PDF (5.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Original Paper | Open Access

Al-modified yolk-shell silica particle-supported NiMo catalysts for ultradeep hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene: Efficient accessibility of active sites and suitable acidity

Ke Yua,bWei-Min KongaZhen Zhaoa,b()Ai-Jun DuanaLian KongbXi-Long Wanga
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, Liaoning, China

Edited by Jia-Jia Fei and Min Li

Show Author Information

Abstract

Yolk-shell SiO2 particles (YP) with center-radial meso-channels were fabricated through a simple and effective method. Al-containing YP-supported NiMo catalysts with different Al amounts (NiMo/AYP-x, x = Si/Al molar proportion) were prepared and dibenzothiophene (DBT) and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT) were employed as the probes to evaluate the hydrodesulfurization (HDS) catalytic performance. The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance. The average pore sizes of series AYP-x supports are above 6.0 nm, which favors the mass transfer of organic sulfides. The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals. Aluminum embedded into the silica framework could facilitate the formation of Lewis (L) and Brønsted (B) acid sites and adjust the metal-support interaction (MSI). Among all the as-synthesized catalysts, NiMo/AYP-20 catalyst shows the highest HDS activities. The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica, enhanced acidity, moderate MSI, and good accessibility/dispersion of active components.

References

 

Arfaoui, A., Mhamdi, A., 2022. Physical investigations and photocatalytic activity test of NiMoO4 thin films prepared by spray pyrolysis technique. Bull. Mater. Sci. 45, 140. https://doi.org/10.1007/s12034-022-02723-3.

 

Boosa, V., Varimalla, S., Dumpalapally, M., Gutta, N., Velisoju, V.K., Nama, N., Akula, V., 2021. Influence of Brønsted acid sites on chemoselective synthesis of pyrrolidones over H-ZSM-5 supported copper catalyst. Appl. Catal. B Environ. 292, 120177. https://doi.org/10.1016/j.apcatb.2021.120177.

 

Ding, S., Chen, J.S., Qi, G., Duan, X., Wang, Z., Giannelis, E.P., Archer, L.A., Lou, X.W., 2011. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors. J. Am. Chem. Soc. 133, 21–23. https://doi.org/10.1021/ja108720w.

 

Duan, A., Li, T., Zhao, Z., Liu, B., Zhou, X., Jiang, G., Liu, J., Wei, Y., Pan, H., 2015. Synthesis of hierarchically porous L-KIT-6 silica–alumina material and the super catalytic performances for hydrodesulfurization of benzothiophene. Appl. Catal. B Environ. 165, 763–773. https://doi.org/10.1016/j.apcatb.2014.10.078.

 

Geng, S., Qin, L., He, Y., Li, X., Yang, M., Li, L., Liu, D., Li, Y., Niu, D., Yang, G., 2021. Effective and safe delivery of GLP-1AR and FGF-21 plasmids using amino-functionalized dual-mesoporous silica nanoparticles in vitro and in vivo. Biomaterials 271, 120763. https://doi.org/10.1016/j.biomaterials.2021.120763.

 

Glotov, A.P., Vutolkina, A.V., Vinogradov, N.A., Pimerzin, A.A., Vinokurov, V.A., Pimerzin, A.A., 2021. Enhanced HDS and HYD activity of sulfide Co-PMo catalyst supported on alumina and structured mesoporous silica composite. Catal. Today 377, 82–91. https://doi.org/10.1016/j.cattod.2020.10.010.

 

Hu, D., Li, H., Mei, J., Xiao, C., Wang, E., Chen, X., Zhang, W., Duan, A., 2022. The effect of chelating agent on hydrodesulfurization reaction of ordered mesoporous alumina supported NiMo catalysts. Petrol. Sci. 19, 321–328. https://doi.org/10.1016/j.petsci.2021.11.005.

 

Huirache-Acuña, R., Zepeda, T.A., Rivera-Muñoz, E.M., Nava, R., Loricera, C.V., Pawelec, B., 2015. Characterization and HDS performance of sulfided CoMoW catalysts supported on mesoporous Al-SBA-16 substrates. Fuel 149, 149–161. https://doi.org/10.1016/j.fuel.2014.08.045.

 

Isoda, T., Takase, Y., Kusakabe, K., Morooka, S., 2000. Changes in desulfurization reactivity of 4,6-dimethyldibenzothiophene by skeletal isomerization using a Ni-supported Y-type zeolite. Energy Fuels 14, 585–590. https://doi.org/10.1021/ef990018z.

 

Jiang, S., Ding, S., Jiang, Q., Zhou, Y., Yuan, S., Geng, X., Yang, G., Zhang, C., 2022. Effects of Al introduction methods for Al-SBA-15 on NiMoS active phase morphology and hydrodesulfurization reaction selectivities. Fuel 330, 125493. https://doi.org/10.1016/j.fuel.2022.125493.

