PDF (6.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

A hierarchical salt-rejection strategy for sustainable and high-efficiency solar-driven desalination

Zhengyi Maoa,bXuliang ChenbYingxian ChencJunda ShencJianpan HuangdYuhan ChenbXiaoguang DuaneYicheng HanbKannie Wai Yan ChandJian LUa,b,f,g()
CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
Department of Material Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, Australia
Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
Show Author Information

Abstract

Solar steam generation (SSG) is widely regarded as one of the most sustainable technologies for seawater desalination. However, salt fouling severely compromises the evaporation performance and lifetime of evaporators, limiting their practical applications. Herein, we propose a hierarchical salt-rejection (HSR) strategy to prevent salt precipitation during long-term evaporation while maintaining a rapid evaporation rate, even in high-salinity brine. The salt diffusion process is segmented into three steps—insulation, branching diffusion, and arterial transport—that significantly enhance the salt-resistance properties of the evaporator. Moreover, the HSR strategy overcomes the tradeoff between salt resistance and evaporation rate. Consequently, a high evaporation rate of 2.84 ​kg ​m−2 ​h−1, stable evaporation for 7 days cyclic tests in 20 ​wt% NaCl solution, and continuous operation for 170 ​h in natural seawater under 1 sun illumination were achieved. Compared with control evaporators, the HSR evaporator exhibited a > 54% enhancement in total water evaporation mass during 24 ​h continuous evaporation in 20 ​wt% salt water. Furthermore, a water collection device equipped with the HSR evaporator realized a high water purification rate (1.1 ​kg ​m−2 ​h−1), highlighting its potential for agricultural applications.

References

[1]

A. Boretti, L. Rosa, npj Clean Water 2 (2019) 15.

[2]

E. Chiavazzo, M. Morciano, F. Viglino, M. Fasano, P. Asinari, Nat. Sustain. 1 (2018) 763.

[3]

P.C.D. Milly, K.A. Dunne, A.V. Vecchia, Nature 438 (2005) 347.

[4]

M.M. Mekonnen, A.Y. Hoekstra, Sci. Adv. 2 (2016) e1500323.

[5]

Q. Wang, Y. Yao, Z. Shen, M. Hu, H. Yang, Green Energy Resour. 1 (2023) 100001.

[6]

Q. Wang, Y. Yao, Z. Shen, H. Yang, Appl. Energy 329 (2023) 120336.

[7]

F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Nat. Rev. Mater. 5 (2020) 388.

[8]

M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Energy Environ. Sci. 12 (2019) 841.

[9]

G. Ni, G. Li, S.V. Boriskina, H. Li, W. Yang, T. Zhang, G. Chen, Nat. Energy 1 (2016) 16126.

[10]

P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Nat. Energy 3 (2018) 1031.

[11]

H. Yu, D. Wang, H. Jin, P. Wu, X. Wu, D. Chu, Y. Lu, X. Yang, H. Xu, Adv. Funct. Mater. 33 (2023) 2214828.

[12]

Y. Zhang, T. Xiong, D.K. Nandakumar, S.C. Tan, Adv. Sci. 7 (2020) 1903478.

[13]

C. Zhang, Y. Shi, L. Shi, H. Li, R. Li, S. Hong, S. Zhuo, T. Zhang, P. Wang, Nat. Commun. 12 (2021) 998.

[14]

M. Zou, Y. Zhang, Z. Cai, C. Li, Z. Sun, C. Yu, Z. Dong, L. Wu, Y. Song, Adv. Mater. 33 (2021) 2102443.

[15]

L. Zhu, L. Sun, H. Zhang, H. Aslan, Y. Sun, Y. Huang, F. Rosei, M. Yu, Energy Environ. Sci. 14 (2021) 2451.

[16]

T. Hu, K. Chen, L. Li, J. Zhang, J. Mater. Chem. A 9 (2021) 17502.

[17]

X. Wu, Y. Wang, P. Wu, J. Zhao, Y. Lu, X. Yang, H. Xu, Adv. Funct. Mater. 31 (2021) 2102618.

[18]

Y. Wang, X. Wu, P. Wu, H. Yu, J. Zhao, X. Yang, Q. Li, Z. Zhang, D. Zhang, G. Owens, H. Xu, J. Mater. Chem. A 10 (2022) 14470.

