AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (15.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent advances in graphene-based phase change composites for thermal energy storage and management

Qiang Zhua,b,c,1Pin Jin Onga,1Si Hui Angela GohaReuben J. YeoaSuxi WangaZhiyuan LiudXian Jun Loha,b,e( )
Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore
Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833, Singapore
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen, 518055, China
Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, 117575, Singapore

1 These authors contribute equally.

Show Author Information

Abstract

Energy storage and conservation are receiving increased attention due to rising global energy demands. Therefore, the development of energy storage materials is crucial. Thermal energy storage (TES) systems based on phase change materials (PCMs) have increased in prominence over the past two decades, not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability. However, issues such as leakage and low thermal conductivity limit their applicability in a variety of settings. Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles. This study examines the recent advancements in graphene-based phase change composites (PCCs), where graphene-based nanostructures such as graphene, graphene oxide (GO), functionalized graphene/GO, and graphene aerogel (GA) are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity, durability, and temperature response, thus boosting their attractiveness for TES systems. In addition, the applications of these graphene-based PCCs in various TES disciplines, such as energy conservation in buildings, solar utilization, and battery thermal management, are discussed and summarized.

References

[1]

S. Wang, J.K. Muiruri, X.Y.D. Soo, S. Liu, W. Thitsartarn, B.H. Tan, A. Suwardi, Z. Li, Q. Zhu, X.J. Loh, Bio-polypropylene and polypropylene-based biocomposites: solutions for a sustainable future, Chem. Asian J. (2022) e202200972, https://doi.org/10.1002/asia.202200972.

[2]

J.K. Muiruri, J.C.C. Yeo, X.Y.D. Soo, S. Wang, H. Liu, J. Kong, J. Cao, B.H. Tan, A. Suwardi, Z. Li, J. Xu, X.J. Loh, Q. Zhu, Recent advances of sustainable short-chain length polyhydroxyalkanoates (Scl-PHAs)–Plant biomass composites, Eur. Polym. J. (2023) 111882, https://doi.org/10.1016/j.eurpolymj.2023.111882.

[3]

Z. Li, X.J. Loh, Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9 (3) (2017) e1429, https://doi.org/10.1002/wnan.1429.

[4]

M.H. Chua, K.L.O. Chin, X.J. Loh, Q. Zhu, J. Xu, Aggregation-induced emission-active nanostructures: beyond biomedical applications, ACS Nano 17 (3) (2023) 1845-1878, https://doi.org/10.1021/acsnano.2c10826.

[5]

M. Wu, S. Wu, Y. Cai, R. Wang, T. Li, Form-stable phase change composites: preparation, performance, and applications for thermal energy conversion, storage and management, Energy Storage Mater. 42 (2021) 380-417, https://doi.org/10.1016/j.ensm.2021.07.019.

[6]

Q. Zhu, M.H. Chua, P.J. Ong, J.J.C. Lee, K.L.O. Chin, S. Wang, D. Kai, R. Ji, J. Kong, Z. Dong, Recent advances in nanotechnology-based functional coatings for the built environment, Mater. Today Adv. 15 (2022) 100270, https://doi.org/10.1016/j.mtadv.2022.100270.

[7]

P.J. Ong, Y.Y. Lum, X.Y.D. Soo, S. Wang, P. Wang, D. Chi, H. Liu, D. Kai, C.-L.K. Lee, Q. Yan, J. Xu, X.J. Loh, Q. Zhu, Integration of phase change material and thermal insulation material as a passive strategy for building cooling in the tropics, Construct. Build. Mater. 386 (2023) 131583, https://doi.org/10.1016/j.conbuildmat.2023.131583.

[8]

P.J. Ong, Y. Leow, X.Y.D. Soo, M.H. Chua, X. Ni, A. Suwardi, C.K.I. Tan, R. Zheng, F. Wei, J. Xu, X.J. Loh, D. Kai, Q. Zhu, Valorization of Spent coffee Grounds: a sustainable resource for Bio-based phase change materials for thermal energy storage, Waste Manage. (Tucson, Ariz.) 157 (2023) 339-347, https://doi.org/10.1016/j.wasman.2022.12.039.

[9]

N.H. Solangi, N.M. Mubarak, R.R. Karri, S.A. Mazari, A.S. Jatoi, J.R. Koduru, M.H. Dehghani, MXene-based phase change materials for solar thermal energy storage, Energy Convers. Manag. 273 (2022) 116432, https://doi.org/10.1016/j.enconman.2022.116432.

[10]

T. Li, M. Wu, S. Wu, S. Xiang, J. Xu, J. Chao, T. Yan, T. Deng, R. Wang, Highly conductive phase change composites enabled by vertically-aligned reticulated graphite nanoplatelets for high-temperature solar photo/electro-thermal energy conversion, harvesting and storage, Nano Energy 89 (2021) 106338, https://doi.org/10.1016/j.nanoen.2021.106338.

[11]

E. Yildirim, Q. Zhu, G. Wu, T.L. Tan, J. Xu, S.-W. Yang, Self-organization of PEDOT: PSS induced by green and water-soluble organic molecules, J. Phys. Chem. C 123 (15) (2019) 9745-9755, https://doi.org/10.1021/acs.jpcc.9b01716.

[12]

H. Zhou, M.H. Chua, Q. Zhu, J. Xu, High-performance PEDOT: PSS-based thermoelectric composites, Compos. Commun. 27 (2021) 100877, https://doi.org/10.1016/j.coco.2021.100877.

[13]

X. Yong, G. Wu, W. Shi, Z.M. Wong, T. Deng, Q. Zhu, X. Yang, J.-S. Wang, J. Xu, S.-W. Yang, Theoretical search for high-performance thermoelectric donor–acceptor copolymers: the role of super-exchange couplings, J. Mater. Chem. A 8 (41) (2020) 21852-21861, https://doi.org/10.1039/D0TA05765G.

[14]

T. Tang, A.K.K. Kyaw, Q. Zhu, J. Xu, Water-dispersible conducting polyazulene and its application in thermoelectrics, Chem. Commun. 56 (65) (2020) 9388-9391, https://doi.org/10.1039/D0CC03840G.

[15]

V. Skurkyte-Papieviene, A. Abraitiene, A. Sankauskaite, V. Rubeziene, J. Baltusnikaite-Guzaitiene, Enhancement of the thermal performance of the paraffin-based microcapsules intended for textile applications, Polymers 13 (7) (2021) 1120, https://doi.org/10.3390/polym13071120.

[16]

Y. Lu, X. Xiao, J. Fu, C. Huan, S. Qi, Y. Zhan, Y. Zhu, G. Xu, Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning, Chem. Eng. J. 355 (2019) 532-539, https://doi.org/10.1016/j.cej.2018.08.189.

[17]

Y. Liao, J. Li, S. Li, X. Yang, Super-elastic and shape-stable solid-solid phase change materials for thermal management of electronics, J. Energy Storage 52 (2022) 104751, https://doi.org/10.1016/j.est.2022.104751.

