AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Strengthening-softening transition and maximum strength in Schwarz nanocrystals

Hanzheng XingaJiaxi JiangaYujia Wanga,bYongpan ZengaXiaoyan Lia( )
Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Singapore
Show Author Information

Abstract

Recently, a Schwarz crystal structure with curved grain boundaries (GBs) constrained by twin-boundary (TB) networks was discovered in nanocrystalline Cu through experiments and atomistic simulations. Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability. However, the grain-size effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown. Here, we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals. Our simulations showed that similar to regular nanocrystals, Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size. The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals, leading to a maximum strength higher than that of regular nanocrystals. Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration (or detwinning) and annihilation of GBs, rather than GB-mediated processes (including GB migration, sliding and diffusion) dominating the softening in regular nanocrystals. Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals, the GB-mediated processes in Schwarz nanocrystals are suppressed, which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks. The smaller critical grain size arises from the suppression of GB-mediated processes.

References

[1]

C. Suryanarayana, D. Mukhopadhyay, S.N. Patankar, F.H. Froes, Grain size effects in nanocrystalline materials, J. Mater. Res. 7 (1992) 2114–2118.

[2]

M.A. Meyers, A. Mishra, D. Benson, Mechanical properties of nanocrystalline materials, J. Prog. Mater. Sci. 51 (2006) 427–556.

[3]

J. Schiotz, F.D. Di Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature 391 (1998) 561–563.

[4]

J. Schiotz, K.W. Jacobsen, A maximum in the strength of nanocrystalline copper, Science 301 (2003) 1357–1359.

[5]

W. Zhang, Y. Gao, Z. Feng, X. Wang, S. Zhang, L. Huang, Z. Huang, L. Jiang, Ductility limit diagrams for superplasticity and forging of high temperature polycrystalline materials, Acta Mater. 198 (2020) 378–386.

[6]

K. Lu, L. Lu, S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale, Science 324 (2009) 349–352.

[7]

L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science 304 (2004) 422–426.

[8]

L. Lu, X. Chen, X. Huang, K. Lu, Revealing the maximum strength in nanotwinned copper, Science 323 (2009) 607–610.

[9]

D. Bufford, H. Wang, X. Zhang, High strength, epitaxial nanotwinned Ag films, Acta Mater. 59 (2011) 93–101.

[10]

A. Singh, L. Tang, M. Dao, L. Lu, S. Suresh, Fracture toughness and fatigue crack growth characteristics of nanotwinned copper, Acta Mater. 59 (2011) 2437–2446.

[11]

Y.M. Wang, F. Sansoz, T. LaGrange, R.T. Ott, J. Marian, T.W. Barbee Jr., A.V. Hamza, Defective twin boundaries in nanotwinned metals, Nat. Mater. 12 (2013) 697–702.

[12]

T. Zhu, J. Li, A. Samanta, H.G. Kim, S. Suresh, Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 3031–3036.

[13]

X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature 464 (2010) 877–880.

[14]

L. Sun, X. He, J. Lu, Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts, npj Comput. Mater. 4 (2018) 1–18.

[15]

Q. Pan, Q. Lu, L. Lu, Fatigue behavior of columnar-grained Cu with preferentially oriented nanoscale twins, Acta Mater. 61 (2013) 1383–1393.

[16]

F. Cui, Q. Pan, N. Tao, L. Lu, Enhanced high-cycle fatigue resistance of 304 austenitic stainless steel with nanotwinned grains, Inter. J. Fatigue 143 (2021) 105994.

[17]

X. Zhou, X. Li, K. Lu, Enhanced thermal stability of nanograined metals below a critical grain size, Science 360 (2018) 526–530.

[18]

X. Li, Z. Jin, X. Zhou, K. Lu, Constrained minimal-interface structures in polycrystalline copper with extremely fine grains, Science 370 (2020) 831–836.

[19]

W. Xu, B. Zhang, X. Li, K. Lu, Suppressing atomic diffusion with the Schwarz crystal structure in supersaturated Al–Mg alloys, Science 373 (2021) 683–687.

[20]

Z. Jin, X. Li, K. Lu, Formation of stable schwarz crystals in polycrystalline copper at the grain size limit, Phys. Rev. Lett. 127 (2021) 136101.

[21]

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1–19.

[22]

Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B 63 (2001) 224106.

[23]

M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys. 52 (1981) 7182–7190.

[24]

Y. Wang, A. Ishii, S. Ogata, Transition of creep mechanism in nanocrystalline metals, Phys. Rev. B 84 (2011) 224102.

[25]

Y. Wang, G. Gao, S. Ogata, Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations, Phys. Rev. B 88 (2013) 115413.

[26]

J. Horvath, R. Birringer, H. Gleiter, Diffusion in nanocrystalline material, Solid State Commun. 62 (1987) 319–322.

[27]

R. Wurschum, S. Herth, U. Brossmann, Diffusion in nanocrystalline metals and alloys-A status report, Adv. Eng. Mater. 5 (2003) 365–372.

[28]

V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation, Acta Mater. 50 (2002) 61–73.

[29]

R. Raghavan, J.M. Wheeler, D. Esqué-De los Ojos, K. Thomas, E. Almandoz, G.G. Fuentes, J. Michler, Mechanical behavior of Cu/TiN multilayers at ambient and elevated temperatures: stress-assisted diffusion of Cu, Mater. Sci. Eng., A 620 (2015) 375–382.

[30]

M. Wohlgemuth, N. Yufa, J. Hoffman, E.L. Thomas, Triply periodic bicontinuous cubic microdomain morphologies by symmetries, Macromolecules 34 (2001) 6083–6089.

[31]

J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, J. Chem. Phys. 91 (1987) 4950–4963.

[32]

P. Cao, The strongest size in gradient nanograined metals, Nano Lett. 20 (2020) 1440–1446.

[33]

L. Wang, Y. Zhang, Z. Zeng, H. Zhou, J. He, P. Liu, M. Chen, J. Han, D.J. Srolovitz, J. Teng, Y. Guo, G. Yang, D. Kong, E. Ma, Y. Hu, B. Yin, X. Huang, Z. Zhang, T. Zhu, X. Han, Tracking the sliding of grain boundaries at the atomic scale, Science 375 (2022) 1261–1265.

[34]

X.-S. Yang, Y.-J. Wang, H.-R. Zhai, G.-Y. Wang, Y.-J. Su, L.H. Dai, S. Ogata, T.-Y. Zhang, Time-, stress-, and temperature-dependent deformation in nanostructured copper: creep tests and simulations, J. Mech. Phys. Solid. 94 (2016) 191–206.

Nano Materials Science
Pages 320-328
Cite this article:
Xing H, Jiang J, Wang Y, et al. Strengthening-softening transition and maximum strength in Schwarz nanocrystals. Nano Materials Science, 2024, 6(3): 320-328. https://doi.org/10.1016/j.nanoms.2023.09.006

72

Views

1

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 12 July 2023
Accepted: 18 September 2023
Published: 16 October 2023
© 2023 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return