PDF (2.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Original Paper | Open Access

Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization

Jing HeaKun ZhuaWei Jianga()Dong-Ao ZhuaLin-Hua ZhubHai-Yan HuangaWen-Shuai ZhuaHua-Ming Lia()
Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
College of Chemistry and Chemical Engineering, Hainan Normal University, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou, 571158, Hainan, China

Edited by Jia-Jia Fei and Min Li

Show Author Information

Abstract

Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils. In this work, Ni-doped Co-based bimetallic metal-organic framework (CoNi-MOF) is fabricated to disperse N-hydroxyphthalimide (NHPI), in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization (ODS). As a bimetallic MOF, the second metal Ni doping results in the flower-like morphology and the modification of electronic properties, which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst. Compared with the monometallic Co-MOF and naked NHPI, the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator. The sulfur removal of dibenzothiophene-based model oil reaches 96.4% over the NHPI@CoNi-MOF catalyst in 8 h of reaction. Furthermore, the catalytic product of this aerobic ODS reaction is sulfone, which is adsorbed on the catalyst surface due to the difference in polarity. This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.

References

 

Agustin, A.R., Tamura, K., 2021. Surface modification of TiO2 nanoparticles with terephthalic acid in supercritical carbon dioxide. J. Supercrit. Fluids. 174, 105245. https://doi.org/10.1016/j.supflu.2021.105245.

 

Astle, M.A., Rance, G.A., Loughlin, H.J., et al., 2019. Molybdenum dioxide in carbon nanoreactors as a catalytic nanosponge for the efficient desulfurization of liquid fuels. Adv. Funct. Mater. 29 (17), 1808092. https://doi.org/10.1002/adfm.201808092.

 

Bhadra, B.N., Jhung, S.H., 2021. Oxidative desulfurization of liquid fuel with tungsten-nitride@porous carbon, derived from MAF-6(Zn) loaded with phosphotungstic acid and melamine. Chem. Eng. J. 419, 129485. https://doi.org/10.1016/j.cej.2021.129485.

 

Cheng, H., Cui, Y., Ge, Z., et al., 2021. Insight into the mechanism of tuned extractive desulfurization by aqueous tetrabutylphosphonium bromide. Sep. Purif. Technol. 262, 118342. https://doi.org/10.1016/j.seppur.2021.118342.

 

Choudhary, T.V., Malandra, J., Green, J., et al., 2006. Towards clean fuels: molecular-level sulfur reactivity in heavy oils. Angew. Chem. Int. Ed. 45 (20), 3299–3303. https://doi.org/10.1002/anie.200503660.

 

Chu, L., Guo, J., Huang, Z., et al., 2023. Excellent catalytic performance over acid-treated MOF-808(Ce) for oxidative desulfurization of dibenzothiophene. Fuel 332, 126012. https://doi.org/10.1016/j.fuel.2022.126012.

 

Cui, H.Y., Zhang, Y.X., Cao, C.S., et al., 2023. Engineering noble-metal-free metal–organic framework composite catalyst for efficient CO2 conversion under ambient conditions. Chem. Eng. J. 451, 138764. https://doi.org/10.1016/j.cej.2022.138764.

 

Dong, L., Dai, X., Peng, C., et al., 2022. Ultra-deep catalytic adsorptive desulfurization of diesel fuel using Ti-silica gel adsorbent at low Ti-loading. AIChE J. 68 (2), e17493. https://doi.org/10.1002/aic.17493.

 

Dou, S.Y., Wang, R., 2019. The C-Si Janus nanoparticles with supported phosphotungstic active component for Pickering emulsion desulfurization of fuel oil without stirring. Chem. Eng. J. 369, 64–76. https://doi.org/10.1016/j.cej.2019.03.050.

 

Fu, G.X., Bueken, B., De Vos, D., 2018. MOF catalysts: Zr-metal-organic framework catalysts for oxidative desulfurization and their improvement by postsynthetic ligand exchange. Small Methods 2 (12), 1800059. https://doi.org/10.1002/smtd.201870059.

 

Gao, X., Jiang, W., An, X., et al., 2022. Aerobic ultra-deep desulfurization of diesel oil triggered by porous carbon supported organic molecular N-hydroxyphthalimide catalyst. Colloids Surf. A. 641, 128455. https://doi.org/10.1016/j.colsurfa.2022.128455.

 

He, J., Liu, H., Xu, B., et al., 2015. Highly flexible Sub-1 nm tungsten oxide nanobelts as efficient desulfurization catalysts. Small 11 (9–10), 1144–1149. https://doi.org/10.1002/smll.201401273.

