The transverse relaxation time (T2) cut-off value plays a crucial role in nuclear magnetic resonance for identifying movable and immovable boundaries, evaluating permeability, and determining fluid saturation in petrophysical characterization of petroleum reservoirs. This study focuses on the systematic analysis of T2 spectra and T2 cut-off values in low-permeability reservoir rocks. Analysis of 36 low-permeability cores revealed a wide distribution of T2 cut-off values, ranging from 7 to 50 ms. Additionally, the T2 spectra exhibited multimodal characteristics, predominantly displaying unimodal and bimodal morphologies, with a few trimodal morphologies, which are inherently influenced by different pore types. Fractal characteristics of pore structure in fully water-saturated cores were captured through the T2 spectra, which were calculated using generalized fractal and multifractal theories. To augment the limited dataset of 36 cores, the synthetic minority oversampling technique was employed. Models for evaluating the T2 cut-off value were separately developed based on the classified T2 spectra, considering the number of peaks, and utilizing generalized fractal dimensions at the weight <0 and the singular intensity range. The underlying mechanism is that the singular intensity and generalized fractal dimensions at the weight <0 can detect the T2 spectral shift. However, the T2 spectral shift has negligible effects on multifractal spectrum function difference and generalized fractal dimensions at the weight >0. The primary objective of this work is to gain insights into the relationship between the kurtosis of the T2 spectrum and pore types, as well as to predict the T2 cut-off value of low-permeability rocks using machine learning and data augmentation techniques.
Blunt, M.J., 2017. Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge University Press. https://doi.org/10.1017/9781316145098.
Blunt, M.J., Bijeljic, B., Dong, H., et al., 2013. Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216. https://doi.org/10.1016/j.advwatres.2012.03.003.
Bultreys, T., De Boever, W., Cnudde, V., 2016. Imaging and image-based fluid transport modeling at the pore scale in geological materials: a practical introduction to the current state-of-the-art. Earth-Sci. Rev. 155, 93–128. https://doi.org/10.1016/j.earscirev.2016.02.001.
Butler, J.P., Reeds, J.A., Dawson, S.V., 1981. Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing. SIAM J. Numer. Anal. 18, 381–397. https://doi.org/10.1137/0718025.
Cai, J., Xu, K., Zhu, Y., et al., 2020. Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest. Appl. Energy 262, 114566. https://doi.org/10.1016/j.apenergy.2020.114566.
Camacho, L., Douzas, G., Bacao, F., 2022. Geometric SMOTE for regression. Expert Syst. Appl. 193, 116387. https://doi.org/10.1016/j.eswa.2021.116387.
Chawla, N.V., Bowyer, K.W., Hall, L.O., et al., 2002. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357. https://doi.org/10.1613/jair.953
Chen, J., Huang, H., Cohn, A.G., et al., 2022. Machine learning-based classification of rock discontinuity trace: SMOTE oversampling integrated with GBT ensemble learning. Int. J. Min. Sci. Technol. 32, 309–322. https://doi.org/10.1016/j.ijmst.2021.08.004.
Chen, X., Yao, G., Cai, J., et al., 2017. Fractal and multifractal analysis of different hydraulic flow units based on micro-CT images. J. Nat. Gas Sci. Eng. 48, 145–156. https://doi.org/10.1016/j.jngse.2016.11.048.
Chen, X., Yao, G., Herrero-Bervera, E., et al., 2018. A new model of pore structure typing based on fractal geometry. Mar. Petrol. Geol. 98, 291–305. https://doi.org/10.1016/j.marpetgeo.2018.08.023.
Cheng, Q., 1999. Multifractality and spatial statistics. Comput. Geosci. 25, 949–961. https://doi.org/10.1016/S0098-3004(99)00060-6.
Chhabra, A., Jensen, R.V., 1989. Direct determination of the f(α) singularity spectrum. Phys. Rev. Lett. 62, 1327. https://doi.org/10.1103/PhysRevLett.62.1327.
Coates, G.R., Xiao, L., Prammer, M.G., 1999. NMR Logging: Principles and Applications. Haliburton Energy Services, Houston.
Daigle, H., Johnson, A., 2016. Combining mercury intrusion and nuclear magnetic resonance measurements using percolation theory. Transp. Porous Media 111, 669–679. https://doi.org/10.1007/s11242-015-0619-1.
Douzas, G., Bacao, F., 2019. Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE. Inf. Sci. 501, 118–135. https://doi.org/10.1016/j.ins.2019.06.007.
Douzas, G., Bacao, F., Last, F., 2018. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf. Sci. 465, 1–20. https://doi.org/10.1016/j.ins.2018.06.056.
