S. Kim, J. Lim, K. Lim, J.S. Kim, M.-H. Kang, R.S. Bloom, S. Hong, K. Kim, A. Zettl, W.Y. Kim, P. Ercius, J. Park, W.C. Lee, Reversible disorder-order transitions in atomic crystal nucleation, Science 371 (2021) 498–503.

[37]

J. Tang, S. Lambie, N. Meftahi, A.J. Christofferson, J. Yang, M.B. Ghasemian, J. Han, F.M. Allioux, M.A. Rahim, M. Mayyas, T. Daeneke, C.F. McConville, K.G. Steenbergen, R.B. Kaner, S.P. Russo, N. Gaston, K. Kalantar-Zadeh, Unique surface patterns emerging during solidification of liquid metal alloys, Nat. Nanotechnol. 16 (2021) 431–439.

[38]

K.L. Merkle, D. Wolf, Low-energy configurations of symmetric and asymmetric tilt grain boundaries[J], Philos. Mag. A 65 (2) (1992) 513–530.

[39]

H. Fu, X. Zhou, H. Xue, et al., Breaking the Purity-Stability Dilemma in Pure Cu with Grain Boundary relaxation[J], Materials Today, 2022.

[40]

W. Xu, B. Zhang, K. Du, et al., Thermally stable nanostructured Al-Mg alloy with relaxed grain boundaries[J], Acta Mater. 226 (2022), 117640.

[41]

G.H. Campbell, J.M. Plitzko, W.E. King, et al., Copper segregation to the Σ5 (310)/[001] symmetric tilt grain boundary in aluminum[J], Interface Sci. 12 (2) (2004) 165–174.

[42]

D. Zhao, O.M. Løvvik, K. Marthinsen, et al., Segregation of Mg, Cu and their effects on the strength of Al Σ5 (210)[001] symmetrical tilt grain boundary[J], Acta Mater. 145 (2018) 235–246.

[43]

H. Xue, Y. Luo, F. Tang, et al., Segregation behavior of alloying elements at Ni Σ5 [001] (210) symmetrical tilt grain boundary in nickel-based superalloys and their stabilization and strengthening mechanisms for the grain boundary[J], Mater. Chem. Phys. 258 (2021), 123977.

[44]

A. Brokman, R.W. Balluffi, Coincidence lattice model for the structure and energy of grain boundaries[J], Acta Metall. 29 (10) (1981) 1703–1719.

[45]

V. Randle, The coincidence site lattice and the ’sigma enigma’[J], Mater. Char. 47 (5) (2001) 411–416.

[46]

K. Sadananda, M.J. Marcinkowski, Extension of the unified theory of grain boundaries. Ⅰ. Structure of the boundaries[J], J. Appl. Phys. 45 (4) (1974) 1521–1532.

[47]

M.J. Marcinkowski, E.S. Dwarakadasa, A unified theory of twist boundaries[J], Phys. Status Solidi 19 (2) (1973) 597–608.

[48]

R. Salloom, M.I. Baskes, S.G. Srinivasan, Atomic level simulations of the phase stability and stacking fault energy of FeCoCrMnSi high entropy alloy[J], Model. Simulat. Mater. Sci. Eng. 30 (7) (2022), 075002.

[49]

P. Wang, Y. Bu, J. Liu, et al., Atomic deformation mechanism and interface toughening in metastable high entropy alloy[J], Mater. Today 37 (2020) 64–73.

[50]

K. Shubhank, Y.B. Kang, Critical evaluation and thermodynamic optimization of Fe–Cu, Cu–C, Fe–C binary systems and Fe–Cu–C ternary system[J], Calphad 45 (2014) 127–137.

[51]

J. He, J.Z. Zhao, L. Ratke, Solidification microstructure and dynamics of metastab-le phase transformation in undercooled liquid Cu–Fe alloys[J], Acta Mater. 54 (7) (2006) 1749–1757.

[52]

Hirel P. Atomsk, A tool for manipulating and converting atomic data files[J], Comput. Phys. Commun. 197 (2015) 212–219.

[53]

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1–19.

[54]

G. Bonny, R.C. Pasianot, N. Castin, L. Malerba, Ternary Fe–Cu–Ni many-body potential to model reactor pressure vessel steels: first validation by simulated thermal annealing, Philos. Mag. A 89 (2009) 3531–3546.