 

He, J., Wu, P.W., Lu, L.J., et al., 2019. Synthesis of N,O-doped porous graphene from petroleum coke for deep oxidative desulfurization of fuel. Energy Fuel. 33 (9), 8302–8311. https://doi.org/10.1021/acs.energyfuels.9b01832.

 

He, J., Wu, P.W., Chen, L.L., et al., 2021. Dynamically-generated TiO2 active site on MXene Ti3C2: boosting reactive desulfurization. Chem. Eng. J. 416, 129022. https://doi.org/10.1016/j.cej.2021.129022.

 

He, J., Zhou, S., Wu, P., et al., 2022. Multi-walled carbon nanotubes coated on defective tungsten oxide for deep oxidative desulfurization of diesel fuels. Fuel Process. Technol. 236, 107399. https://doi.org/10.1016/j.fuproc.2022.107399.

 

Jia, Q., He, J., Wu, P., et al., 2019. Tuning interfacial electronic properties of carbon nitride as an efficient catalyst for ultra-deep oxidative desulfurization of fuels. Mol. Catal. 468, 100–108. https://doi.org/10.1016/j.mcat.2019.02.011.

 

Jiang, W., Jia, H., Li, H., et al., 2019. Boric acid-based ternary deep eutectic solvent for extraction and oxidative desulfurization of diesel fuel. Green Chem. 21 (11), 3074–3080. https://doi.org/10.1039/C9GC01004A.

 

Jiang, W., Zhu, K., Li, H., et al., 2020. Synergistic effect of dual Brønsted acidic deep eutectic solvents for oxidative desulfurization of diesel fuel. Chem. Eng. J. 394, 124831. https://doi.org/10.1016/j.cej.2020.124831.

 

Jiang, W., Xiao, J., Gao, X., et al., 2021. In situ fabrication of hollow silica confined defective molybdenum oxide for enhanced catalytic oxidative desulfurization of diesel fuels. Fuel 305, 121470. https://doi.org/10.1016/j.fuel.2021.121470.

 

Jiang, W., An, X., Xiao, J., et al., 2022. Enhanced oxygen activation achieved by robust single chromium atom-derived catalysts in aerobic oxidative desulfurization. ACS Catal. 12 (14), 8623–8631. https://doi.org/10.1021/acscatal.2c01329.

 

Jin, D., Yu, G., Li, X., et al., 2022. One-pot extractive and oxidative desulfurization of fuel with ternary dual-acid deep eutectic solvent. Fuel 329, 125513. https://doi.org/10.1016/j.fuel.2022.125513.

 

Kishioka, S., 2022. Electrode reaction of N-hydroxyphthalimide in sulfuric acid-acetonitrile mixed solution as a catalytic mediator for alcohol oxidation. Electroanal. Chem. 911, 116166. https://doi.org/10.1016/j.jelechem.2022.116166.

 

Li, A., Song, H.Y., Meng, H., et al., 2022. Steric effects of alkyl dibenzothiophenes: the root cause of frustrating efficacy of heterogeneous desulfurization for real diesel. AIChE J. 68 (5), e17614. https://doi.org/10.1002/aic.17614.

 

Li, H.P., Zhu, W.S., Zhu, S.W., et al., 2016. The selectivity for sulfur removal from oils: an insight from conceptual density functional theory. AIChE J. 62 (6), 2087–2100. https://doi.org/10.1002/aic.15161.

 

Li, Y.X., Shen, J.X., Peng, S.S., et al., 2020. Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nat. Commun. 11 (1), 3206. https://doi.org/10.1038/s41467-020-17042-6.

 

Liu, J.X., Zhang, L., Zhu, J.Y., et al., 2023. Size-dependent surface electronic structure of V2O5/TiO2 for ultra-deep aerobic oxidative desulfurization of diesel. Chem. Eng. Sci. 275 (5), 118749. https://doi.org/10.1016/j.ces.2023.118749.

 

Liu, J.X., Liu, X.Q., Yan, R.X., et al., 2022. Active phase morphology engineering of NiMo/Al2O3 through La introduction for boosting hydrodesulfurization of 4,6-DMDBT. Petrol. Sci. 20 (2), 1231–1237. https://doi.org/10.1016/j.petsci.2022.09.023.

 

Lu, L.J., He, J., Wu, P.W., et al., 2018. Taming electronic properties of boron nitride nanosheets as metal-free catalysts for aerobic oxidative desulfurization of fuels. Green Chem. 20 (19), 4453–4460. https://doi.org/10.1039/C8GC01625A.