Douzas, G., Rauch, R., Bacao, F., 2021. G-SOMO: an oversampling approach based on self-organized maps and geometric SMOTE. Expert Syst. Appl. 183, 115230. https://doi.org/10.1016/j.eswa.2021.115230.
Dullien, F.A., 2012. Porous Media: Fluid Transport and Pore Structure. Academic Press. https://doi.org/10.1016/0300-9467(81)80049-4.
Fu, H., Wang, W., Chen, X., et al., 2019. Fractal and multifractal analysis of fracture surfaces caused by hydrogen embrittlement in high-Mn twinning/transformation-induced plasticity steels. Appl. Surf. Sci. 470, 870–881. https://doi.org/10.1016/j.apsusc.2018.11.179.
Gao, H., Li, H.A., 2016. Pore structure characterization, permeability evaluation and enhanced gas recovery techniques of tight gas sandstones. J. Nat. Gas Sci. Eng. 28, 536–547. https://doi.org/10.1016/j.jngse.2015.12.018.
Ge, X., Fan, Y., Deng, S., 2011. Research on T2 cutoff-value determination method for shaly sand based on experiments. Well Logging Technol. 35, 308–313.
Ge, X., Fan, Y., Zhu, X., et al., 2015. Determination of nuclear magnetic resonance T2 cutoff value based on multifractal theory—an application in sandstone with complex pore structure. Geophysics 80, D11–D21.
Ge, X., Chen, H., Fan, Y., et al., 2017. An improved pulse sequence and inversion algorithm of T2 spectrum. Comput. Phys. Commun. 212, 82–89. https://doi.org/10.1016/j.cpc.2016.10.012.
Ge, X., Fan, Y., Liu, J., et al., 2021. Numerical investigating the low field NMR response of representative pores at different pulse sequence parameters. Comput. Geosci. 151, 104761. https://doi.org/10.1016/j.cageo.2021.104761.
Godefroy, S., Fleury, M., Deflandre, F., et al., 2002. Temperature effect on NMR surface relaxation in rocks for well logging applications. J. Phys. Chem. B 106, 11183–11190. https://doi.org/10.1021/jp0213452.
Guo, J.-C., Zhou, H.-Y., Zeng, J., et al., 2020. Advances in low-field nuclear magnetic resonance (NMR) technologies applied for characterization of pore space inside rocks: a critical review. Petrol. Sci. 17, 1281–1297. https://doi.org/10.1007/s12182-020-00488-0.
Guo, X., Huang, Z., Zhao, L., et al., 2019. Pore structure and multi-fractal analysis of tight sandstone using MIP, NMR and NMRC methods: a case study from the Kuqa depression, China. J. Petrol. Sci. Eng. 178, 544–558. https://doi.org/10.1016/j.petrol.2019.03.069.
Hidajat, I., Mohanty, K., Flaum, M., et al., 2004. Study of vuggy carbonates using NMR and X-ray CT scanning. SPE Reservoir Eval. Eng. 7, 365–377. https://doi.org/10.2118/88995-pa.
Hu, Y., Guo, Y., Zhang, J., et al., 2020. A method to determine nuclear magnetic resonance T2 cutoff value of tight sandstone reservoir based on multifractal analysis. Energy Sci. Eng. 8, 1135–1148. https://doi.org/10.1002/ese3.574.
Jiao, L., Andersen, P.Ø., Zhou, J., et al., 2020. Applications of mercury intrusion capillary pressure for pore structures: a review. Capillarity 3, 62–74. https://doi.org/10.46690/capi.2020.04.02
Karimpouli, S., Tahmasebi, P., 2019. Image-based velocity estimation of rock using Convolutional Neural Networks. Neural Network. 111, 89–97. https://doi.org/10.1016/j.neunet.2018.12.006.
Li, C., Liu, G., Cao, Z., et al., 2020a. Analysis of petrophysical characteristics and water movability of tight sandstone using low-field nuclear magnetic resonance. Nat. Resour. Res. 29, 2547–2573. https://doi.org/10.1007/s11053-019-09582-6.
Li, J., Jiang, C., Wang, M., et al., 2020b. Adsorbed and free hydrocarbons in unconventional shale reservoir: a new insight from NMR T1-T2 maps. Mar. Petrol. Geol. 116, 104311. https://doi.org/10.1016/j.marpetgeo.2020.104311.
Liu, J., Pereira, G.G., Liu, Q., et al., 2016. Computational challenges in the analyses of petrophysics using microtomography and upscaling: a review. Comput. Geosci. 89, 107–117. https://doi.org/10.1016/j.cageo.2016.01.014.