[55]

N. Eom, M.E. Messing, J. Johansson, et al., General trends in core–shell preferences for bimetallic nanoparticles[J], ACS Nano 15 (5) (2021) 8883–8895.

[56]

B. Wu, Z. Bai, A. Misra, et al., Atomistic mechanism and probability determination of the cutting of Guinier-Preston zones by edge dislocations in dilute Al-Cu alloys [J], Phys. Rev. Mater. 4 (2) (2020), 020601.

[57]

M.D. Sangid, T. Ezaz, H. Sehitoglu, et al., Energy of slip transmission and nucleation at grain boundaries[J], Acta Mater. 59 (1) (2011) 283–296.

[58]

J.J. Bean, K.P. McKenna, Origin of differences in the excess volume of copper and nickel grain boundaries[J], Acta Mater. 110 (2016) 246–257.

[59]

H. Sun, C.V. Singh, Temperature dependence of grain boundary excess free volume [J], Scripta Mater. 178 (2020) 71–76.

[60]

A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Model. Simulat. Mater. Sci. Eng. 18 (2010), 015012.

[61]

Z. Bai, A. Misra, Y. Fan, Universal Trend in the dynamic relaxations of tilted metastable grain boundaries during ultrafast thermal cycle[J], Mater. Res. Lett. 10 (6) (2022) 343–351.

[62]

M.A. Tschopp, D.L. McDowell, Asymmetric tilt grain boundary structure and energy in copper and aluminium[J], Phil. Mag. 87 (25) (2007) 3871–3892.

[63]

K. Wang, W.G. Zhang, J.Q. Xu, et al., The impact of misorientation on the grain boundary energy in bi-crystal copper: an atomistic simulation study[J], J. Mol. Model. 28 (2) (2022) 47.

[64]

C. Cui, Q. Yu, W. Wang, et al., Molecular dynamics study on tensile strength of twist grain boundary structures under uniaxial tension in copper[J], Vacuum 184 (2021), 109874.

[65]

E.M. Steyskal, B. Oberdorfer, W. Sprengel, et al., Direct experimental determination of grain boundary excess volume in metals[J], Phys. Rev. Lett. 108 (5) (2012), 055504.

[66]

B. Oberdorfer, D. Setman, E.M. Steyskal, et al., Grain boundary excess volume and defect annealing of copper after high-pressure torsion[J], Acta Mater. 68 (2014) 189–195.

[67]

F.C. Frank, W.T. Read Jr., Multiplication processes for slow moving dislocations[J], Phys. Rev. 79 (4) (1950) 722.

[68]

R. Mahjoub, K.J. Laws, N. Stanford, et al., General trends between solute segregation tendency and grain boundary character in aluminum-An ab inito study [J], Acta Mater. 158 (2018) 257–268.

[69]

Y. Zhang, Y.H. Wen, Z.Z. Zhu, et al., Structure and stability of fe nanocrystals: an atomistic study[J], J. Phys. Chem. C 114 (44) (2010) 18841–18846.

[70]

Y.H. Wen, R. Huang, C. Li, et al., Enhanced thermal stability of Au@ Pt nanoparticles by tuning shell thickness: insights from atomistic simulations[J], J. Mater. Chem. 22 (15) (2012) 7380–7386.

[71]

T. Shen, W. Meng, Y. Wu, et al., Size dependence and phase transition during melting of fcc-Fe nanoparticles: a molecular dynamics simulation[J], Appl. Surf. Sci. 277 (2013) 7–14.

[72]

L.H. Cohen, W. Klement Jr., G.C. Kennedy, Melting of copper, silver, and gold at high pressures[J], Phys. Rev. 145 (2) (1966) 519.

Nano Materials Science
Pages 86-95
Cite this article:
Yang S, Bao H, Bai H, et al. Effects of Fe solid solute on grain boundaries of bi-crystal Cu: A molecular dynamics simulation. Nano Materials Science, 2024, 6(1): 86-95. https://doi.org/10.1016/j.nanoms.2023.05.001

156

Views

2

Downloads

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 13 January 2023
Accepted: 08 May 2023
Published: 16 June 2023
© 2023 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return