 

Lu, L.J., Wu, P.W., He, J., et al., 2022. N-hydroxyphthalimide anchored on hexagonal boron nitride as a metal-free heterogeneous catalyst for deep oxidative desulfurization. Petrol. Sci. 19 (3), 1382–1389. https://doi.org/10.1016/j.petsci.2021.11.010.

 

Mao, S.X., Zhou, Q.H., Guo, H.L., et al., 2023. Porous phosphomolybdate-based poly(ionic liquid) hybrids with reversible water absorption for enhancement of oxidative desulfurization. Fuel 333, 126392. https://doi.org/10.1016/j.fuel.2022.126392.

 

Otsuki, S., Nonaka, T., Takashima, N., et al., 2000. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuel. 14 (6), 1232–1239. https://doi.org/10.1021/ef000096i.

 

Pliekhov, O., Pliekhova, O., Lavrenčič Štangar, U., et al., 2018. The Co-MOF-74 modified with N,N′-Dihydroxypyromellitimide for selective, solvent free aerobic oxidation of toluene. Catal. Commun. 110, 88–92. https://doi.org/10.1016/j.catcom.2018.03.021.

 

Rajendran, A., Cui, T.Y., Fan, H.X., et al., 2020. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. J. Mater. Chem. A 8 (5), 2246–2285. https://doi.org/10.1039/C9TA12555H.

 

Rajendran, A., Fan, H.X., Cui, T.Y., et al., 2022. Octamolybdates containing MoV and MoVI sites supported on mesoporous tin oxide for oxidative desulfurization of liquid fuels. J. Clean. Prod. 334, 130199. https://doi.org/10.1016/j.jclepro.2021.130199.

 

Shen, Y., Pan, T., Wang, L., et al., 2021. Programmable logic in metal–organic frameworks for catalysis. Adv. Mater. 33 (46), 2007442. https://doi.org/10.1002/adma.202007442.

 

Smolders, S., Willhammar, T., Krajnc, A., et al., 2019. A titanium(Ⅳ)-based metal-organic framework featuring defect-rich Ti-O sheets as an oxidative desulfurization catalyst. Angew. Chem. Int. Ed. 58 (27), 9160–9165. https://doi.org/10.1002/anie.201904347.

 

Song, J., Li, Y., Cao, P., et al., 2019. Synergic catalysts of polyoxometalate@cationic porous aromatic frameworks: reciprocal modulation of both capture and conversion materials. Adv. Mater. 31 (40), 1902444. https://doi.org/10.1002/adma.201902444.

 

Soni, R.K., Soam, S., Dutt, K., 2009. Studies on biodegradability of copolymers of lactic acid, terephthalic acid and ethylene glycol. Polym. Degrad. Stabil. 94 (3), 432–437. https://doi.org/10.1016/j.polymdegradstab.2008.11.014.

 

Sun, L., Su, T., Xu, J., et al., 2019. Aerobic oxidative desulfurization coupling of Co polyanion catalysts and p-TsOH-based deep eutectic solvents through a biomimetic approach. Green Chem. 21 (10), 2629–2634. https://doi.org/10.1039/C8GC03941K.

 

Wang, H., Shan, S., Li, P., et al., 2022. Deep oxidative desulfurization of model fuel catalyzed by phosphotungstic acid/mesoporous zeolite. React. Kinet. Mech. Catal. 135 (4), 1999–2012. https://doi.org/10.1007/s11144-022-02237-3.

 

Wang, L., Zhang, Y., Yao, J., et al., 2021. Metal-free synthesis of sulfones and sulfoxides through aldehyde-promoted aerobic oxidation of sulfides. Catal. Lett. 152 (4), 1131–1139. https://doi.org/10.1007/s10562-021-03706-5.

 

Wang, P.Y., Jiang, L.C., Zou, X.Q., et al., 2020. Confining polyoxometalate clusters into porous aromatic framework materials for catalytic desulfurization of dibenzothiophene. ACS Appl. Mater. Interfaces 12 (23), 25910–25919. https://doi.org/10.1021/acsami.0c05392.

 

Wu, C., Sun, Z., Ye, C., et al., 2023. Encapsulation of HPW and preparation of composites rich in Zr-defects by manual grinding: synergistic catalysis for efficient oxidative desulfurization at room temperature. Chem. Eng. J. 451, 138906. https://doi.org/10.1016/j.cej.2022.138906.

