AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Nickel-based superalloy architectures with surface mechanical attrition treatment: Compressive properties and collapse behaviour

Lizi Chenga,b,cXiaofeng Zhangb,dJiacheng XubTemitope Olumide Olugbadeb,eGan LibDongdong DongdFucong LyubHaojie KongbMengke HuobJian Lua,b,f( )
CityU-Shenzhen Futian Research Institute, Shenzhen, China
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
Department of Engineering, University of Cambridge, Cambridge, UK
National Engineering Laboratory for Modern Materials Surface Engineering Technology & The Key Lab of Guangdong for Modern Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Science, 510650, Guangzhou, China
Mechanical and Electronic Engineering Department, School of Science and Engineering, University of Dundee, Dundee, UK
Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
Show Author Information

Abstract

Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices, making them simultaneously strong and tough. Herein, we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy (IN625) microlattices after surface mechanical attrition treatment (SMAT). Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71% and also triggered a transition in their mechanical behaviour. Two primary failure modes were distinguished: weak global deformation, and layer-by-layer collapse, with the latter enhanced by SMAT. The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT, which effectively leveraged the material and structural effects. These results were further validated by finite element analysis. This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials.

References

[1]

C. Guo, G. Li, S. Li, X. Hu, H. Lu, X. Li, Z. Xu, Y. Chen, Q. Li, J. Lu, Additive manufacturing of Ni-based superalloys: residual stress, mechanisms of crack formation and strategies for crack inhibition, Nano Materials Science (2022).

[2]

N. Jin, F. Wang, Y. Wang, B. Zhang, H. Cheng, H. Zhang, Effect of structural parameters on mechanical properties of Pyramidal Kagome lattice material under impact loading, Int. J. Impact Eng. 132 (2019) 103313.

[3]

M. Benedetti, A. du Plessis, R.O. Ritchie, M. Dallago, S.M.J. Razavi, F. Berto, Architected cellular materials: a review on their mechanical properties towards fatigue-tolerant design and fabrication, Mater. Sci. Eng. R Rep. 144 (2021).

[4]

V.S. Deshpande, N.A. Fleck, M.F. Ashby, Effective properties of the octet-truss lattice material, J. Mech. Phys. Solid. 49 (8) (2001) 1747-1769.

[5]

L. Gong, S. Kyriakides, N. Triantafyllidis, On the stability of Kelvin cell foams under compressive loads, J. Mech. Phys. Solid. 53 (4) (2005) 771-794.

[6]

X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, J.A. Jackson, S.O. Kucheyev, N.X. Fang, C.M. Spadaccini, Ultralight, ultrastiff mechanical metamaterials, Science 344 (6190) (2014) 1373-1377.

[7]

T. Tancogne-Dejean, A.B. Spierings, D. Mohr, Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading, Acta Mater. 116 (2016) 14-28.

[8]

R.R. Srivastava, M. -s. Kim, J. -c. Lee, M.K. Jha, B. -S. Kim, Resource recycling of superalloys and hydrometallurgical challenges, J. Mater. Sci. 49 (14) (2014) 4671-4686.

[9]

M.S. Pham, C. Liu, I. Todd, J. Lertthanasarn, Damage-tolerant architected materials inspired by crystal microstructure, Nature 565 (7739) (2019) 305-311.

[10]

L. Cheng, T. Tang, H. Yang, F. Hao, G. Wu, F. Lyu, Y. Bu, Y. Zhao, Y. Zhao, G. Liu, X. Cheng, J. Lu, The twisting of dome-like metamaterial from brittle to ductile, Adv. Sci. (2021) 2002701.

[11]

O. Al-Ketan, R. Rowshan, R.K. Abu Al-Rub, Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials, Addit. Manuf. 19 (2018) 167-183.

[12]

C. Chang, X. Yan, R. Bolot, J. Gardan, S. Gao, M. Liu, H. Liao, M. Chemkhi, S. Deng, Influence of post-heat treatments on the mechanical properties of CX stainless steel fabricated by selective laser melting, J. Mater. Sci. 55 (19) (2020) 8303-8316.

[13]

D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, T. Kokubo, Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments, Acta Biomater. 7 (3) (2011) 1398-1406.

[14]

M. Kumagai, K. Kimura, N. Shimada, M. Ishiwata, Inhomogeneous strain and recrystallisation of a shot-peened Inconel 625 alloy after annealing, Mater. Sci. Technol. 35 (15) (2019) 1856-1863.

[15]

X. Yan, S. Yin, C. Chen, R. Jenkins, R. Lupoi, R. Bolot, W. Ma, M. Kuang, H. Liao, J. Lu, M. Liu, Fatigue strength improvement of selective laser melted Ti6Al4V using ultrasonic surface mechanical attrition, Materials Research Letters 7 (8) (2019) 327-333.

[16]

S. Ghosh, N. Bibhanshu, S. Suwas, K. Chatterjee, Surface mechanical attrition treatment of additively manufactured 316L stainless steel yields gradient nanostructure with superior strength and ductility, Mater. Sci. Eng., A 820 (2021) 141540.