Liu, K., Mirzaei-Paiaman, A., Liu, B., et al., 2020a. A new model to estimate permeability using mercury injection capillary pressure data: application to carbonate and shale samples. J. Nat. Gas Sci. Eng. 84, 103691. https://doi.org/10.1016/j.jngse.2020.103691.
Liu, K., Jin, Z., Zeng, L., et al., 2021a. Determination of clay bound water in shales from NMR signals: the fractal theory. Energy Fuels 35, 18406–18413. https://doi.org/10.1021/acs.energyfuels.1c02285.
Liu, X., Jin, Z., Lai, J., et al., 2021b. Fractal behaviors of nmr saturated and centrifugal T2 spectra in oil shale reservoirs: the paleogene funing formation in subei basin, China. Mar. Petrol. Geol. 129, 105069. https://doi.org/10.1016/j.marpetgeo.2021.105069.
Liu, Z., Liu, D., Cai, Y., et al., 2020b. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: a review. Int. J. Coal Geol. 218, 103261. https://doi.org/10.1016/j.coal.2019.103261.
Lopes, R., Betrouni, N., 2009. Fractal and multifractal analysis: a review. Med. Image Anal. 13, 634–649. https://doi.org/10.1016/j.media.2009.05.003.
Mehmani, A., Verma, R., Prodanović, M., 2020. Pore-scale modeling of carbonates. Mar. Petrol. Geol. 114, 104141. https://doi.org/10.1016/j.marpetgeo.2019.104141.
Meng, J., Zhou, Y.-J., Ye, T.-R., et al., 2022. Hybrid data-driven framework for shale gas production performance analysis via game theory, machine learning, and optimization approaches. Petrol. Sci. 20, 277–294. https://doi.org/10.1016/j.petsci.2022.09.003.
Morriss, C., Rossini, D., Straley, C., et al., 1997. Core analysis by low-field NMR. Log. Anal. 38.
Nicot, B., Ligneul, P., Akbar, M., 2016. T2-cutoff determination using magnetic susceptibility measurements. Google Patents.
Peduzzi, P., Concato, J., Kemper, E., et al., 1996. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 49, 1373–1379. https://doi.org/10.1016/S0895-4356(96)00236-3.
Saxena, N., Day-Stirrat, R.J., Hows, A., et al., 2021. Application of deep learning for semantic segmentation of sandstone thin sections. Comput. Geosci. 152, 104778. https://doi.org/10.1016/j.cageo.2021.104778.
Sigal, R.F., 2015. Pore-size distributions for organic-shale-reservoir rocks from nuclear-magnetic-resonance spectra combined with adsorption measurements. SPE J. 20, 824–830. https://doi.org/10.2118/174546-pa.
Stanley, H.E., Meakin, P., 1988. Multifractal phenomena in physics and chemistry. Nature 335, 405–409. https://doi.org/10.1038/335405a0.
Sun, Y., Zhai, C., Zhao, Y., et al., 2021. Multifractal analysis and neural network prediction of pore structures in coal reservoirs based on NMR T2 spectra. Energy Fuels 35, 11306–11318. https://doi.org/10.1021/acs.energyfuels.1c01409.
Tang, M., Wang, C., Yang, H., et al., 2022. Experimental investigation on plugging performance of nanospheres in low-permeability reservoir with bottom water. Adv. Geo-Energy Res. 6, 95–103. https://doi.org/10.46690/ager.2022.02.02.
Testamanti, M.N., Rezaee, R., 2017. Determination of NMR T2 cut-off for clay bound water in shales: a case study of Carynginia Formation, Perth Basin, Western Australia. J. Petrol. Sci. Eng. 149, 497–503. https://doi.org/10.1016/j.petrol.2016.10.066.
Wang, F., Yang, K., Cai, J., 2018a. Fractal characterization of tight oil reservoir pore structure using nuclear magnetic resonance and mercury intrusion porosimetry. Fractals 26, 1840017. https://doi.org/10.1142/s0218348x18400170.
Wang, F., Yang, K., You, J., et al., 2019. Analysis of pore size distribution and fractal dimension in tight sandstone with mercury intrusion porosimetry. Results Phys. 13, 102283. https://doi.org/10.1016/j.rinp.2019.102283.
Wang, G., Han, D., Qin, X., et al., 2020. A comprehensive method for studying pore structure and seepage characteristics of coal mass based on 3D CT reconstruction and NMR. Fuel 281, 118735. https://doi.org/10.1016/j.fuel.2020.118735.
