AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Experimental and computational study of annealed nickel sulfide quantum dots for catalytic and antibacterial activity

Muhammad Ikrama( )Sawaira MoeenaAli HaiderbAnwar Ul-Hamidc( )Haya AlhummianydHamoud H. SomailyeSouraya Goumri-Saidf( )Mohammed Benali Kanoung
Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan
Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000, Multan, Punjab, Pakistan
Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
Department of Physics, Faculty of Science, University of Jeddah, P.O. Box 13151, Jeddah, 21493, Saudi Arabia
Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
Physics Department, College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia
Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh, 11586, Saudi Arabia
Show Author Information

Abstract

This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide (NiS2) quantum dots (QDs) for catalytic decolorization of methylene blue (MB) dye and antimicrobial efficacy. QD size increased with longer annealing, reducing catalytic activity. UV–vis, XRD, TEM, and FTIR analyses probed optical, structural, morphological, and vibrational features. XRD confirmed NiS2's anorthic structure, with crystallite size growing from 6.53 to 7.81 ​nm during extended annealing. UV–Vis exhibited a bathochromic shift, reflecting reduced band gap energy (Eg) in NiS2. TEM revealed NiS2 QD formation, with agglomerated QD average size increasing from 7.13 to 9.65 ​nm with prolonged annealing. Pure NiS2 showed significant MB decolorization (89.85%) in acidic conditions. Annealed NiS2 QDs demonstrated notable antibacterial activity, yielding a 6.15 ​mm inhibition zone against Escherichia coli (E. coli) compared to Ciprofloxacin. First-principles computations supported a robust interaction between MB and NiS2, evidenced by obtained adsorption energies. This study highlights the nuanced relationship between annealing duration, structural changes, and functional properties in NiS2 QDs, emphasizing their potential applications in catalysis and antibacterial interventions.

References

[1]

W. Song, M. Li, C. Wang, X. Lu, Electronic modulation and interface engineering of electrospun nanomaterials-based electrocatalysts toward water splitting, Carbon Energy 3 (2021) 101–128, https://doi.org/10.1002/cey2.85.

[2]

P.R. Bonneau, R.K. Shibao, R.B. Kaner, Low-temperature precursor synthesis of crystalline nickel disulfide, Inorg. Chem. 29 (1990) 2511–2514, https://doi.org/10.1021/ic00338a024.

[3]

C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng, L. Feng, C. Zhang, S. Jiang, W. Chen, S. He, Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions, Nano-Micro Lett. 15 (2023), https://doi.org/10.1007/s40820-023-01024-6.

[4]

A. Balakrishnan, J.D. Groeneveld, S. Pokhrel, L. Mädler, Metal sulfide nanoparticles: precursor chemistry, Chem. Eur J. 27 (2021) 6390–6406, https://doi.org/10.1002/chem.202004952.

[5]

B.T. Gadisa, R. Appiah-Ntiamoah, H. Kim, Amorphous iron sulfide nanowires as an efficient adsorbent for toxic dye effluents remediation, Environ. Sci. Pollut. Res. 26 (2019) 2734–2746, https://doi.org/10.1007/s11356-018-3811-3.

[6]

T.F. Hung, Z.W. Yin, S.B. Betzler, W. Zheng, J. Yang, H. Zheng, Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors, Chem. Eng. J. 367 (2019) 115–122, https://doi.org/10.1016/j.cej.2019.02.136.

[7]

X. Wang, H. Huang, B. Liang, Z. Liu, D. Chen, G. Shen, ZnS nanostructures: synthesis, properties, and applications, Crit. Rev. Solid State Mater. Sci. 38 (2013) 57–90, https://doi.org/10.1080/10408436.2012.736887.

[8]

J. Zhang, X. Ma, L. Zhang, Z. Lu, E. Zhang, H. Wang, Z. Kong, J. Xi, Z. Ji, Constructing a novel n–p–n dual heterojunction between anatase TiO 2 nanosheets with coexposed {101}, {001} facets and porous ZnS for enhancing photocatalytic activity, J. Phys. Chem. C 121 (2017) 6133–6140, https://doi.org/10.1021/acs.jpcc.7b00049.