[17]

T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, W.B. Carter, Ultralight metallic microlattices, Science 334 (6058) (2011) 962-965.

[18]

N. Sanaei, A. Fatemi, Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review, Prog. Mater. Sci. (2020).

[19]

B.A. Raj, J. Jappes, M.A. Khan, V. Dillibabu, N.R. Jesudoss Hynes, Studies on mechanical attrition and surface analysis on heat-treated nickel alloy developed through additive manufacturing, Adv. Mater. Sci. Eng. (2022) 2022.

[20]
X. Gong, T. Anderson, K. Chou, Review on powder-based electron beam additivemanufacturing technology, in: International Symposium on Flexible Automation, American Society of Mechanical Engineers, 2012, pp. 507–515.
[21]

T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A.M. Beese, A. d. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components–process, structure and properties, Prog. Mater. Sci. 92 (2018) 112-224.

[22]

I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, Compressive failure modes and energy absorption in additively manufactured double gyroid lattices, Addit. Manuf. 16 (2017) 24-29.

[23]

Y. Zhang, X. Hu, Y. Jiang, Study on the microstructure and fatigue behavior of a laser-welded Ni-based alloy manufactured by selective laser melting method, J. Mater. Eng. Perform. 29 (5) (2020) 2957-2968.

[24]
K. Mumtaz, N. Hopkinson, Selective Laser Melting of Inconel 625 Using PulseShaping, Rapid Prototyping Journal, 2010.
[25]

X. Chen, J. Lu, L. Lu, K. Lu, Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scripta Mater. 52 (10) (2005) 1039-1044.

[26]

H.L. Chan, H.H. Ruan, A.Y. Chen, J. Lu, Optimization of the strain rate to achieve exceptional mechanical properties of 304 stainless steel using high speed ultrasonic surface mechanical attrition treatment, Acta Mater. 58 (15) (2010) 5086-5096.

[27]

A. Chen, H. Ruan, J. Wang, H. Chan, Q. Wang, Q. Li, J. Lu, The influence of strain rate on the microstructure transition of 304 stainless steel, Acta Mater. 59 (9) (2011) 3697-3709.

[28]
R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge universitypress, 2008.
[29]

W. Tsai, J. Huang, Y.J. Gao, Y. Chung, G. -R. Huang, Relationship between microstructure and properties for ultrasonic surface mechanical attrition treatment, Scripta Mater. 103 (2015) 45-48.

[30]

T. Wegener, T. Wu, F. Sun, C. Wang, J. Lu, T. Niendorf, Influence of surface mechanical attrition treatment (SMAT) on microstructure, tensile and low-cycle fatigue behavior of additively manufactured stainless steel 316L, Metals 12 (9) (2022) 1425.

[31]

P. Köhnen, C. Haase, J. Bültmann, S. Ziegler, J.H. Schleifenbaum, W. Bleck, Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel, Mater. Des. 145 (2018) 205-217.

[32]

X. Feng, J.U. Surjadi, R. Fan, X. Li, W. Zhou, S. Zhao, Y. Lu, Microalloyed medium-entropy alloy (MEA) composite nanolattices with ultrahigh toughness and cyclability, Mater. Today 42 (2021) 10-16.

[33]
S. Cao, Mechanical Properties and Fretting Fatigue of SMAT-Treated Stainless Steelsand Nickel-Based Alloys, City University of Hong Kong, 2016.
[34]

C. Bonatti, D. Mohr, Smooth-shell metamaterials of cubic symmetry: anisotropic elasticity, yield strength and specific energy absorption, Acta Mater. 164 (2019) 301-321.

[35]

S.C. Cao, J. Liu, L. Zhu, L. Li, M. Dao, J. Lu, R.O. Ritchie, Nature-inspired hierarchical steels, Sci. Rep. 8 (1) (2018) 5088.

[36]

X. Cao, D. Zhang, B. Liao, S. Fang, L. Liu, R. Gao, Y. Li, Numerical analysis of the mechanical behavior and energy absorption of a novel P-lattice, Thin-Walled Struct. 157 (2020).

[37]

L.L. Shaw, J. Villegas, J. -Y. Huang, S. Chen, Strengthening via deformation twinning in a nickel alloy, Mater. Sci. Eng., A 480 (1–2) (2008) 75-83.

[38]

Z. Baicheng, L. Xiaohua, B. Jiaming, G. Junfeng, W. Pan, S. Chen-nan, N. Muiling, Q. Guojun, W. Jun, Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing, Mater. Des. 116 (2017) 531-537.

[39]

J. Ren, A. Shan, J. Zhang, H. Song, J. Liu, Surface nanocrystallization of Ni3Al by surface mechanical attrition treatment, Mater. Lett. 60 (17–18) (2006) 2076-2079.

[40]

K. Amato, S. Gaytan, L.E. Murr, E. Martinez, P. Shindo, J. Hernandez, S. Collins, F. Medina, Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting, Acta Mater. 60 (5) (2012) 2229-2239.

[41]

C. Pleass, S. Jothi, Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by Selective Laser Melting, Addit. Manuf. 24 (2018) 419-431.