[18]
W.-Y. Wu, G.M.D. Yeo, S. Wang, Z. Liu, X.J. Loh, Q. Zhu, Recent Progress in Polyethylene-enhanced Organic Phase Change Materials Composite for Energy Management, Chem. Asian J.. e202300391. https://doi.org/10.1002/asia.202300391..
[19]

S.Y. Kee, Y. Munusamy, K.S. Ong, Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage, Appl. Therm. Eng. 131 (2018) 455-471, https://doi.org/10.1016/j.applthermaleng.2017.12.032.

[20]

H. Ke, Y. Li, J. Wang, B. Peng, Y. Cai, Q. Wei, Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy, Renew. Energy 99 (2016) 1-9, https://doi.org/10.1016/j.renene.2016.06.033.

[21]

X.Y. Soo, J.K. Muiruri, J.C. Yeo, Z.M. Png, A. Sng, H. Xie, R. Ji, S. Wang, H. Liu, J. Xu, X.J. Loh, Q. Yan, Z. Li, Q. Zhu, Polyethylene glycol/polylactic acid block co-polymers as solid–solid phase change materials, SmartMat (2023) e1188, https://doi.org/10.1002/smm2.1188.

[22]

X.Y.D. Soo, Z.M. Png, M.H. Chua, J.C.C. Yeo, P.J. Ong, S. Wang, X. Wang, A. Suwardi, J. Cao, Y. Chen, A highly flexible form-stable silicone-octadecane PCM composite for heat harvesting, Mater. Today Adv. 14 (2022) 100227, https://doi.org/10.1016/j.mtadv.2022.100227.

[23]

X.Y.D. Soo, Z.M. Png, X. Wang, M.H. Chua, P.J. Ong, S. Wang, Z. Li, D. Chi, J. Xu, X.J. Loh, Q. Zhu, Rapid UV-curable form-stable polyethylene-glycol-based phase change material, ACS Appl. Polym. Mater. 4 (4) (2022) 2747-2756, https://doi.org/10.1021/acsapm.2c00059.

[24]

S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai, J. Xu, T. Yan, M. Wu, Z. Xu, H. Bao, High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting, Adv. Mater. 31 (49) (2019) 1905099, https://doi.org/10.1002/adma.201905099.

[25]

T. Li, J. Xu, D. Wu, F. He, R. Wang, High energy-density and power-density thermal storage prototype with hydrated salt for hot water and space heating, Appl. Energy 248 (2019) 406-414, https://doi.org/10.1016/j.apenergy.2019.04.114.

[26]

S. Wu, T. Li, M. Wu, J. Xu, Y. Hu, J. Chao, T. Yan, R. Wang, Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management, J. Mater. Chem. A 8 (38) (2020) 20011-20020, https://doi.org/10.1039/D0TA05904H.

[27]

A. Yadav, A. Verma, A. Kumar, H. Dashmana, A. Kumar, P. Bhatnagar, V. Jain, Recent advances on enhanced thermal conduction in phase change materials using carbon nanomaterials, J. Energy Storage 43 (2021) 103173, https://doi.org/10.1016/j.est.2021.103173.

[28]

Z.A. Qureshi, H.M. Ali, S. Khushnood, Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review, Int. J. Heat Mass Tran. 127 (2018) 838-856, https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.049.

[29]

P.J. Ong, Z.X.J. Heng, Z. Xing, H.Y.Y. Ko, P. Wang, H. Liu, R. Ji, X. Wang, B.H. Tan, Z. Li, J.W. Xu, X.J. Loh, E. Ye, Q. Zhu, Wax from pyrolysis of waste plastics as a potential source of phase change material for thermal energy storage, Trans. Tianjin Univ. (2022) 1-10, https://doi.org/10.1007/s12209-022-00346-7.

[30]

Y. Zhang, Z. Jia, A.M. Hai, S. Zhang, B. Tang, Shape-stabilization micromechanisms of form-stable phase change materials-A review, Compos. - A: Appl. Sci. Manuf. (2022) 107047, https://doi.org/10.1016/j.compositesa.2022.107047.

[31]

Z.M. Png, X.Y.D. Soo, M.H. Chua, P.J. Ong, J. Xu, Q. Zhu, Triazine derivatives as organic phase change materials with inherently low flammability, J. Mater. Chem. A 10 (7) (2022) 3633-3641, https://doi.org/10.1039/D1TA07422A.

[32]

A. Olabi, T. Wilberforce, K. Elsaid, E.T. Sayed, M. Ramadan, S.A. Rahman, M.A. Abdelkareem, Recent progress on Carbon-based nanomaterial for phase change materials: prospects and challenges, Therm. Sci. Eng. Prog. 23 (2021) 100920, https://doi.org/10.1016/j.tsep.2021.100920.

[33]

A. Stonehouse, C. Abeykoon, Thermal properties of phase change materials reinforced with multi-dimensional carbon nanomaterials, Int. J. Heat Mass Tran. 183 (2022) 122166, https://doi.org/10.1016/j.ijheatmasstransfer.2021.122166.

[34]

T. Li, D. Wu, F. He, R. Wang, Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage, Int. J. Heat Mass Tran. 115 (2017) 148-157, https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.056.

[35]

T. Li, J.-H. Lee, R. Wang, Y.T. Kang, Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes, Energy 55 (2013) 752-761, https://doi.org/10.1016/j.energy.2013.04.010.

[36]

L. Jiang, G. Chen, L. Zhao, M. Li, C. Li, R. Zhang, Preparation and low temperature heat storage properties of 1-hexadecylamine/3D graphene aerogel composite phase change materials, Sol. Energy Mater. Sol. Cells 251 (2023) 112118, https://doi.org/10.1016/j.solmat.2022.112118.

[37]

K. Wang, R. Wen, Scaphium scaphigerum/graphene hybrid aerogel for composite phase change material with high phase change enthalpy and high thermal conductivity for energy storage, J. Energy Storage 58 (2023) 106302, https://doi.org/10.1016/j.est.2022.106302.

[38]

Y. Shang, D. Zhang, Preparation and thermal properties of graphene oxide–microencapsulated phase change materials, Nanoscale Microscale Thermophys. Eng. 20 (3–4) (2016) 147-157, https://doi.org/10.1080/15567265.2016.1236865.

[39]

J.-F. Su, X.-Y. Wang, S. Han, X.-L. Zhang, Y.-D. Guo, Y.-Y. Wang, Y.-Q. Tan, N.-X. Han, W. Li, Preparation and physicochemical properties of microcapsules containing phase-change material with graphene/organic hybrid structure shells, J. Mater. Chem. A 5 (45) (2017) 23937-23951, https://doi.org/10.1039/C7TA06980D.

[40]

K.S. Novoselov, A.K. Geim, S.V. Morozov, D.-e. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (5696) (2004) 666-669, https://doi.org/10.1126/science.1102896.

[41]

L. Bai, C. Hou, X. Wen, J. Guan, Catalysis of oxygen reduction reaction on atomically dispersed copper-and nitrogen-codoped graphene, ACS Appl. Energy Mater. 2 (7) (2019) 4755-4762, https://doi.org/10.1021/acsaem.9b00386.

