AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Facile electrochemical surface-alloying and etching of Au wires to enable high-performance substrates for surface enhanced Raman scattering

Yawen Zhana,b,1Guobin Zhange,1Junda Shena,bBinbin Zhoua,bChenghao Zhaoa,bJunmei GuocMing WencZhilong TancLirong Zhengf( )Jian Lub,d( )Yang Yang Lia,b( )
Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
Kunming Institute of Precious Metals, Sino-platinum Metals Co., Ltd., Kunming, Yunan Province, China
Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, China
Shenzhen Key Laboratory on Power Battery Safety Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
Institute of High Energy Physics, Beijing, 100049, China

1 These authors contributed equally to this work and should be considered as co-first authors.

Show Author Information

Abstract

Surface-enhanced Raman Spectroscopy (SERS) is a nondestructive technique for rapid detection of analytes even at the single-molecule level. However, highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques, greatly restricting their practical applications. A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report. Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea, in a one-pot one-step manner. X-rays absorption fine structure (XAFS) spectroscopy confirms that the AuAg alloy is induced at the surface. The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates, enabling a remarkably sensitive detection of Rhodamine B (a detection limit of 10−14 ​M, and uniform strong response throughout the substrates at 10−12 ​M).

References

[1]

Y. Zhao, N.C. Anderson, K. Zhu, J.A. Aguiar, J.A. Seabold, J. Lagemaat, H.M. Branz, N.R. Neale, Oxidatively stable nanoporous silicon photocathodes with enhanced onset noltage for photoelectrochemical proton reduction, Nano Lett. 15 (2015) 2517–2525.

[2]

X. Lai, J. Li, B.A. Korgel, Z. Dong, Z. Li, F. Su, J. Du, D. Wang, General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres, Angew. Chem. Int. Ed. 50 (2011) 2738–2741.

[3]

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, Z. Tang, Superstructures and SERS properties of gold nanocrystals with different shapes, Angew. Chem. Int. Ed. 50 (2011) 1593–1596.

[4]

P. Rai, R. Khan, S. Raj, S.M. Majhi, K.-K. Park, Y.-T. Yu, I.-H. Lee, P.K. Sekhar, Au@Cu2O core–shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance, Nanoscale 6 (2014) 581–588.

[5]

J. Li, S.K. Cushing, J. Bright, F. Meng, T.R. Senty, P. Zheng, A.D. Bristow, N. Wu, Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts, ACS Catal. 3 (2012) 47–51.

[6]

H. Qiu, Z. Zhang, X. Huang, Y. Qu, Dealloying Ag–Al alloy to prepare nanoporous silver as a substrate for surface-enhanced Raman scattering: effects of structural evolution and surface modification, ChemPhysChem 12 (2011) 2118–2123.

[7]

X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol. 6 (2011) 232–236.

[8]

A. Chauvin, C. Delacote, L. Molina-Luna, M. Duerrschnabel, M. Boujtita, D. Thiry, K. Du, J. Ding, C.-H. Choi, P.-Y. Tessier, Planar arrays of nanoporous gold nanowires: when electrochemical dealloying meets nanopatterning, ACS Appl. Mater. Interfaces 8 (2016) 6611–6620.

[9]

J. Zhang, C.M. Li, Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems, Chem. Soc. Rev. 41 (2012) 7016–7031.

[10]

Y.-C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, Platinum−gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium−air batteries, J. Am. Chem. Soc. 132 (2010) 12170–12171.

[11]

L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, R. Chen, Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate, J. Mater. Chem. 14 (2004) 1005–1009.

[12]

K. Kusada, H. Kitagawa, Continuous-flow syntheses of alloy nanoparticles, Mater. Horiz. 9 (2022) 547–558.

[13]

G. Li, N. Zhu, J. Zhou, K. Kang, X. Zhou, B. Ying, Q. Yi, Y. Wu, A magnetic surface-enhanced Raman scattering platform for performing successive breast cancer exosome isolation and analysis, J. Mater. Chem. B 9 (2021) 2709–2716.

[14]

A. Balcytis, Y. Nishijima, S. Krishnamoorthy, A. Kuchmizhak, P.R. Stoddart, P. Petruskevicius, S. Juodkazis, From fundamental toward applied SERS: shared principles and divergent approaches, Adv. Opt. Mater. 6 (2018) 1800292.