[9]

P. Kumari, P. Chandran, S.S. Khan, Synthesis and characterization of silver sulfide nanoparticles for photocatalytic and antimicrobial applications, J. Photochem. Photobiol. B Biol. 141 (2014) 235–240, https://doi.org/10.1016/j.jphotobiol.2014.09.010.

[10]

M.R. Gao, Y.R. Zheng, J. Jiang, S.H. Yu, Pyrite-Type nanomaterials for advanced electrocatalysis, Acc. Chem. Res. 50 (2017) 2194–2204, https://doi.org/10.1021/acs.accounts.7b00187.

[11]

D. Vikraman, K. Karuppasamy, S. Hussain, A. Kathalingam, A. Sanmugam, J. Jung, H.S. Kim, One-pot facile methodology to synthesize MoS2-graphene hybrid nanocomposites for supercapacitors with improved electrochemical capacitance, Compos. Part B Eng. 161 (2019) 555–563, https://doi.org/10.1016/j.compositesb.2018.12.143.

[12]

J. Yuan, X. Cheng, H. Wang, C. Lei, S. Pardiwala, B. Yang, Z. Li, Q. Zhang, L. Lei, S. Wang, Y. Hou, A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution at ultra-high current densities, Nano-Micro Lett. 12 (2020), https://doi.org/10.1007/s40820-020-00442-0.

[13]

C. Dai, B. Li, J. Li, B. Zhao, R. Wu, H. Ma, X. Duan, Controllable synthesis of NiS and NiS2 nanoplates by chemical vapor deposition, Nano Res. 13 (2020) 2506–2511, https://doi.org/10.1007/s12274-020-2887-5.

[14]

H. Wang, W. Zhang, X. Zhang, S. Hu, Z. Zhang, W. Zhou, H. Liu, Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte, Nano Res. 14 (2021) 4857–4864, https://doi.org/10.1007/s12274-021-3445-5.

[15]

Y. Fazli, S.M. Pourmortazavi, I. Kohsari, M.S. Karimi, M. Tajdari, Synthesis, characterization and photocatalytic property of nickel sulfide nanoparticles, J. Mater. Sci. Mater. Electron. 27 (2016) 7192–7199, https://doi.org/10.1007/s10854-016-4683-2.

[16]

F. Soofivand, E. Esmaeili, M. Sabet, M. Salavati-Niasari, Simple synthesis, characterization and investigation of photocatalytic activity of NiS2 nanoparticles using new precursors by hydrothermal method, J. Mater. Sci. Mater. Electron. 29 (2018) 858–865, https://doi.org/10.1007/s10854-017-7981-4.

[17]

E. Esmaeili, M. Sabet, M. Salavati-Niasari, K. Saberyan, Synthesis and characterization of lead sulfide nanostructures with different morphologies via simple hydrothermal method, High Temp. Mater. Process. 35 (2016) 559–566, https://doi.org/10.1515/htmp-2015-0010.

[18]

X.F. Qian, X.M. Zhang, C. Wang, Y. Xie, Y.T. Qian, The preparation and phase transformation of nanocrystalline cobalt sulfides via a toluene thermal process, Inorg. Chem. 38 (1999) 2621–2623, https://doi.org/10.1021/ic980177i.

[19]

H.J. Bai, Z.M. Zhang, J. Gong, Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides, Biotechnol. Lett. 28 (2006) 1135–1139, https://doi.org/10.1007/s10529-006-9063-1.

[20]

S. Yan, K. Wang, F. Zhou, S. Lin, H. Song, Y. Shi, J. Yao, Ultrafine Co:FeS2/CoS2 heterostructure nanowires for highly efficient hydrogen evolution reaction, ACS Appl. Energy Mater. 3 (2020) 514–520, https://doi.org/10.1021/acsaem.9b01769.

[21]

M.R. Gao, J. Jiang, S.H. Yu, Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR), Small 8 (2012) 13–27, https://doi.org/10.1002/smll.201101573.

[22]

M.A. AlMalki, Z.A. Khan, W.A. El-Said, Synthesis and characterization of Nickel sulfide and Nickel sulfide/Molybdenum disulfide nanocomposite modified ITO electrode as efficient anode for methanol electrooxidation, Appl. Surf. Sci. Adv. 6 (2021), https://doi.org/10.1016/j.apsadv.2021.100187.