 

Jiao, J., Fu, J., Wei, Y., Zhao, Z., Duan, A., Xu, C., Li, J., Song, H., Zheng, P., Wang, X., Yang, Y., Liu, Y., 2017. Al-modified dendritic mesoporous silica nanospheres-supported NiMo catalysts for the hydrodesulfurization of dibenzothiophene: efficient accessibility of active sites and suitable metal–support interaction. J. Catal. 356, 269–282. https://doi.org/10.1016/j.jcat.2017.10.003.

 

Kang, X., Liu, J., Tian, C., Wang, D., Li, Y., Zhang, H., Cheng, X., Wu, A., Fu, H., 2020. Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization. Nano Res. 13, 882–890. https://doi.org/10.1007/s12274-020-2716-x.

 

Lai, W., Chen, Z., Zhu, J., Yang, L., Zheng, J., Yi, X., Fang, W., 2016. A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts. Nanoscale 8, 3823–3833. https://doi.org/10.1039/C5NR08841K.

 

Li, J., Zeng, H., 2007. Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc. 129, 15839–15847. https://doi.org/10.1021/ja073521w.

 

Lin, Y., Wu, S., Tseng, C., Hung, Y., Chang, C., Mou, C., 2009. Synthesis of hollow silica nanospheres with a microemulsion as the template. Chem. Commun. (24), 3542–3544. https://doi.org/10.1039/B902681A.

 

Liu, J., Liu, X., Yan, R., Jia, L., Cheng, H., Liu, H., Huang, Y., Hua, M., Li, H., Zhu, W., 2022. Active phase morphology engineering of NiMo/Al2O3 through La introduction for boosting hydrodesulfurization of 4, 6-DMDBT. Petrol. Sci. 20 (2), 1231–1237. https://doi.org/10.1016/j.petsci.2022.09.023.

 

Lu, T., Yan, W., Feng, G., Luo, X., Hu, Y., Guo, J., Yu, Z., Zhao, Z., Ding, S., 2022. Singlet oxygen-promoted one-pot synthesis of highly ordered mesoporous silica materials via the radical route. Green Chem. 24, 4778–4782. https://doi.org/10.1039/D2GC00869F.

 

Manrique, C., Guzmán, A., Solano, R., Echavarría, A., 2019. Phosphorous-modified Beta zeolite and its performance in vacuum gas oil hydrocracking activity. Energy Fuels 33, 3483–3491. https://doi.org/10.1021/acs.energyfuels.8b04485.

 

Mei, J., Shi, Y., Xiao, C., Wang, A., Duan, A., Wang, X., 2022. Hierarchically porous Beta/SBA-16 with different silica-alumina ratios and the hydrodesulfurization performances of DBT and 4,6-DMDBT. Petrol. Sci. 19 (1), 375–386. https://doi.org/10.1016/j.petsci.2021.10.003.

 

Nikulshin, P.A., Ishutenko, D.I., Mozhaev, A.A., Maslakov, K.I., Pimerzin, A.A., 2014. Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10–heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions. J. Catal. 312, 152–169. https://doi.org/10.1016/j.jcat.2014.01.014.

 

Pawelec, B., Fierro, J.L.G., Montesinos, A., Zepeda, T.A., 2008. Influence of the acidity of nanostructured CoMo/P/Ti-HMS catalysts on the HDS of 4,6-DMDBT reaction pathways. Appl. Catal. B Environ. 80, 1–14. https://doi.org/10.1016/j.apcatb.2007.10.039.

 

Payen, E., Grimblot, J., Kasztelan, S., 1988. ChemInform abstract: study of oxidic and reduced alumina-supported molybdate and heptamolybdate species by in situ laser Raman spectroscopy. ChemInform 19. https://doi.org/10.1002/chin.198814008.

 

Salazar, N., Schmidt, S.B., Lauritsen, J.V., 2019. Adsorption of nitrogenous inhibitor molecules on MoS2 and CoMoS hydrodesulfurization catalysts particles investigated by scanning tunneling microscopy. J. Catal. 370, 232–240. https://doi.org/10.1016/j.jcat.2018.12.014.

 

Saleh, T.A., 2021. Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrodesulfurization of thiophenes. Chem. Eng. J. 404, 126987. https://doi.org/10.1016/j.cej.2020.126987.

 

Saleh, T.A., Al-Hammadi, S.A., 2021. A novel catalyst of nickel-loaded graphene decorated on molybdenum-alumina for the HDS of liquid fuels. Chem. Eng. J. 406, 125167. https://doi.org/10.1016/j.cej.2020.125167.