[42]

M. Balbaa, A. Ghasemi, E. Fereiduni, K. Al-Rubaie, M. Elbestawi, Improvement of fatigue performance of laser powder bed fusion fabricated IN625 and IN718 superalloys via shot peening, J. Mater. Process. Technol. 304 (2022) 117571.

[43]

I. Quintana-Alonso, S. Mai, N. Fleck, D. Oakes, M. Twigg, The fracture toughness of a cordierite square lattice, Acta Mater. 58 (1) (2010) 201-207.

[44]

W. Tong, N. Tao, Z. Wang, J. Lu, K. Lu, Nitriding iron at lower temperatures, Science 299 (5607) (2003) 686-688.

[45]

K. Lu, J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Mater. Sci. Eng., A 375 (2004) 38-45.

[46]

T.O. Olugbade, J. Lu, Literature review on the mechanical properties of materials after surface mechanical attrition treatment (SMAT), Nano Materials Science 2 (1) (2020) 3-31.

[47]
N.A. Fleck, Micro-architectured Solids: from Blast Resistant Structures to MorphingWings, Mechanics Down Under, Springer, 2013, pp. 57–65.
[48]

W. Abramowicz, N. Jones, Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically, Int. J. Impact Eng. 19 (5–6) (1997) 415-437.

[49]

S. Pingle, N. Fleck, V. Deshpande, H. Wadley, Collapse mechanism maps for a hollow pyramidal lattice, Proc. R. Soc. A 467 (2128) (2011) 985-1011.

[50]
M.F. Ashby, L.J. Gibson, Cellular Solids: Structure and Properties, Press Syndicate ofthe University of Cambridge, Cambridge, UK, 1997, pp. 175–231.
[51]
M.F. Ashby, T. Evans, N.A. Fleck, J. Hutchinson, H. Wadley, L. Gibson, Metal Foams: a Design Guide, Elsevier, 2000.
[52]

N.A. Fleck, V.S. Deshpande, M.F. Ashby, Micro-architectured materials: past, present and future, Proc. R. Soc. A 466 (2121) (2010) 2495-2516.

[53]

M. Leary, M. Mazur, H. Williams, E. Yang, A. Alghamdi, B. Lozanovski, X. Zhang, D. Shidid, L. Farahbod-Sternahl, G. Witt, I. Kelbassa, P. Choong, M. Qian, M. Brandt, Inconel 625 lattice structures manufactured by selective laser melting (SLM): mechanical properties, deformation and failure modes, Mater. Des. 157 (2018) 179-199.

[54]

M. Mazur, M. Leary, S. Sun, M. Vcelka, D. Shidid, M. Brandt, Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM), Int. J. Adv. Des. Manuf. Technol. 84 (5) (2016) 1391-1411.

[55]

L. Yang, R. Mertens, M. Ferrucci, C. Yan, Y. Shi, S. Yang, Continuous graded Gyroid cellular structures fabricated by selective laser melting: design, manufacturing and mechanical properties, Mater. Des. 162 (2019) 394-404.

[56]

X. Cao, D. Xiao, Y. Li, W. Wen, T. Zhao, Z. Chen, Y. Jiang, D. Fang, Dynamic compressive behavior of a modified additively manufactured rhombic dodecahedron 316L stainless steel lattice structure, Thin-Walled Struct. 148 (2020) 106586.

[57]

J. Lertthanasarn, C. Liu, M. Pham, Synergistic effects of crystalline microstructure, architected mesostructure, and processing defects on the mechanical behaviour of Ti6Al4V meta-crystals, Mater. Sci. Eng., A 818 (2021) 141436.

[58]

C. Liu, J. Lertthanasarn, M. -S. Pham, The origin of the boundary strengthening in polycrystal-inspired architected materials, Nat. Commun. 12 (1) (2021) 1-10.

[59]

R. Wauthle, B. Vrancken, B. Beynaerts, K. Jorissen, J. Schrooten, J. -P. Kruth, J. Van Humbeeck, Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures, Addit. Manuf. 5 (2015) 77-84.

[60]

R. Gautam, S. Idapalapati, Performance of strut-reinforced Kagome truss core structure under compression fabricated by selective laser melting, Mater. Des. 164 (2019).

[61]

P. Baranowski, P. Płatek, A. Antolak-Dudka, M. Sarzyński, M. Kucewicz, T. Durejko, J. Małachowski, J. Janiszewski, T. Czujko, Deformation of honeycomb cellular structures manufactured with Laser Engineered Net Shaping (LENS) technology under quasi-static loading: experimental testing and simulation, Addit. Manuf. 25 (2019) 307-316.

Nano Materials Science
Pages 587-595
Cite this article:
Cheng L, Zhang X, Xu J, et al. Nickel-based superalloy architectures with surface mechanical attrition treatment: Compressive properties and collapse behaviour. Nano Materials Science, 2024, 6(5): 587-595. https://doi.org/10.1016/j.nanoms.2023.11.008

17

Views

0

Downloads

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 29 June 2023
Accepted: 07 October 2023
Published: 05 January 2024
© 2024 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return