[19]

L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N.X. Fang, C. Li, C. Yu, Y. Zhang, Y. Song, Nat. Commun. 11 (2020) 521.

[20]

Y. Xia, Q. Hou, H. Jubaer, Y. Li, Y. Kang, S. Yuan, H. Liu, M.W. Woo, L. Zhang, L. Gao, H. Wang, X. Zhang, Energy Environ. Sci. 12 (2019) 1840.

[21]
L. Li, N. He, B. Jiang, K. Yu, Q. Zhang, H. Zhang, D. Tang, Y. Song, Adv. Funct. Mater. (2021) 2104380, 2104380.
[22]

C. Dang, H. Wang, Y. Cao, J. Shen, J. Zhang, L. Lv, G. Xu, M. Zhu, Energy Environ. Sci. 15 (2022) 5405.

[23]

K. Yang, T. Pan, S. Dang, Q. Gan, Y. Han, Nat. Commun. 13 (2022) 6653.

[24]

L. Zhang, X. Li, Y. Zhong, A. Leroy, Z. Xu, L. Zhao, E.N. Wang, Nat. Commun. 13 (2022) 849.

[25]

G. Ni, S.H. Zandavi, S.M. Javid, S.V. Boriskina, T.A. Cooper, G. Chen, Energy Environ. Sci. 11 (2018) 1510.

[26]

Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang, W. Gan, R. Mi, L. Hu, Adv. Mater. 31 (2019) 1900498.

[27]

N. Xu, H. Zhang, Z. Lin, J. Li, G. Liu, X. Li, W. Zhao, X. Min, P. Yao, L. Zhou, Y. Song, B. Zhu, S. Zhu, J. Zhu, Natl. Sci. Rev. 8 (2021) nwab065.

[28]

S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu, Y. Pei, W. Kong, W. Gan, H. Xie, E. Hitz, C. Jia, X. Chen, A. Gong, J. Liao, J. Li, Z.J. Ren, B. Yang, S. Das, L. Hu, Energy Environ. Sci. 12 (2019) 1558.

[29]

W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li, L. Zhou, S. Zhu, J. Zhu, Adv. Energy Mater. 8 (2018) 1702884.

[30]

N. Xu, J. Li, Y. Wang, C. Fang, X. Li, Y. Wang, L. Zhou, B. Zhu, Z. Wu, S. Zhu, J. Zhu, Sci. Adv. 5 (2019) eaaw7013.

[31]

W. Zhao, H. Gong, Y. Song, B. Li, N. Xu, X. Min, G. Liu, B. Zhu, L. Zhou, X. Zhang, J. Zhu, Adv. Funct. Mater. 31 (2021) 2100025.

[32]

J. Zeng, Q. Wang, Y. Shi, P. Liu, R. Chen, Adv. Energy Mater. 9 (2019) 1900552.

[33]

X. Ma, W. Fang, W. Ying, D. Chen, Z. Li, Z. Deng, C. Gao, X. Peng, Appl. Mater. Today 18 (2020) 100459.

[34]

C. Liu, J. Tong, J. Ma, D. Wang, F. Xu, Y. Liu, Z. Chen, C. Lao, J. Nanomater. 2019 (2019) 1.

[35]

G. Liu, X. Zhang, X. Chen, Y. He, L. Cheng, M. Huo, J. Yin, F. Hao, S. Chen, P. Wang, S. Yi, L. Wan, Z. Mao, Z. Chen, X. Wang, Z. Cao, J. Lu, Mater. Sci. Eng. R Rep. 145 (2021) 100596.

[36]

X. Li, G. Ni, T. Cooper, N. Xu, J. Li, L. Zhou, X. Hu, B. Zhu, P. Yao, J. Zhu, Joule 3 (2019) 1798.

[37]

T. Gao, X. Wu, Y. Wang, G. Owens, H. Xu, Sol. RRL 5 (2021) 2100053.

[38]

Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou, G. Yu, Energy Environ. Sci. 13 (2020) 2087.