 

Sun, H., Shen, X., Yao, L., Xing, S., Wang, H., Feng, Y., Chen, H., 2012. Measuring the unusually slow Ionic diffusion in polyaniline via study of yolk-shell nanostructures. J. Am. Chem. Soc. 134, 11243–11250. https://doi.org/10.1021/ja3036674.

 

Sun, K., Guo, H., Jiao, F., Chai, Y., Li, Y., Liu, B., Mintova, S., Liu, C., 2021. Design of an intercalated Nano-MoS2 hydrophobic catalyst with high rim sites to improve the hydrogenation selectivity in hydrodesulfurization reaction. Appl. Catal. B Environ. 286, 119907. https://doi.org/10.1016/j.apcatb.2021.119907.

 

Tang, B., Li, S., Song, W., Li, Y., Yang, E., 2021. One-pot transformation of furfural into γ-valerolactone catalyzed by a hierarchical Hf-Al-USY zeolite with balanced Lewis and Brønsted acid sites. Sustain. Energy Fuels 5, 4724–4735. https://doi.org/10.1039/D1SE00942G.

 

Tang, F., Li, L., Chen, D., 2012. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24, 1504–1534. https://doi.org/10.1002/adma.201104763.

 

Topsoe, N.Y., Topsoe, H., 1993. FTIR studies of Mo/Al2O3-based catalysts: Ⅱ. Evidence for the presence of SH groups and their role in acidity and activity. J. Catal. 139, 641–651. https://doi.org/10.1006/jcat.1993.1056.

 

Vázquez-Garrido, I., López-Benítez, A., Berhault, G., Guevara-Lara, A., 2019. Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions. Fuel 236, 55–64. https://doi.org/10.1016/j.fuel.2018.08.053.

 

Vutolkina, A.V., Baygildin, I.G., Glotov, A.P., Cherednichenko, K.A., Maksimov, A.L., Karakhanov, E.A., 2021. Dispersed Ni-Mo sulfide catalysts from water-soluble precursors for HDS of BT and DBT via in situ produced H2 under Water gas shift conditions. Appl. Catal. B Environ. 282, 119616. https://doi.org/10.1016/j.apcatb.2020.119616.

 

Wang, B., Chen, Z., Jiang, T., Yu, J., Yang, H., Duan, A., Xu, C., 2022. Comparison of the intraparticle diffusion of DBT and 4,6-DMDBT in HDS over different mesostructured silica-based catalysts. Fuel 324, 124516. https://doi.org/10.1016/j.fuel.2022.124516.

 

Wang, D., Wang, L., Jiao, Y., Wu, A., Yan, H., Kang, X., Tian, C., Liu, J., Fu, H., 2022. The confined growth of few-layered and ultrashort-slab Ni-promoted MoS2 on reduced graphene oxide for deep-degree hydrodesulfurization. Nano Res. 15, 7052–7062. https://doi.org/10.1007/s12274-022-4375-6.

 

Wang, P., Liu, J., Liu, G., Xu, P., Feng, X., Ji, W., Gao, Y., Au, C., 2021. Precise tuning the CoMoOx/Al2O3 and CoMoSx/Al2O3 interfacial structures for efficient hydrodesulfurization of dibenzothiophene. Fuel 301, 121042. https://doi.org/10.1016/j.fuel.2021.121042.

 

Wang, X., Xiao, C., Alabsi, M.H., Zheng, P., Cao, Z., Mei, J., Shi, Y., Duan, A., Gao, D., Huang, K., Xu, C., 2022. Pt-confinement catalyst with dendritic hierarchical pores on excellent sulfur-resistance for hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Green Energy Environ. 7, 324–333. https://doi.org/10.1016/j.gee.2020.10.012.

 

Wei, W., Zhang, X., Liu, X., Guo, R., Meng, B., Li, G., Ren, S., Guo, Q., Shen, B., 2022. Tuning effect of the zeolite Brønsted acidity on the FeZn bimetallic hydrodesulfurization catalyst. Energy Fuels 36, 527–538. https://doi.org/10.1021/acs.energyfuels.1c03142.

 

Wu, H., Duan, A., Zhao, Z., Li, T., Prins, R., Zhou, X., 2014. Synthesis of NiMo hydrodesulfurization catalyst supported on a composite of nano-sized ZSM-5 zeolite enwrapped with mesoporous KIT-6 material and its high isomerization selectivity. J. Catal. 317, 303–317. https://doi.org/10.1016/j.jcat.2014.07.002.

 

Yang, K., Chen, X., Qi, J., Bai, Z., Zhang, L., Liang, C., 2019. A highly efficient and sulfur-tolerant Pd2 Si/CNTs catalyst for hydrodesulfurization of dibenzothiophenes. J. Catal. 369, 363–371. https://doi.org/10.1016/j.jcat.2018.11.013.