[42]

Y. Chen, Y.Y. Yue, S.R. Wang, N. Zhang, J. Feng, H.B. Sun, Graphene as a transparent and conductive electrode for organic optoelectronic devices, Adv. Electron. Mater. 5 (10) (2019) 1900247, https://doi.org/10.1002/aelm.201900247.

[43]

R.G. Bai, N. Ninan, K. Muthoosamy, S. Manickam, Graphene: a versatile platform for nanotheranostics and tissue engineering, Prog. Mater. Sci. 91 (2018) 24-69, https://doi.org/10.1016/j.pmatsci.2017.08.004.

[44]

H. Zhang, H. Zhang, A. Aldalbahi, X. Zuo, C. Fan, X. Mi, Fluorescent biosensors enabled by graphene and graphene oxide, Biosens. Bioelectron. 89 (2017) 96-106, https://doi.org/10.1016/j.bios.2016.07.030.

[45]

M.T. Alshamkhani, L.K. Teong, L.K. Putri, A.R. Mohamed, P. Lahijani, M. Mohammadi, Effect of graphite exfoliation routes on the properties of exfoliated graphene and its photocatalytic applications, J. Environ. Chem. Eng. 9 (6) (2021) 106506, https://doi.org/10.1016/j.jece.2021.106506.

[46]

V. Agarwal, P.B. Zetterlund, Strategies for reduction of graphene oxide–A comprehensive review, Chem. Eng. J. 405 (2021) 127018, https://doi.org/10.1016/j.cej.2020.127018.

[47]

M. Bahri, S.H. Gebre, M.A. Elaguech, F.T. Dajan, M.G. Sendeku, C. Tlili, D. Wang, Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: from synthesis to contemporary applications, Coord. Chem. Rev. 475 (2023) 214910, https://doi.org/10.1016/j.ccr.2022.214910.

[48]

S. Wu, Q. Zhang, H. Yang, Y. Ma, T. Zhang, L. Liu, H.-J. Gao, Y. Wang, Advances in two-dimensional heterostructures by mono-element intercalation underneath epitaxial graphene, Prog. Surf. Sci. 96 (3) (2021) 100637, https://doi.org/10.1016/j.progsurf.2021.100637.

[49]

E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications, MRS Bull. 37 (12) (2012) 1273-1281, https://doi.org/10.1557/mrs.2012.203.

[50]

T. Sreethawong, K.W. Shah, S.-Y. Zhang, E. Ye, S.H. Lim, U. Maheswaran, W.Y. Mao, M.-Y. Han, Optimized production of copper nanostructures with high yields for efficient use as thermal conductivity-enhancing PCM dopant, J. Mater. Chem. A 2 (10) (2014) 3417-3423, https://doi.org/10.1039/C3TA14550F.

[51]

C. Zhu, F. Ran, G. Fang, Thermal properties improvement of lauric acid/iron foam composites with graphene nanoplates as thermal energy storage materials, J. Energy Storage 27 (2020) 101163, https://doi.org/10.1016/j.est.2019.101163.

[52]

Y. Chen, H. Zhang, C. Xu, R. Cong, G. Fang, Thermal properties of 1-hexadecanol/high density polyethylene/graphene nanoplates composites as form-stable heat storage materials, Sol. Energy Mater. Sol. Cells 237 (2022) 111580, https://doi.org/10.1016/j.solmat.2022.111580.

[53]

J.I. Prado, L. Lugo, Enhancing the thermal performance of a stearate phase change material with graphene nanoplatelets and MgO nanoparticles, ACS Appl. Mater. Interfaces 12 (35) (2020) 39108-39117, https://doi.org/10.1021/acsami.0c09643.

[54]

M. Amin, N. Putra, E.A. Kosasih, E. Prawiro, R.A. Luanto, T. Mahlia, Thermal properties of beeswax/graphene phase change material as energy storage for building applications, Appl. Therm. Eng. 112 (2017) 273-280, https://doi.org/10.1016/j.applthermaleng.2016.10.085.

[55]

X. Xiao, H. Jia, S. Pervaiz, D. Wen, Molten salt/metal foam/graphene nanoparticle phase change composites for thermal energy storage, ACS Appl. Nano Mater. 3 (6) (2020) 5240-5251, https://doi.org/10.1021/acsanm.0c00648.

[56]

N. Sheng, R. Zhu, T. Nomura, Z. Rao, C. Zhu, Y. Aoki, H. Habazaki, T. Akiyama, Anisotropically enhanced heat transfer properties of phase change material reinforced by graphene-wrapped carbon fibers, Sol. Energy Mater. Sol. Cells 206 (2020) 110280, https://doi.org/10.1016/j.solmat.2019.110280.

[57]

A. Chouhan, H.P. Mungse, O.P. Khatri, Surface chemistry of graphene and graphene oxide: a versatile route for their dispersion and tribological applications, Adv. Colloid Interface Sci. 283 (2020) 102215, https://doi.org/10.1016/j.cis.2020.102215.

[58]

R. Ikram, B.M. Jan, W. Ahmad, An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization, J. Mater. Sci. Technol. 9 (5) (2020) 11587-11610, https://doi.org/10.1016/j.jmrt.2020.08.050.

[59]

B.P. Upoma, F. Mahnaz, W.R. Sajal, N. Zahan, M.S.H. Firoz, M.S. Azam, Bio-inspired immobilization of silver and gold on magnetic graphene oxide for rapid catalysis and recyclability, J. Environ. Chem. Eng. 8 (3) (2020) 103739, https://doi.org/10.1016/j.jece.2020.103739.

[60]

Y. Tian, Z. Yu, L. Cao, X.L. Zhang, C. Sun, D.-W. Wang, Graphene oxide: an emerging electromaterial for energy storage and conversion, J. Energy Chem. 55 (2021) 323-344, https://doi.org/10.1016/j.jechem.2020.07.006.

[61]

S.Y. Tee, E. Ye, C.P. Teng, Y. Tanaka, K.Y. Tang, K.Y. Win, M.-Y. Han, Advances in photothermal nanomaterials for biomedical, environmental and energy applications, Nanoscale 13 (34) (2021) 14268-14286, https://doi.org/10.1039/D1NR04197E.

[62]

Y.V. Stebunov, O.A. Aftenieva, A.V. Arsenin, V.S. Volkov, Highly sensitive and selective sensor chips with graphene-oxide linking layer, ACS Appl. Mater. Interfaces 7 (39) (2015) 21727-21734, https://doi.org/10.1021/acsami.5b04427.

[63]

K. Huang, J. Li, X. Luan, L. Liu, Z. Yang, C. Wang, Effect of graphene oxide on phase change materials based on disodium hydrogen phosphate dodecahydrate for thermal storage, ACS Omega 5 (25) (2020) 15210-15217, https://doi.org/10.1021/acsomega.0c01184.

[64]

R. Cao, H. Liu, S. Chen, D. Pei, J. Miao, X. Zhang, Fabrication and properties of graphene oxide-grafted-poly (hexadecyl acrylate) as a solid-solid phase change material, Compos. Sci. Technol. 149 (2017) 262-268, https://doi.org/10.1016/j.compscitech.2017.06.019.