Wang, Z.H., Zhang, C.G., Xiao, C.W., et al., 2004. Experimental study of T2-cutoff values in low-permeability reservoirs. Prog. Geophys. 19, 652–655. https://doi.org/10.1016/S0960-0779(03)00420-X.
Wang, Z., Pan, M., Shi, Y., et al., 2018b. Fractal analysis of Donghetang sandstones using NMR measurements. Energy Fuels 32, 2973–2982. https://doi.org/10.1021/acs.energyfuels.7b03463.
Westphal, H., Surholt, I., Kiesl, C., et al., 2005. NMR measurements in carbonate rocks: problems and an approach to a solution. Pure Appl. Geophys. 162, 549–570. https://doi.org/10.1007/s00024-004-2621-3.
Wu, B., Xie, R., Wang, X., et al., 2020. Characterization of pore structure of tight sandstone reservoirs based on fractal analysis of NMR echo data. J. Nat. Gas Sci. Eng. 81, 103483. https://doi.org/10.1016/j.jngse.2020.103483.
Xiao, L., Li, J., Mao, Z., et al., 2018. A method to determine nuclear magnetic resonance (NMR) T2 cutoff based on normal distribution simulation in tight sandstone reservoirs. Fuel 225, 472–482. https://doi.org/10.1016/j.fuel.2018.03.178.
Yan, J., He, X., Zhang, S., et al., 2020. Sensitive parameters of NMR T2 spectrum and their application to pore structure characterization and evaluation in logging profile: a case study from Chang 7 in the Yanchang Formation, Heshui area, Ordos Basin, NW China. Mar. Petrol. Geol. 111, 230–239. https://doi.org/10.1016/j.marpetgeo.2019.08.025.
Yan, W., Sun, J., Golsanami, N., et al., 2019. Evaluation of wettabilities and pores in tight oil reservoirs by a new experimental design. Fuel 252, 272–280. https://doi.org/10.1016/j.fuel.2019.04.130.
Yao, Y., Liu, D., Che, Y., et al., 2010. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel 89, 1371–1380. https://doi.org/10.1016/j.fuel.2009.11.005.
Zhang, M.-L., Zhou, Z.-H., 2007. ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40, 2038–2048. https://doi.org/10.1016/j.patcog.2006.12.019.
Zhang, Y., Li, Q., Hu, Q., et al., 2022. Pore wetting process characterization of Equal-Sized granular coals by using LF-NMR technology. Fuel 313, 122670. https://doi.org/10.1016/j.fuel.2021.122670.
Zhao, P., Wang, Z., Sun, Z., et al., 2017. Investigation on the pore structure and multifractal characteristics of tight oil reservoirs using NMR measurements: permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. Mar. Petrol. Geol. 86, 1067–1081. https://doi.org/10.1016/j.marpetgeo.2017.07.011.
Zhao, P., Wang, X., Cai, J., et al., 2019. Multifractal analysis of pore structure of Middle Bakken formation using low temperature N2 adsorption and NMR measurements. J. Petrol. Sci. Eng. 176, 312–320. https://doi.org/10.1016/j.petrol.2019.01.040.
Zhao, X., Yao, G., Chen, X., et al., 2022a. Diagenetic facies classification and characterization of a high-temperature and high-pressure tight gas sandstone reservoir: a case study in the Ledong area, Yinggehai Basin. Mar. Petrol. Geol. 140, 105665. https://doi.org/10.1016/j.marpetgeo.2022.105665.
Zhao, X., Chen, X., Huang, Q., et al., 2022b. Logging-data-driven permeability prediction in low-permeable sandstones based on machine learning with pattern visualization: a case study in Wenchang A Sag, Pearl River Mouth Basin. J. Petrol. Sci. Eng. 214, 110517. https://doi.org/10.1016/j.petrol.2022.110517.
Zhao, Y., Lin, B., Liu, T., et al., 2021. Multifractal analysis of coal pore structure based on NMR experiment: a new method for predicting T2 cutoff value. Fuel 283, 119338. https://doi.org/10.1016/j.fuel.2020.119338.
Zheng, S., Yao, Y., Liu, D., et al., 2019. Nuclear magnetic resonance T2 cutoffs of coals: a novel method by multifractal analysis theory. Fuel 241, 715–724. https://doi.org/10.1016/j.fuel.2018.12.044.
Zhong, J., Yan, R., Zhang, H., et al., 2020. A decomposition method of nuclear magnetic resonance T2 spectrum for identifying fluid properties. Petrol. Explor. Dev. 47, 740–752. https://doi.org/10.1016/S1876-3804(20)60089-1.