 

Yang, L., Cao, H., Yue, Y., Yang, C., Liu, H., Wang, T., Bao, X., 2020. Diffusion simulation based design and macroporous structure tailored preparation of FCC naphtha selective hydrodesulfurization catalyst. Fuel Process. Technol. 208, 106498. https://doi.org/10.1016/j.fuproc.2020.106498.

 

Yu, K., Kong, W., Zhao, Z., Duan, A., Kong, L., Wang, X., 2022a. Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo supported on yolk-shell silica catalysts with adjustable shell thickness and yolk size. J. Catal. 410, 128–143. https://doi.org/10.1016/j.jcat.2022.04.012.

 

Yu, K., Kong, W., Zhao, Z., Duan, A., Kong, L., Wang, X., 2022b. Hydrodesulfurization over NiMo catalysts supported on yolk-shell silica materials with controllable cavity size. ChemistrySelect 7, e202202376. https://doi.org/10.1002/slct.202202376.

 

Zhang, F., Braun, G.B., Shi, Y., Zhang, Y., Sun, X., Reich, N.O., Zhao, D., Stucky, G., 2010. Fabrication of Ag@SiO2@Y2O3: Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 132, 2850–2851. https://doi.org/10.1021/ja909108x.

 

Zhang, H., Yang, L., Yang, P., Wang, P., Yue, Y., Wang, T., Bao, X., 2022. CoMoS/modified-kaolin bi-functional hydrodesulfurization-olefin skeletal isomerization catalyst for FCC naphtha hydro-upgrading. Fuel 324, 124705. https://doi.org/10.1016/j.fuel.2022.124705.

 

Zhang, L., Fu, W., Ke, Q., Zhang, S., Jin, H., Hu, J., Wang, S., Tang, T.D., 2012. Study of hydrodesulfurization of 4,6-DM-DBT over Pd supported on mesoporous USY zeolite. Appl. Catal. Gen. 433–434, 251–257. https://doi.org/10.1016/j.apcata.2012.05.028.

 

Zhang, Y., Chang, C.R., Jia, X.D., Cao, Y., Yan, J., Luo, H.W., Gao, H.L., Ru, Y., Mei, H.X., Zhang, A.Q., Gao, K.Z., Wang, L.Z., 2020. Influence of metallic oxide on the morphology and enhanced supercapacitive performance of NiMoO4 electrode material. Inorg. Chem. Commun. 112, 107697. https://doi.org/10.1016/j.inoche.2019.107697.

 

Zhao, Z., Xiao, D., Chen, K., Wang, R., Liang, L., Liu, Z., Hung, I., Gan, Z., Hou, G., 2022. Nature of five-coordinated Al in γ-Al2O3 revealed by ultra-high-field solid-state NMR. ACS Cent. Sci. 8, 795–803. https://doi.org/10.1021/acscentsci.1c01497.

 

Zhou, W., Wei, Q., Zhou, Y., Liu, M., Ding, S., Yang, Q., 2018. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes. Appl. Catal. B Environ. 238, 212–224. https://doi.org/10.1016/j.apcatb.2018.07.042.

 

Zhou, W., Yang, L., Liu, L., Chen, Z., Zhou, A., Zhang, Y., He, X., Shi, F., Zhao, Z., 2020. Synthesis of novel NiMo catalysts supported on highly ordered TiO2-Al2O3 composites and their superior catalytic performance for 4,6-dimethyldibenzothiophene hydrodesulfurization. Appl. Catal. B Environ. 268, 118428. https://doi.org/10.1016/j.apcatb.2019.118428.

 

Zhou, W., Zhou, A., Zhang, Y., Zhang, C., Chen, Z., Liu, L., Zhou, Y., Wei, Q., Tao, X., 2019. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo supported on Ga-modified Y zeolites catalysts. J. Catal. 374, 345–359. https://doi.org/10.1016/j.jcat.2019.05.013.

 

Zhou, X., Li, X., Prins, R., Lv, J., Wang, A., Sheng, Q., 2021. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk CoP and Co2P catalysts with stoichiometric P/Co ratios. J. Catal. 394, 167–180. https://doi.org/10.1016/j.jcat.2020.08.030.

 

Zhu, C., Zhang, L., Zhou, M., Wang, X., Yang, Z., Lin, R., Yang, D., 2022. Study on the mechanism of hydrodesulfurization of tetrahydrothiophene catalyzed by nickel phosphide. Petrol. Sci. 19 (3), 1390–1400. https://doi.org/10.1016/j.petsci.2021.10.023.

Petroleum Science
Pages 654-666
Cite this article:
Yu K, Kong W-M, Zhao Z, et al. Al-modified yolk-shell silica particle-supported NiMo catalysts for ultradeep hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene: Efficient accessibility of active sites and suitable acidity. Petroleum Science, 2024, 21(1): 654-666. https://doi.org/10.1016/j.petsci.2023.08.007
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return