[65]

W.T. Neo, Q. Ye, M.H. Chua, Q. Zhu, J. Xu, Solution-processable copolymers based on triphenylamine and 3,4-ethylenedioxythiophene: facile synthesis and multielectrochromism, macromol, Rapid Commun 41 (21) (2020) 2000156, https://doi.org/10.1002/marc.202000156.

[66]

T.P. Vo, M.H. Chua, S.J. Ang, K.L.O. Chin, X.Y.D. Soo, Z.M. Png, T.L.D. Tam, Q. Zhu, D.J. Procter, J. Xu, Pyrrolo [3,4-c] pyridine-1,2-dione: a new electron acceptor for electrochromic conjugated polymers, Polym. Chem. 13 (47) (2022) 6512-6524, https://doi.org/10.1039/D2PY00863G.

[67]

M.H. Chua, S.H.G. Toh, P.J. Ong, Z.M. Png, Q. Zhu, S. Xiong, J. Xu, Towards modulating the colour hues of isoindigo-based electrochromic polymers through variation of thiophene-based donor groups, Polym. Chem. 13 (7) (2022) 967-981, https://doi.org/10.1039/D1PY01531A.

[68]

G. Barouti, S.S. Liow, Q. Dou, H. Ye, C. Orione, S.M. Guillaume, X.J. Loh, New linear and star-shaped thermogelling poly ([R]-3-hydroxybutyrate) copolymers, Chem. Eur J. 22 (30) (2016) 10501-10512, https://doi.org/10.1002/chem.201601404.

[69]

Z.M. Png, C.-G. Wang, J. Yeo, J.J.C. Lee, N.E.B. Surat'man, Y.L. Tan, H. Liu, P. Wang, M.B.H. Tan, J. Xu, Stimuli-responsive structure-property switchable polymer materials, Mol. Syst. Des. Eng. (2023), https://doi.org/10.1039/D3ME00002H.

[70]

X. Han, S.-X. Wang, F. Zhong, Y. Lu, Formation of functionalized cyclopentenes via catalytic asymmetric [3+ 2] cycloaddition of acrylamides with an allenoate promoted by dipeptide-derived phosphines, Synthesis 2011 (12) (2011) 1859-1864, https://doi.org/10.1055/s-0030-1260460.

[71]

Q. Zhu, Y. Lu, Facile synthesis of bicyclic amidines and imidazolines from 1,2-diamines, Org. Lett. 12 (18) (2010) 4156-4159, https://doi.org/10.1021/ol101747n.

[72]

H. Zhu, J.M.J. Qiang, C.G. Wang, C.Y. Chan, Q. Zhu, E. Ye, Z. Li, X.J. Loh, Flexible polymeric patch based nanotherapeutics against non-cancer therapy, Bioact. Mater. 18 (2022) 471-491, https://doi.org/10.1016/j.bioactmat.2022.03.034.

[73]

Q. Zhu, E. Yildirim, X. Wang, A.K.K. Kyaw, T. Tang, X.Y.D. Soo, Z.M. Wong, G. Wu, S.-W. Yang, J. Xu, Effect of substituents in sulfoxides on the enhancement of thermoelectric properties of PEDOT: PSS: experimental and modelling evidence, Mol. Syst. Des. Eng. 5 (5) (2020) 976-984, https://doi.org/10.1039/D0ME00032A.

[74]

V.P.N. Nguyen, N. Kuo, X.J. Loh, New biocompatible thermogelling copolymers containing ethylene-butylene segments exhibiting very low gelation concentrations, Soft Matter 7 (5) (2011) 2150-2159, https://doi.org/10.1039/C0SM00764A.

[75]

Z. Li, P.L. Chee, C. Owh, R. Lakshminarayanan, X.J. Loh, Safe and efficient membrane permeabilizing polymers based on PLLA for antibacterial applications, RSC Adv. 6 (34) (2016) 28947-28955, https://doi.org/10.1039/C6RA04531F.

[76]

X.J. Loh, B.J.H. Yee, F.S. Chia, Sustained delivery of paclitaxel using thermogelling poly (PEG/PPG/PCL urethane) s for enhanced toxicity against cancer cells, J. Biomed. Mater. Res. 100 (10) (2012) 2686-2694, https://doi.org/10.1002/jbm.a.34198.

[77]

X.J. Loh, S.H. Goh, J. Li, Biodegradable thermogelling poly [(R)-3-hydroxybutyrate]-based block copolymers: micellization, gelation, and cytotoxicity and cell culture studies, J. Phys. Chem. B 113 (35) (2009) 11822-11830, https://doi.org/10.1021/jp903984r.

[78]

X.J. Loh, W. Guerin, S.M. Guillaume, Sustained delivery of doxorubicin from thermogelling poly (PEG/PPG/PTMC urethane) s for effective eradication of cancer cells, J. Mater. Chem. 22 (39) (2012) 21249-21256, https://doi.org/10.1039/C2JM33777K.

[79]

Y. Xia, H. Zhang, P. Huang, C. Huang, F. Xu, Y. Zou, H. Chu, E. Yan, L. Sun, Graphene-oxide-induced lamellar structures used to fabricate novel composite solid-solid phase change materials for thermal energy storage, Chem. Eng. J. 362 (2019) 909-920, https://doi.org/10.1016/j.cej.2019.01.097.

[80]

B. Li, T. Liu, L. Hu, Y. Wang, S. Nie, Facile preparation and adjustable thermal property of stearic acid–graphene oxide composite as shape-stabilized phase change material, Chem. Eng. J. 215 (2013) 819-826, https://doi.org/10.1016/j.cej.2012.11.077.

[81]

S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite-and graphene oxide, Carbon 49 (9) (2011) 3019-3023, https://doi.org/10.1016/j.carbon.2011.02.071.

[82]

A.B. Alayande, H.D. Park, J.S. Vrouwenvelder, I.S. Kim, Implications of chemical reduction using hydriodic acid on the antimicrobial properties of graphene oxide and reduced graphene oxide membranes, Small 15 (28) (2019) 1901023, https://doi.org/10.1002/smll.201901023.

[83]

M. Ceniceros-Reyes, K. Marín-Hernández, U. Sierra, E. Saucedo-Salazar, R. Mendoza-Resendez, C. Luna, P. Hernández-Belmares, O. Rodríguez-Fernández, S. Fernández-Tavizón, E. Hernández-Hernández, Reduction of graphene oxide by in-situ heating experiments in the transmission electron microscope, Surface. Interfac. 35 (2022) 102448, https://doi.org/10.1016/j.surfin.2022.102448.

[84]

J. Zhou, M. Fang, K. Yang, K. Lu, H. Fei, P. Mu, R. He, MIL-101 (Cr)-NH2/reduced graphene oxide composite carrier enhanced thermal conductivity and stability of shape-stabilized phase change materials for thermal energy management, J. Energy Storage 52 (2022) 104827, https://doi.org/10.1016/j.est.2022.104827.