[15]

C. Suji, S.I. Han, D. Jung, H.J. Hwang, C. Lim, S. Bea, O.K. Park, Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics, Nat. Nanotechnol. 13 (2018) 1048–1056.

[16]

Y. Zhu, S. Kim, X. Ma, P. Byrley, N. Yu, Q. Liu, X. Sun, D. Xu, S. Peng, M.C. Hartel, S. Zhang, V. Jucaud, M.R. Dockmeci, A. Khademihosseini, R. Yan, Ultrathin-shell epitaxial Ag@Au core-shell nanowires for high-performance and chemically-stable electronic, optical, and mechanical devices, Nano Res. 14 (11) (2011) 4294–4303.

[17]

Y. Ma, Y. Du, Y. Chen, C. Gu, T. Jiang, G. Wei, J. Zhou, Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires, Chem. Eng. Sci. 381 (2020) 1227010.

[18]

M. Iqbal, Y. Bando, Z. Sun, K.C.-W. Wu, A.E. Rowan, J. Na, B.Y. Guan, Y. Yamauchi, In search of excellence: convex versus concave noble metal nanostructures for electrocatalytic applications, Adv. Mater. 33 (2021) 2004554.

[19]

S. Yang, X. Luo, Mesoporous nano/micro noble metal particles: synthesis and applications, Nanoscale 6 (2014) 4438–4457.

[20]

T. Kwon, M. Jun, K. Lee, Catalytic nanoframes and beyond, Adv. Mater. 32 (2020) 2001345.

[21]

U. Waiwijit, C. Chananonnawathorn, P. Eimchai, T. Bora, G.L. Hornyak, N. Nuntawong, Fabrication of Au-Ag nanorod SERS substrates by co-sputtering technique and dealloying with selective chemical etching, Appl. Surf. Sci. 503 (2020) 147171.

[22]

C. Rurainsky, A.G. Manjon, F. Hiege, Y.-T. Chen, C. Scheu, K. Tschulik, Electrochemical dealloying as a tool to tune the porosity, composition and catalytic activity of nanomaterials, J. Mater. Chem. 8 (2020) 19405–19413.

[23]

X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, K. Sieradzki, Dealloying of noble-metal alloy nanoparticles, Nano Lett. 14 (5) (2014) 2569–2577.

[24]

Z. Yang, Z. Lin, J. Yang, J. Wang, J. Yue, B. Liu, L. Jiang, Fabrication of porous noble metal nanoparticles based on laser ablation toward water and dealloying for biosensing, Appl. Surf. Sci. 579 (2022) 152130.

[25]

D. Liu, Z. Liu, X. Li, W. Xie, Q. Wang, Q. Liu, Y. Fu, D. He, Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries, Small 13 (2017) 1702000.

[26]

J. Zhang, L.-C. Chan, T. Gao, O. Wang, S. Zeng, H. Bian, C. Lee, Z. Xu, Y.Y. Li, J. Lu, Bulk monolithic electrodes enabled by surface mechanical attrition treatment-facilitated dealloying, J. Mater. Chem. 4 (2016) 15057–15063.

[27]

N. Si, T. Niu, Epitaxial growth of elemental 2D materials: what can we learn from the periodic table? Nano Today 30 (2020) 100805.

[28]

D. Alfe, M. Pozzo, E. Miniussi, S. Gunther, P. Locovig, S. Lizzit, R. Larciprete, B. Santos Burgos, T.O. Mentes, A. Locatelli, A. Baraldi, Fine tuning of graphene-metal adhesion by surface alloying, Sic. Rep. 3 (2013) 2430.

[29]

A.A. Aiddiqui, A.K. Dubey, Mater. Today: Proc. 44 (2021) 1108–1110.

[30]

L. Zhang, C.T. Peng, J. Shi, R. Lu, Surface alloying of chromium/tungsten/stannum on pure nickel and theoretical analysis of strengthening mechanism, Appl. Surf. Sci. 523 (2020) 147477.