[23]

K. Hooshyari, M.B. Karimi, H. Su, S. Rahmani, H.R. Rajabi, Nanocomposite proton exchange membranes based on sulfonated polyethersulfone and functionalized quantum dots for fuel cell application, Int. J. Energy Res. 46 (2022) 9178–9193, https://doi.org/10.1002/er.7794.

[24]

B. Hemmateenejad, M. Shamsipur, F. Samari, H.R. Rajabi, Study of the interaction between human serum albumin and Mn-doped ZnS quantum dots, J. Iran. Chem. Soc. 12 (2015) 1729–1738, https://doi.org/10.1007/s13738-015-0647-3.

[25]

F. Chen, H. Yang, X. Wang, H. Yu, Facile synthesis and enhanced photocatalytic H2-evolution performance of NiS2-modified g-C3N4 photocatalysts, Cuihua Xuebao/Chin. J. Catal. 38 (2017) 296–304, https://doi.org/10.1016/S1872-2067(16)62554-8.

[26]

M. Ikram, A. Haider, M. Imran, J. Haider, S. Naz, A. Ul-Hamid, A. Shahzadi, K. Ghazanfar, W. Nabgan, S. Moeen, S. Ali, Assessment of catalytic, antimicrobial and molecular docking analysis of starch-grafted polyacrylic acid doped BaO nanostructures, Int. J. Biol. Macromol. 230 (2023) 123190, https://doi.org/10.1016/j.ijbiomac.2023.123190.

[27]

Z. Wang, A. Wu, L.C. Ciacchi, G. Wei, Recent advances in nanoporous membranes for water purification, Nanomaterials 8 (2018), https://doi.org/10.3390/nano8020065.

[28]

S. Han, K. Liu, L. Hu, F. Teng, P. Yu, Y. Zhu, Corrigendum: superior adsorption and regenerable dye adsorbent based on flower-like molybdenum disulfide nanostructure, Sci. Rep. 7 (2017) 46887, https://doi.org/10.1038/srep46887.

[29]

N.K. Alharbi, A.N. Alsaloom, Characterization of lactic bacteria isolated from raw milk and their antibacterial activity against bacteria as the cause of clinical bovine mastitis, J. Food Qual. 2021 (2021), https://doi.org/10.1155/2021/6466645.

[30]

K. Jensen, J. Günther, R. Talbot, W. Petzl, H. Zerbe, H.J. Schuberth, H.M. Seyfert, E.J. Glass, Escherichia coli- and Staphylococcus aureus-induced mastitis differentially modulate transcriptional responses in neighbouring uninfected bovine mammary gland quarters, BMC Genom. 14 (2013), https://doi.org/10.1186/1471-2164-14-36.

[31]

M. Sharma, K. Behl, S. Nigam, M. Joshi, TiO2-GO nanocomposite for photocatalysis and environmental applications: a green synthesis approach, Vacuum 156 (2018) 434–439, https://doi.org/10.1016/j.vacuum.2018.08.009.

[32]

S.O.B. Oppong, F. Opoku, W.W. Anku, E.M. Kiarii, P.P. Govender, Experimental and computational design of highly active Ce–ZrO 2 –GO photocatalyst for eosin Yellow dye degradation: the role of interface and Ce 3+ ion, Catal. Lett. (2019), https://doi.org/10.1007/s10562-019-02729-3.

[33]
K.R. Kunduru, M. Nazarkovsky, S. Farah, R.P. Pawar, A. Basu, A.J. Domb, Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment, in: Water Purif, Elsevier, 2017, pp. 33–74, https://doi.org/10.1016/b978-0-12-804300-4.00002-2.
[34]

C.G. Sinclair, Bergey's manual of determinative bacteriology, Am. J. Trop. Med. Hyg. s1–19 (1939) 605–606, https://doi.org/10.4269/ajtmh.1939.s1-19.605.

[35]

A. Haider, M. Ijaz, M. Imran, M. Naz, H. Majeed, J.A. Khan, M.M. Ali, M. Ikram, Enhanced bactericidal action and dye degradation of spicy roots’ extract-incorporated fine-tuned metal oxide nanoparticles, Appl. Nanosci. 10 (2020) 1095–1104, https://doi.org/10.1007/s13204-019-01188-x.