[85]

H.-y. Wu, S.-t. Li, Y.-w. Shao, X.-z. Jin, X.-d. Qi, J.-h. Yang, Z.-w. Zhou, Y. Wang, Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability, Chem. Eng. J. 379 (2020) 122373, https://doi.org/10.1016/j.cej.2019.122373.

[86]

C. Cárdenas-Ramírez, F. Jaramillo, M. Gómez, Systematic review of encapsulation and shape-stabilization of phase change materials, J. Energy Storage 30 (2020) 101495, https://doi.org/10.1016/j.est.2020.101495.

[87]

J.J.C. Lee, S. Sugiarto, P.J. Ong, X.Y.D. Soo, X. Ni, P. Luo, Y.Y.K. Hnin, J.S.Y. See, F. Wei, R. Zheng, Lignin-g-polycaprolactone as a form-stable phase change material for thermal energy storage application, J. Energy Storage 56 (2022) 106118, https://doi.org/10.1016/j.est.2022.106118.

[88]

R. Yeo, W.-Y. Wu, N. Tomczak, R. Ji, S. Wang, X. Wang, J. Kong, H. Liu, K. Goh, J. Xu, Tailoring surface reflectance through nanostructured materials design for energy-efficient applications, Mater. Today Chem. 30 (2023) 101593, https://doi.org/10.1016/j.mtchem.2023.101593.

[89]

B. Mu, M. Li, Fabrication and characterization of polyurethane-grafted reduced graphene oxide as solid-solid phase change materials for solar energy conversion and storage, Sol. Energy 188 (2019) 230-238, https://doi.org/10.1016/j.solener.2019.05.082.

[90]

Y. Zhou, X. Liu, D. Sheng, C. Lin, F. Ji, L. Dong, S. Xu, H. Wu, Y. Yang, Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage, Chem. Eng. J. 338 (2018) 117-125, https://doi.org/10.1016/j.cej.2018.01.021.

[91]

S. Wang, Z. Liang, L. Liu, Y. Cao, Y. Cheng, D. Chen, Preparation of chemically functionalized graphene with excellent dispersibility and tribological properties as lubricant additives by microwave-assisted ball milling, J. Mol. Liq. 344 (2021) 117929, https://doi.org/10.1016/j.molliq.2021.117929.

[92]

R.K. Layek, A.K. Nandi, A review on synthesis and properties of polymer functionalized graphene, Polymer 54 (19) (2013) 5087-5103, https://doi.org/10.1016/j.polymer.2013.06.027.

[93]

O. Zabihi, M. Ahmadi, Q. Li, S.M. Fakhrhoseini, Z.K. Nia, M. Arjmand, K. Parvez, M. Naebe, Simultaneous electrochemical-assisted exfoliation and in situ surface functionalization towards large-scale production of few-layer graphene, FlatChem 18 (2019) 100132, https://doi.org/10.1016/j.flatc.2019.100132.

[94]

R. Prabakaran, J. Prasanna Naveen Kumar, D. Mohan Lal, C. Selvam, S. Harish, Constrained melting of graphene-based phase change nanocomposites inside a sphere, J. Therm. Anal. Calorim. 139 (2020) 941-952, https://doi.org/10.1007/s10973-019-08458-4.

[95]

V. Selvaraj, H. Krishnan, Acidic functionalized graphene dispersed polyethylene glycol nano-phase change material for the active cooling of a simulated heat-generating electronic system, J. Energy Storage 45 (2022) 103774, https://doi.org/10.1016/j.est.2021.103774.

[96]

L. Tao, S. Chen, H. Liu, N. Han, X. Zhang, Fabrication and characterization of poly (n-alkyl acrylic) ester shape-stable phase-change materials based on UV curing, ACS Appl. Energy Mater. 4 (4) (2021) 3358-3368, https://doi.org/10.1021/acsaem.0c03105.

[97]

J. Cao, Y. Sim, X.Y. Tan, J. Zheng, S.W. Chien, N. Jia, K. Chen, Y.B. Tay, J.F. Dong, L. Yang, Upcycling silicon photovoltaic waste into thermoelectrics, Adv. Mater. 34 (19) (2022) 2110518, https://doi.org/10.1002/adma.202110518.

[98]

S.S.F. Duran, D. Zhang, W.Y.S. Lim, J. Cao, H. Liu, Q. Zhu, C.K.I. Tan, J. Xu, X.J. Loh, A. Suwardi, Potential of recycled silicon and silicon-based thermoelectrics for power generation, Crystals 12 (3) (2022) 307, https://doi.org/10.3390/cryst12030307.

[99]

S. Sugiarto, R. Pong, Y. Tan, Y. Leow, T. Sathasivam, Q. Zhu, X. Loh, D. Kai, Advances in sustainable polymeric materials from lignocellulosic biomass, Mater. Today Chem. 26 (2022) 101022, https://doi.org/10.1016/j.mtchem.2022.101022.

[100]

J. Zheng, S.F.D. Solco, C.J.E. Wong, S.A. Sia, X.Y. Tan, J. Cao, J.C.C. Yeo, W. Yan, Q. Zhu, Q. Yan, Integrating recyclable polymers into thermoelectric devices for green electronics, J. Mater. Chem. A 10 (37) (2022) 19787-19796, https://doi.org/10.1039/D2TA00386D.

[101]

J. Cao, J. Zheng, H. Liu, C.K.I. Tan, X. Wang, W. Wang, Q. Zhu, Z. Li, G. Zhang, J. Wu, Flexible elemental thermoelectrics with ultra-high power density, Mater. Today Energy 25 (2022) 100964, https://doi.org/10.1016/j.mtener.2022.100964.

[102]

X. Fan, B.H. Tan, Z. Li, X.J. Loh, Control of PLA stereoisomers-based polyurethane elastomers as highly efficient shape memory materials, ACS Sustain. Chem. Eng. 5 (1) (2017) 1217-1227, https://doi.org/10.1021/acssuschemeng.6b02652.

[103]

J.K. Muiruri, J.C.C. Yeo, Q. Zhu, E. Ye, X.J. Loh, Z. Li, Poly (hydroxyalkanoates): production, applications and end-of-life strategies–life cycle assessment nexus, ACS Sustain. Chem. Eng. 10 (11) (2022) 3387-3406, https://doi.org/10.1021/acssuschemeng.1c08631.

[104]

R. Liang, X. Yang, P.Y.M. Yew, S. Sugiarto, Q. Zhu, J. Zhao, X.J. Loh, L. Zheng, D. Kai, PLA-lignin nanofibers as antioxidant biomaterials for cartilage regeneration and osteoarthritis treatment, J. Nanobiotechnol. 20 (1) (2022) 327, https://doi.org/10.1186/s12951-022-01534-2.

[105]

S. Chavan, V. Gumtapure, Numerical and experimental analysis on thermal energy storage of polyethylene/functionalized graphene composite phase change materials, J. Energy Storage 27 (2020) 101045, https://doi.org/10.1016/j.est.2019.101045.

[106]

M. Li, C. Wang, AAZO-Graphene composite phase change materials with Photo-thermal conversion performance, Sol. Energy 223 (2021) 11-18, https://doi.org/10.1016/j.solener.2021.05.036.