[31]

Y. Zhan, S. Zeng, H. Bian, L. Zhe, Z. Xu, J. Lu, Y.Y. Li, Bestow metal foams with nanostructured surfaces via a convenient electrochemical method for improved device performance, Nano Res. 9 (2016) 2364–2371.

[32]

C. Zhu, D. Du, A. Eychmuller, Y. Lin, Engineering ordered and nonordered porous noble metal nanostructures: synthesis, assembly, and their applications in electrochemistry, Chem. Rev. 115 (2015) 8896–8943.

[33]

S.T. Kochuveedu, Y.H. Jang, D.H. Kim, A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications, Chem. Soc. Rev. 42 (2013) 8467–8493.

[34]

C. Koenigsmann, S.S. Wong, One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanolfuelcells, Energy Environ. Sci. 4 (2011) 1161–1176.

[35]

Y.-J. Oh, K.-H. Jeong, Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering, Adv. Mater. 24 (2012) 2234–2237.

[36]

W. Xie, C. Herrmann, K. Kompe, M. Haase, S. Schlucker, Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions, J. Am. Chem. Soc. 133 (2011) 19302–19305.

[37]

C.E. Talley, J.B. Jackson, C. Oubre, N.K. Grady, C.W. Hollars, S.M. Lane, T.R. Huser, P. Nordlander, N.J. Halas, Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates, Nano Lett. 5 (2005) 1569–1574.

[38]

T. Chen, Z. Liu, W. Lu, X. Zhou, H. Ma, Fabrication of free-standing nanoporous silver by selectively dissolving gold from gold–silver alloys via a novel converse dealloying method, Electrochem. Comun. 13 (2011) 1086–1089.

[39]
1 I. Ambra, M. Gulmini, A.-I. Henry, F. Casadio, L. Chang, L. Appolonia, R.P.V. Duyne, N.C. Shah, Silver colloidal pastes for dye analysis of reference and historical textile fibers using direct, extractionless, non-hydrolysis surface-enhanced Raman spectroscopy, Analyst 20 (2013) 5895–5903.
[40]
2. Wu Yue, M. Yang, T.W. Ueltschi, M.A. Mosquera, Z. Chen, G.C. Schatz, R.P.V. Duyne, SERS study of the mechanism of plasmon-driven hot electron transfer between gold nanoparticles and PCBM J. Phys. Chem. C 49 (2019) 29908–29915.
[41]

B. Ravel, M. Newville, Artemis Athena, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat. 12 (2005) 537–541.

[42]
D.C. Koningsberger, R. Prins, in: D.C. Koningsberger (Ed.), X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, Wiley, 1988, p. 92.
[43]

J.J. Rehr, R.C. Albers, Theoretical approaches to X-ray absorption fine structure, Rev. Mod. Phys. 72 (2000) 621–654.

[44]

G. Zhang, T. Xiong, X. Pan, Y. Zhao, M. Yan, H. Zhang, L. Mai, Illumining phase transformation dynamics of vanadium oxide cathode by multimodal techniques under operando conditions, Nano Res. 12 (4) (2019) 905–910.

[45]

T. Higaki, C. Liu, D.J. Morris, G. He, T.-Y. Luo, M.Y. Sfeir, P. Zhang, N.L. Rosi, R. Jin, Au130-xAgx nanoclusters with non-metallicity: a drum of silver-rich sites enclosed in a marks-decahedral cage of gold-rich sites, Angew. Chem. Int. Ed. 58 (2019) 18798–18802.

[46]

X. Pan, X. Zhou, X. Liao, R. Yu, K. Yu, S. Lin, Yao Ding, W. Luo, Me Yan, L. Mai, Ultrafast ion sputtering modulation of two-dimensional substrate for highly sensitive Raman detection, ACS Materials Lett 12 (4) (2022) 2622–2630.

Nano Materials Science
Pages 305-311
Cite this article:
Zhan Y, Zhang G, Shen J, et al. Facile electrochemical surface-alloying and etching of Au wires to enable high-performance substrates for surface enhanced Raman scattering. Nano Materials Science, 2024, 6(3): 305-311. https://doi.org/10.1016/j.nanoms.2023.05.002

97

Views

1

Downloads

4

Crossref

5

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 09 February 2023
Accepted: 08 May 2023
Published: 14 September 2023
© 2024 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return