[36]

K.R. Kadhim, R.Y. Mohammed, Effect of annealing time on structure, morphology, and optical properties of nanostructured CdO thin films prepared by CBD technique, Crystals 12 (2022), https://doi.org/10.3390/cryst12091315.

[37]

P.L. Reddy, K. Deshmukh, T. Kovářík, D. Reiger, N.A. Nambiraj, R. Lakshmipathy, S.K. Khadheer Pasha, Enhanced dielectric properties of green synthesized Nickel Sulphide (NiS) nanoparticles integrated polyvinylalcohol nanocomposites, Mater. Res. Express 7 (2020), https://doi.org/10.1088/2053-1591/ab955f.

[38]

D. Wu, H. Yu, C. Hou, W. Du, X. Song, T. Shi, X. Sun, B. Wang, NiS nanoparticles assembled on biological cell walls-derived porous hollow carbon spheres as a novel battery-type electrode for hybrid Supercapacitor, J. Mater. Sci. 55 (2020) 14431–14446, https://doi.org/10.1007/s10853-020-05022-6.

[39]

H. Hafdi, J. Mouldar, M. Joudi, B. Hatimi, H. Nasrellah, M.A. El Mhammedi, M. Bakasse, Nickel sulfide impregnated on natural phosphate: characterization and applications in photocatalytic degradation of indigocarmine dye, Opt. Quant. Electron. 53 (2021), https://doi.org/10.1007/s11082-021-02811-4.

[40]

D. Krishnamoorthy, A. Prakasam, Low-cost and novel preparation of porous NiS2/graphene heterojunctions photoanodes for high-efficiency dye-sensitized solar cells, Inorg. Chem. Commun. 119 (2020), https://doi.org/10.1016/j.inoche.2020.108063.

[41]

K. Skrabania, A. Miasnikova, A.M. Bivigou-Koumba, D. Zehm, A. Laschewsky, Examining the UV-vis absorption of RAFT chain transfer agents and their use for polymer analysis, Polym. Chem. 2 (2011) 2074–2083, https://doi.org/10.1039/c1py00173f.

[42]
J. Tauc, Optical Properties of Amorphous Semiconductors, in: Amorph. Liq. Semicond., Springer US, 1974, pp. 159–220, https://doi.org/10.1007/978-1-4615-8705-7_4.
[43]

J. Liu, Y.G. Xu, L. Bin Kong, Cleverly embedded CoS2/NiS2 on two-dimensional graphene nanosheets as high-performance anode material for improved sodium ion batteries and sodium ion capacitors, J. Mater. Sci. Mater. Electron. 31 (2020) 9946–9959, https://doi.org/10.1007/s10854-020-03541-1.

[44]

F. Zou, Y.M. Chen, K. Liu, Z. Yu, W. Liang, S.M. Bhaway, M. Gao, Y. Zhu, Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage, ACS Nano 10 (2016) 377–386, https://doi.org/10.1021/acsnano.5b05041.

[45]

Q. Wang, W. Zhang, C. Guo, Y. Liu, C. Wang, Z. Guo, In situ construction of 3D interconnected FeS@Fe3C@graphitic carbon networks for high-performance sodium-ion batteries, Adv. Funct. Mater. 27 (2017), https://doi.org/10.1002/adfm.201703390.

[46]

Z. Li, Y. Xu, X. Ren, W. Wang, Facile synthesis of NiS2–MoS2 heterostructured nanoflowers for enhanced overall water splitting performance, J. Mater. Sci. 55 (2020) 13892–13904, https://doi.org/10.1007/s10853-020-04966-z.

[47]

S. Moeen, M. Ikram, A. Haider, J. Haider, A. Ul-Hamid, W. Nabgan, T. Shujah, M. Naz, I. Shahzadi, Comparative study of sonophotocatalytic, photocatalytic, and catalytic activities of magnesium and chitosan-doped tin oxide quantum dots, ACS Omega 7 (2022) 46428–46439, https://doi.org/10.1021/acsomega.2c05133.

[48]

M. Ikram, A. Haider, M. Imran, J. Haider, S. Naz, A. Ul-Hamid, A. Shahzadi, S. Moeen, G. Nazir, W. Nabgan, A. Bashir, S. Ali, Cellulose grafted poly acrylic acid doped manganese oxide nanorods as novel platform for catalytic, antibacterial activity and molecular docking analysis, Surface. Interfac. 37 (2023), https://doi.org/10.1016/j.surfin.2023.102710.