[107]

F. Wang, P. Zhang, Y. Mou, M. Kang, M. Liu, L. Song, A. Lu, J. Rong, Synthesis of the polyethylene glycol solid-solid phase change materials with a functionalized graphene oxide for thermal energy storage, Polym. Test. 63 (2017) 494-504, https://doi.org/10.1016/j.polymertesting.2017.09.005.

[108]

S. Li, L. Kong, H. Wang, H. Xu, J. Li, H. Shi, Thermal performance and shape-stabilization of comb-like polymeric phase change materials enhanced by octadecylamine-functionalized graphene oxide, Energy Convers. Manag. 168 (2018) 119-127, https://doi.org/10.1016/j.enconman.2018.05.014.

[109]

J. Ge, Y. Wang, H. Wang, H. Mao, J. Li, H. Shi, Thermal properties and shape stabilization of epoxidized methoxy polyethylene glycol composite PCMs tailored by polydopamine-functionalized graphene oxide, Sol. Energy Mater. Sol. Cells 208 (2020) 110388, https://doi.org/10.1016/j.solmat.2019.110388.

[110]

A.R. Akhiani, M. Mehrali, S. Tahan Latibari, M. Mehrali, T.M.I. Mahlia, E. Sadeghinezhad, H.S.C. Metselaar, One-step preparation of form-stable phase change material through self-assembly of fatty acid and graphene, J. Phys. Chem. C 119 (40) (2015) 22787-22796, https://doi.org/10.1021/acs.jpcc.5b06089.

[111]

S. Wang, W.Y. Wu, J.C.C. Yeo, X.Y.D. Soo, W. Thitsartarn, S. Liu, B.H. Tan, A. Suwardi, Z. Li, Q. Zhu, Responsive hydrogel dressings for intelligent wound management, BMEMat (2023) e12021, https://doi.org/10.1002/bmm2.12021.

[112]

M. Liu, Y. Chen, Q. Zhu, J. Tao, C. Tang, H. Ruan, Y. Wu, X.J. Loh, Antioxidant thermogelling formulation for burn wound healing, Chem. Asian J. 17 (16) (2022) e202200396, https://doi.org/10.1002/asia.202200396.

[113]

S. Sun, Q. Yan, M. Wu, X. Zhao, Carbon aerogel based materials for secondary batteries, Sustain. Mater. Technol. 30 (2021) e00342, https://doi.org/10.1016/j.susmat.2021.e00342.

[114]

C. Shi, J. Huang, Y. Tang, Z. Cen, Z. Wang, S. Liu, R. Fu, A hierarchical porous carbon aerogel embedded with small-sized TiO2 nanoparticles for high-performance Li–S batteries, Carbon 202 (2023) 59-65, https://doi.org/10.1016/j.carbon.2022.09.086.

[115]

C. Zhang, D. Liao, Y. Wang, P. Xie, M. Li, L. Zhou, Y. Chen, H. Liu, Pickering emulsion strategy for high compressive carbon aerogel for use as insulation material and dual-mode pressure/magnetic sensor, Ceram. Int. 49 (5) (2023) 8121-8131, https://doi.org/10.1016/j.ceramint.2022.10.335.

[116]

L. Cao, C. Wang, Y. Huang, Structure optimization of graphene aerogel-based composites and applications in batteries and supercapacitors, Chem. Eng. J. 454 (2023) 140094, https://doi.org/10.1016/j.cej.2022.140094.

[117]

W. Wu, M. Du, H. Shi, Q. Zheng, Z. Bai, Application of graphene aerogels in oil spill recovery: a review, Sci. Total Environ. 856 (2023) 159107, https://doi.org/10.1016/j.scitotenv.2022.159107.

[118]

X. Zhang, J. Zhou, Y. Zheng, H. Wei, Z. Su, Graphene-based hybrid aerogels for energy and environmental applications, Chem. Eng. J. 420 (2021) 129700, https://doi.org/10.1016/j.cej.2021.129700.

[119]

L. Cao, D. Zhang, Application potential of graphene aerogel in paraffin phase change composites: experimental study and guidance based on numerical simulation, Sol. Energy Mater. Sol. Cells 223 (2021) 110949, https://doi.org/10.1016/j.solmat.2020.110949.

[120]

J. Huang, B. Zhang, M. He, X. Huang, G. Wu, G. Yin, Y. Cui, Preparation of anisotropic reduced graphene oxide/BN/paraffin composite phase change materials and investigation of their thermal properties, J. Mater. Sci. 55 (2020) 7337-7350, https://doi.org/10.1007/s10853-020-04514-9.

[121]

X. Zheng, X. Gao, Z. Huang, Z. Li, Y. Fang, Z. Zhang, Form-stable paraffin/graphene aerogel/copper foam composite phase change material for solar energy conversion and storage, Sol. Energy Mater. Sol. Cells 226 (2021) 111083, https://doi.org/10.1016/j.solmat.2021.111083.

[122]

F. Xue, X.-z. Jin, W.-y. Wang, X.-d. Qi, J.-h. Yang, Y. Wang, Melamine foam and cellulose nanofiber co-mediated assembly of graphene nanoplatelets to construct three-dimensional networks towards advanced phase change materials, Nanoscale 12 (6) (2020) 4005-4017, https://doi.org/10.1039/C9NR10696K.

[123]

C. Yu, H. Kim, J.R. Youn, Y.S. Song, Enhancement of structural stability of graphene aerogel for thermal energy harvesting, ACS Appl. Energy Mater. 4 (10) (2021) 11666-11674, https://doi.org/10.1021/acsaem.1c02390.

[124]

D. Wei, C. Wu, G. Jiang, X. Sheng, Y. Xie, Lignin-assisted construction of well-defined 3D graphene aerogel/PEG form-stable phase change composites towards efficient solar thermal energy storage, Sol. Energy Mater. Sol. Cells 224 (2021) 111013, https://doi.org/10.1016/j.solmat.2021.111013.

[125]

Z. Bao, N. Bing, H.-R. Yao, Y. Zhang, H. Xie, W. Yu, Three-dimensional interpenetrating network phase-change composites with high photothermal conversion and rapid heat storage and release, ACS Appl. Energy Mater. 4 (8) (2021) 7710-7720, https://doi.org/10.1021/acsaem.1c01061.

[126]

L.-S. Tang, J. Yang, R.-Y. Bao, Z.-Y. Liu, B.-H. Xie, M.-B. Yang, W. Yang, Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide, Energy Convers. Manag. 146 (2017) 253-264, https://doi.org/10.1016/j.enconman.2017.05.037.

[127]

S. Xi, M. Wang, L. Wang, H. Xie, W. Yu, 3D reduced graphene oxide aerogel supported TiO2-x for shape-stable phase change composites with high photothermal efficiency and thermal conductivity, Sol. Energy Mater. Sol. Cells 226 (2021) 111068, https://doi.org/10.1016/j.solmat.2021.111068.