[39]

Z. Mao, Y. Chen, G. Li, X. Duan, J. Shen, Y. Han, L. Li, Z. Chen, H. Liu, J. Lu, Sep. Purif. Technol. 314 (2023) 123502.

[40]

X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Sci. Adv. 5 (2019) eaaw5484.

[41]

T.A. Cooper, S.H. Zandavi, G.W. Ni, Y. Tsurimaki, Y. Huang, S.V. Boriskina, G. Chen, Nat. Commun. 9 (2018) 5086.

[42]

N. Li, L. Qiao, J. He, S. Wang, L. Yu, P. Murto, X. Li, X. Xu, Adv. Funct. Mater. 31 (2021) 2008681.

[43]

L. Cui, P. Zhang, Y. Xiao, Y. Liang, H. Liang, Z. Cheng, L. Qu, Adv. Mater. 30 (2018) 1706805.

[44]

X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, Energy Environ. Sci. 11 (2018) 1985.

[45]

R. Hu, J. Zhang, Y. Kuang, K. Wang, X. Cai, Z. Fang, W. Huang, G. Chen, Z. Wang, J. Mater. Chem. A 7 (2019) 15333.

[46]

C. Finnerty, L. Zhang, D.L. Sedlak, K.L. Nelson, B. Mi, Environ. Sci. Technol. 51 (2017) 11701.

[47]

V. Kashyap, A. Al-Bayati, S.M. Sajadi, P. Irajizad, S.H. Wang, H. Ghasemi, J. Mater. Chem. A 5 (2017) 15227.

[48]

Y. Xia, Y. Li, S. Yuan, Y. Kang, M. Jian, Q. Hou, L. Gao, H. Wang, X. Zhang, J. Mater. Chem. A 8 (2020) 16212.

[49]

X. Li, J. Li, J. Lu, N. Xu, C. Chen, X. Min, B. Zhu, H. Li, L. Zhou, S. Zhu, T. Zhang, J. Zhu, Joule 2 (2018) 1331.

[50]

W. Li, Z. Li, K. Bertelsmann, D.E. Fan, Adv. Mater. 31 (2019) 1900720.

[51]

F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, G. Yu, Nat. Nanotechnol. 13 (2018) 489.

[52]

X. Wu, T. Gao, C. Han, J. Xu, G. Owens, H. Xu, Sci. Bull. 64 (2019) 1625.

[53]

X. Li, R. Lin, G. Ni, N. Xu, X. Hu, B. Zhu, G. Lv, J. Li, S. Zhu, J. Zhu, Natl. Sci. Rev. 5 (2018) 70.

[54]

Y. Bian, Q. Du, K. Tang, Y. Shen, L. Hao, D. Zhou, X. Wang, Z. Xu, H. Zhang, L. Zhao, S. Zhu, J. Ye, H. Lu, Y. Yang, R. Zhang, Y. Zheng, S. Gu, Adv. Mater. Technol. 4 (2019) 1800593.

[55]

W. Li, M.C. Tekell, Y. Huang, K. Bertelsmann, M. Lau, D. Fan, Adv. Energy Mater. 8 (2018) 1802108.

[56]

X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu, S. Zhu, J. Zhu, Proc. Natl. Acad. Sci. USA 113 (2016) 13953.

[57]

J. Chen, J.L. Yin, B. Li, Z. Ye, D. Liu, D. Ding, F. Qian, N.V. Myung, Q. Zhang, Y. Yin, ACS Nano 14 (2020) 17419.

[58]

Y. Li, T. Gao, Z. Yang, C. Chen, W. Luo, J. Song, E. Hitz, C. Jia, Y. Zhou, B. Liu, B. Yang, L. Hu, Adv. Mater. 29 (2017) 1700981.

Nano Materials Science
Pages 38-43
Cite this article:
Mao Z, Chen X, Chen Y, et al. A hierarchical salt-rejection strategy for sustainable and high-efficiency solar-driven desalination. Nano Materials Science, 2024, 6(1): 38-43. https://doi.org/10.1016/j.nanoms.2023.08.003
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return