[49]

A. Mahmoodi, S. Solaymani, M. Amini, N.B. Nezafat, M. Ghoranneviss, Structural, morphological and antibacterial characterization of CuO nanowires, Silicon 10 (2018) 1427–1431, https://doi.org/10.1007/s12633-017-9621-2.

[50]

T.U. Doan Thi, T.T. Nguyen, Y.D. Thi, K.H. Ta Thi, B.T. Phan, K.N. Pham, Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities, RSC Adv. 10 (2020) 23899–23907, https://doi.org/10.1039/d0ra04926c.

[51]

S. Mirsadeghi, H. Zandavar, M. Yousefi, H.R. Rajabi, S.M. Pourmortazavi, Green-photodegradation of model pharmaceutical contaminations over biogenic Fe3O4/Au nanocomposite and antimicrobial activity, J. Environ. Manag. 270 (2020), https://doi.org/10.1016/j.jenvman.2020.110831.

[52]

H.R. Rajabi, R. Naghiha, M. Kheirizadeh, H. Sadatfaraji, A. Mirzaei, Z.M. Alvand, Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: synthesis, characterization, and biological properties, Mater. Sci. Eng. C. 78 (2017) 1109–1118, https://doi.org/10.1016/j.msec.2017.03.090.

[53]

S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P.A. Khomyakov, U.G. Vej-Hansen, M.E. Lee, S.T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M.L.N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, K. Stokbro, QuantumATK: an integrated platform of electronic and atomic-scale modelling tools, J. Phys. Condens. Matter 32 (2020), https://doi.org/10.1088/1361-648X/ab4007.

[54]

J. Yin, Y. Li, F. Lv, M. Lu, K. Sun, W. Wang, L. Wang, F. Cheng, Y. Li, P. Xi, S. Guo, Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn–air batteries driven water splitting devices, Adv. Mater. 29 (2017) 1704681, https://doi.org/10.1002/adma.201704681.

[55]

S. Goumri-Said, M.B. Kanoun, Insight into the effect of anionic–anionic Co-doping on BaTiO3 for visible light photocatalytic water splitting: a first-principles hybrid computational study, Catalysts 12 (2022), https://doi.org/10.3390/catal12121672.

[56]

J. Hassan, S. Naz, A. Haider, A. Raza, A. Ul-Hamid, U. Qumar, J. Haider, S. Goumri-Said, M.B. Kanoun, M. Ikram, h-BN nanosheets doped with transition metals for environmental remediation; a DFT approach and molecular docking analysis, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 272 (2021), https://doi.org/10.1016/j.mseb.2021.115365.

[57]

A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, A.P. Singh, B. Wickman, Green synthesis of earth-abundant metal sulfides (FeS2, CuS, and NiS2) and their use as visible-light active photocatalysts for H2 generation and dye removal, J. Mater. Sci. Mater. Electron. 29 (2018) 11613–11626, https://doi.org/10.1007/s10854-018-9259-x.

[58]

F. Soofivand, E. Esmaeili, M. Sabet, M. Salavati-Niasari, Simple synthesis, characterization and investigation of photocatalytic activity of NiS2 nanoparticles using new precursors by hydrothermal method, J. Mater. Sci. Mater. Electron. 29 (2018) 858–865, https://doi.org/10.1007/S10854-017-7981-4.

[59]

N. Kandhasamy, G. Murugadoss, T. Kannappan, K. Kirubaharan, R.K. Manavalan, R. Gopal, Cerium-based metal sulfide derived nanocomposite-embedded rGO as an efficient catalyst for photocatalytic application, Environ. Sci. Pollut. Res. 30 (2023) 29711–29726, https://doi.org/10.1007/s11356-022-24311-y.

Nano Materials Science
Pages 355-364
Cite this article:
Ikram M, Moeen S, Haider A, et al. Experimental and computational study of annealed nickel sulfide quantum dots for catalytic and antibacterial activity. Nano Materials Science, 2024, 6(3): 355-364. https://doi.org/10.1016/j.nanoms.2023.11.007

79

Views

1

Downloads

16

Crossref

11

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 21 September 2023
Accepted: 13 November 2023
Published: 29 November 2023
© 2023 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return