[128]

Y. Cai, N. Zhang, Y. Yuan, W. Zhong, N. Yu, Multi-energy driven form-stable phase change materials based on SEBS and reduced graphene oxide aerogel, Sol. Energy Mater. Sol. Cells 233 (2021) 111390, https://doi.org/10.1016/j.solmat.2021.111390.

[129]

P. Chen, X. Gao, Y. Wang, T. Xu, Y. Fang, Z. Zhang, Metal foam embedded in SEBS/paraffin/HDPE form-stable PCMs for thermal energy storage, Sol. Energy Mater. Sol. Cells 149 (2016) 60-65, https://doi.org/10.1016/j.solmat.2015.12.041.

[130]

Q. Zhang, Y. Zhao, J. Feng, Systematic investigation on shape stability of high-efficiency SEBS/paraffin form-stable phase change materials, Sol. Energy Mater. Sol. Cells 118 (2013) 54-60, https://doi.org/10.1016/j.solmat.2013.07.035.

[131]

X.J. Loh, V.P.N. Nguyen, N. Kuo, J. Li, Encapsulation of basic fibroblast growth factor in thermogelling copolymers preserves its bioactivity, J. Mater. Chem. 21 (7) (2011) 2246-2254, https://doi.org/10.1039/C0JM03051A.

[132]

S. Wang, P.J. Ong, S. Liu, W. Thitsartarn, M.J.B.H. Tan, A. Suwardi, Q. Zhu, X.J. Loh, Recent advances in host-guest supramolecular hydrogels for biomedical applications, Chem. Asian J. 17 (18) (2022) e202200608, https://doi.org/10.1002/asia.202200608.

[133]

H. Lambert, A. Castillo Bonillo, Q. Zhu, Y.-W. Zhang, T.-C. Lee, Supramolecular gating of guest release from cucurbit [7] uril using de novo design, Npj Comput, Materials 8 (1) (2022) 21, https://doi.org/10.1038/s41524-022-00702-0.

[134]

E. Ye, H. Tan, S. Li, W.Y. Fan, Self-Organization of spherical, core–shell palladium aggregates by laser-induced and thermal decomposition of [Pd (PPh3) 4], Angew. Chem. Int. Ed. 45 (7) (2006) 1120-1123, https://doi.org/10.1002/anie.200503408.

[135]

M. Wu, T. Li, P. Wang, S. Wu, R. Wang, J. Lin, Dual-encapsulated highly conductive and liquid-free phase change composites enabled by polyurethane/graphite nanoplatelets hybrid networks for efficient energy storage and thermal management, Small 18 (9) (2022) 2105647, https://doi.org/10.1002/smll.202105647.

[136]

J.J.C. Lee, N.J.X. Lim, P. Wang, H. Liu, S. Wang, C.-L.K. Lee, D. Kai, F. Wei, R. Ji, B.H. Tan, Silicon-containing additives in encapsulation of phase change materials for thermal energy storage, WS Ann. Rev. Funct. Mater. (2022), https://doi.org/10.1142/S2810922822300070.

[137]

X. Zhang, Y. Zhang, H. Li, Z. Chen, Enhanced thermal conductivity and photothermal effect of microencapsulated n-octadecane phase change material with calcium carbonate-polydopamine hierarchical shell for solar energy storage, Sol. Energy Mater. Sol. Cells 256 (2023) 112336, https://doi.org/10.1016/j.solmat.2023.112336.

[138]

Q. Zhao, F. He, Q. Zhang, J. Fan, R. He, K. Zhang, H. Yan, W. Yang, Microencapsulated phase change materials based on graphene Pickering emulsion for light-to-thermal energy conversion and management, Sol. Energy Mater. Sol. Cells 203 (2019) 110204, https://doi.org/10.1016/j.solmat.2019.110204.

[139]

C. Wu, D. Hou, B. Yin, S. Li, Synthesis and application of new core-shell structure via Pickering emulsion polymerization stabilized by graphene oxide, Compos. B Eng. 247 (2022) 110285, https://doi.org/10.1016/j.compositesb.2022.110285.

[140]

B. Chi, Y. Yao, S. Cui, X. Jin, Preparation of graphene oxide coated tetradecanol/expanded graphite composite phase change material for thermal energy storage, Mater. Lett. 282 (2021) 128666, https://doi.org/10.1016/j.matlet.2020.128666.

[141]

Y. Liang, Z. Tao, Q. Guo, Z. Liu, Sponge gourd-bioinspired phase change material with high thermal conductivity and excellent shape-stability, J. Energy Storage 39 (2021) 102634, https://doi.org/10.1016/j.est.2021.102634.

[142]

Z. Huang, C. Wang, L. Zhou, C. Wu, Thermal conductivity enhancement and shape stability of phase-change materials using high-strength 3D graphene skeleton, Surface. Interfac. 26 (2021) 101338, https://doi.org/10.1016/j.surfin.2021.101338.

[143]

Y. Ren, P. Hao, Modification mechanism and enhanced low-temperature performance of asphalt mixtures with graphene-modified phase-change microcapsules, Construct. Build. Mater. 320 (2022) 126301, https://doi.org/10.1016/j.conbuildmat.2021.126301.

[144]

Z. Jiang, W. Yang, F. He, C. Xie, J. Fan, J. Wu, K. Zhang, Modified phase change microcapsules with calcium carbonate and graphene oxide shells for enhanced energy storage and leakage prevention, ACS Sustain. Chem. Eng. 6 (4) (2018) 5182-5191, https://doi.org/10.1021/acssuschemeng.7b04834.

[145]

L. He, S. Mo, P. Lin, L. Jia, Y. Chen, Z. Cheng, D-mannitol@ silica/graphene oxide nanoencapsulated phase change material with high phase change properties and thermal reliability, Appl. Energy 268 (2020) 115020, https://doi.org/10.1016/j.apenergy.2020.115020.

[146]

D.-Z. Chen, S.-Y. Qin, G.C. Tsui, C.-y. Tang, X. Ouyang, J.-h. Liu, J.-N. Tang, J.-D. Zuo, Fabrication, morphology and thermal properties of octadecylamine-grafted graphene oxide-modified phase-change microcapsules for thermal energy storage, Compos. B Eng. 157 (2019) 239-247, https://doi.org/10.1016/j.compositesb.2018.08.066.

[147]

W. Wang, H. Cao, J. Liu, S. Jia, L. Ma, X. Guo, W. Sun, A thermal energy storage composite by incorporating microencapsulated phase change material into wood, RSC Adv. 10 (14) (2020) 8097-8103, https://doi.org/10.1039/C9RA09549G.

[148]

A. Khezri, M. Sahebi, M. Mohammadi, Fabrication and Thermal properties of graphene nanoplatelet-enhanced phase change materials based on paraffin encapsulated by melamine–formaldehyde, J. Therm. Anal. Calorim. 147 (14) (2022) 7683-7691, https://doi.org/10.1007/s10973-021-11085-7.

[149]

H. Wang, Y. Zhang, E. Ci, X. Li, J. Li, An experimental study in full spectra of solar-driven magnesium nitrate hexahydrate/graphene composite phase change materials for solar thermal storage applications, J. Energy Storage 38 (2021) 102536, https://doi.org/10.1016/j.est.2021.102536.

[150]

H. Cui, P. Wang, H. Yang, T. Xu, Design and preparation of salt hydrate/graphene oxide@ SiO2/SiC composites for efficient solar thermal utilization, Sol. Energy Mater. Sol. Cells 236 (2022) 111524, https://doi.org/10.1016/j.solmat.2021.111524.

[151]

X. Lu, B. Liang, X. Sheng, T. Yuan, J. Qu, Enhanced thermal conductivity of polyurethane/wood powder composite phase change materials via incorporating low loading of graphene oxide nanosheets for solar thermal energy storage, Sol. Energy Mater. Sol. Cells 208 (2020) 110391, https://doi.org/10.1016/j.solmat.2019.110391.

[152]

G. Yang, L. Zhao, C. Shen, Z. Mao, H. Xu, X. Feng, B. Wang, X. Sui, Boron nitride microsheets bridged with reduced graphene oxide as scaffolds for multifunctional shape stabilized phase change materials, Sol. Energy Mater. Sol. Cells 209 (2020) 110441, https://doi.org/10.1016/j.solmat.2020.110441.

[153]

Z. Tao, X. Chen, M. Yang, X. Xu, Y. Sun, Y. Li, J. Wang, G. Wang, Three-dimensional rGO@ sponge framework/paraffin wax composite shape-stabilized phase change materials for solar-thermal energy conversion and storage, Sol. Energy Mater. Sol. Cells 215 (2020) 110600, https://doi.org/10.1016/j.solmat.2020.110600.

[154]

Y. Zhang, K. Wang, W. Tao, D. Li, Preparation of microencapsulated phase change materials used graphene oxide to improve thermal stability and its incorporation in gypsum materials, Construct. Build. Mater. 224 (2019) 48-56, https://doi.org/10.1016/j.conbuildmat.2019.06.227.

[155]

W. Jin, L. Jiang, L. Chen, T. Yin, Y. Gu, M. Guo, X. Yan, X. Ben, Enhancement of thermal conductivity by graphene as additive in lauric-stearic acid/treated diatomite composite phase change materials for heat storage in building envelope, Energy Build. 246 (2021) 111087, https://doi.org/10.1016/j.enbuild.2021.111087.

[156]

W. Jin, L. Jiang, L. Chen, Y. Gu, M. Guo, L. Han, X. Ben, H. Yuan, Z. Lin, Preparation and characterization of capric-stearic acid/montmorillonite/graphene composite phase change material for thermal energy storage in buildings, Construct. Build. Mater. 301 (2021) 124102, https://doi.org/10.1016/j.conbuildmat.2021.124102.

[157]

E. Shamsaei, F. Basquiroto de Souza, A. Fouladi, K. Sagoe-Crentsil, W. Duan, Graphene oxide-based mesoporous calcium silicate hydrate sandwich-like structure: synthesis and application for thermal energy storage, ACS Appl. Energy Mater. 5 (1) (2022) 958-969, https://doi.org/10.1021/acsaem.1c03356.

[158]

B.E. Jia, A.Q. Thang, C. Yan, C. Liu, C. Lv, Q. Zhu, J. Xu, J. Chen, H. Pan, Q. Yan, Rechargeable aqueous aluminum-ion battery: progress and outlook, Small 18 (43) (2022) 2107773, https://doi.org/10.1002/smll.202107773.

[159]

Y. Yang, S. Bremner, C. Menictas, M. Kay, Battery energy storage system size determination in renewable energy systems: a review, Renew. Sustain. Energy Rev. 91 (2018) 109-125, https://doi.org/10.1016/j.rser.2018.03.047.

[160]

Y. Shi, C. Lee, X. Tan, L. Yang, Q. Zhu, X. Loh, J. Xu, Q. Yan, Atomic-level metal electrodeposition: synthetic strategies, applications, and catalytic mechanism in electrochemical energy conversion, Small Struc 3 (3) (2022) 2100185, https://doi.org/10.1002/sstr.202100185.

[161]

S. Gu, J. Kong, L. Xing, X. Zhu, J. Xu, C. Chen, Z. Zhang, Feasible regeneration of cathode material from spent portable electronics batteries via nano-bubbles enhanced leaching, J. Clean. Prod. 368 (2022) 133199, https://doi.org/10.1016/j.jclepro.2022.133199.

[162]

N. Ding, X. Wang, Y. Hou, S. Wang, X. Li, D.W.H. Fam, Y. Zong, Z. Liu, Rational design of a high-energy LiNi0. 8Co0. 15Al0. 05O2 cathode for Li-ion batteries, Solid State Ionics 323 (2018) 72-77, https://doi.org/10.1016/j.ssi.2018.05.020.

[163]

M. Wang, Y. Wang, C. Zhang, F. Yu, Cascade phase change based on hydrate salt/carbon hybrid aerogel for intelligent battery thermal management, J. Energy Storage 45 (2022) 103771, https://doi.org/10.1016/j.est.2021.103771.

[164]

Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang, Y.-W. Mai, X. Huang, Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management, Nano-Micro Lett. 13 (1) (2021) 180, https://doi.org/10.1007/s40820-021-00702-7.

[165]

P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, A.A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources 248 (2014) 37-43, https://doi.org/10.1016/j.jpowsour.2013.08.135.

[166]

T. Ruiz-Calleja, M. Bonet-Aracil, J. Gisbert-Payá, E. Bou-Belda, Analysis of the influence of graphene and phase change microcapsules on thermal behavior of cellulosic fabrics, Mater. Today Commun. 25 (2020) 101557, https://doi.org/10.1016/j.mtcomm.2020.101557.

[167]

X. Lin, S. Jia, J. Liu, X. Li, X. Guo, W. Sun, Thermally induced flexible wood based on phase change materials for thermal energy storage and management, J. Mater. Sci. 56 (2021) 16570-16581, https://doi.org/10.1007/s10853-021-06239-9.

[168]

B. Nie, J. Chen, Z. Du, Y. Li, T. Zhang, L. Cong, B. Zou, Y. Ding, Thermal performance enhancement of a phase change material (PCM) based portable box for cold chain applications, J. Energy Storage 40 (2021) 102707, https://doi.org/10.1016/j.est.2021.102707.

[169]

H.M. Ali, Analysis of heat pipe-aided graphene-oxide based nanoparticle-enhanced phase change material heat sink for passive cooling of electronic components, J. Therm. Anal. Calorim. 146 (2021) 277-286, https://doi.org/10.1007/s10973-020-09946-8.

Nano Materials Science
Pages 115-138
Cite this article:
Zhu Q, Ong PJ, Goh SHA, et al. Recent advances in graphene-based phase change composites for thermal energy storage and management. Nano Materials Science, 2024, 6(2): 115-138. https://doi.org/10.1016/j.nanoms.2023.09.003

107

Views

2

Downloads

25

Crossref

21

Web of Science

26

Scopus

0

CSCD

Altmetrics

Received: 22 June 2023
Accepted: 22 August 2023
Published: 11 September 2023
© 2023 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return