 

Xing, X.X., Guo, H.L., He, T.M., et al., 2022. Tungstovanadate-based ionic liquid catalyst [C2(MIM)2]2VW12O40 used in deep desulfurization for ultraclean fuel with simultaneous recovery of the sulfone product. ACS Sustainable Chem. Eng. 10 (35), 11533–11543. https://doi.org/10.1021/acssuschemeng.2c02973.

 

Xiong, J., Li, J., Chen, C., et al., 2022. Universal strategy engineering grain boundaries for catalytic oxidative desulfurization. Appl. Catal. B Environ. 317, 121714. https://doi.org/10.1016/j.apcatb.2022.121714.

 

Xu, L., Yi, Y., Hu, S., et al., 2022. Unraveling two pathways for NHPI-mediated electrocatalytic oxidation reaction. Electrochim. Acta 403, 139533. https://doi.org/10.1016/j.electacta.2021.139533.

 

Xun, S.H., Le, R.M., Hu, C.C., et al., 2023. Ionic liquid promotes high dispersion of V2O5 on 3D porous g-C3N4 Carrier to enhance catalytic oxidative desulfurization performance. Energy Fuel. 37, 6276–6280. https://doi.org/10.1021/acs.energyfuels.3c003036276.

 

Yang, D., Liu, M., Zhao, W., et al., 2008. A comparative oxidation of cyclohexane catalyzed by N-hydroxyphthalimide and ZSM-5 supported Co(Ⅱ), Mn(Ⅱ), Ni(Ⅱ), Zn(Ⅱ), Fe(Ⅲ) with molecular oxygen in the absence of solvents and reductants. Catal. Commun. 9 (14), 2407–2410. https://doi.org/10.1016/j.catcom.2008.05.039.

 

Yang, H., Zhang, Q., Zhang, J., et al., 2019. Cellulose nanocrystal shelled with poly(ionic liquid)/polyoxometalate hybrid as efficient catalyst for aerobic oxidative desulfurization. J. Colloid Interface Sci. 554, 572–579. https://doi.org/10.1016/j.jcis.2019.07.036.

 

Yang, J., Zheng, C., Xiong, P., et al., 2014. Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A 2 (44), 19005–19010. https://doi.org/10.1039/c4ta04346d.

 

Yang, Y., Ma, J., Wu, J., et al., 2022. Experimental and theoretical study on N-hydroxyphthalimide and its derivatives catalyzed aerobic oxidation of cyclohexylbenzene. Chin. J. Chem. Eng. 44, 124–130. https://doi.org/10.1016/j.cjche.2021.06.017.

 

Ye, G., Gu, Y.L., Zhou, W., et al., 2020. Synthesis of defect-rich titanium terephthalate with the assistance of acetic acid for room-temperature oxidative desulfurization of fuel oil. ACS Catal. 10 (3), 2384–2394. https://doi.org/10.1021/acscatal.9b04937.

 

Ye, G., Wang, H.L., Chen, W.X., et al., 2021. In situ implanting of single tungsten sites into defective UiO-66(Zr) by solvent-free route for efficient oxidative desulfurization at room temperature. Angew. Chem., Int. Ed. 60 (37), 20318–20324. https://doi.org/10.1002/anie.202107018.

 

Younas, M., Rezakazemi, M., Daud, M., et al., 2020. Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Prog. Energ. Combust. 80, 100849. https://doi.org/10.1016/j.pecs.2020.100849.

 

Zhao, M., Wu, C.D., 2017. Biomimetic activation of molecular oxygen with a combined metalloporphyrinic framework and co-catalyst platform. ChemCatChem 9 (7), 1192–1196. https://doi.org/10.1002/cctc.201601606.

 

Zhong, H., Wei, Z., Man, Y., et al., 2023. Prediction of instantaneous yield of bio-oil in fluidized biomass pyrolysis using long short-term memory network based on computational fluid dynamics data. J. Clean. Prod. 391, 136192. https://doi.org/10.1016/j.jclepro.2023.136192.

 

Zou, J.C., Lin, Y., Wu, S.H., et al., 2021. Molybdenum dioxide nanoparticles anchored on nitrogen-doped carbon nanotubes as oxidative desulfurization catalysts: role of electron transfer in activity and reusability. Adv. Funct. Mater. 31 (22), 2100442. https://doi.org/10.1002/adfm.202100442.

Petroleum Science
Pages 674-682
Cite this article:
He J, Zhu K, Jiang W, et al. Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization. Petroleum Science, 2024, 21(1): 674-682. https://doi.org/10.1016/j.petsci.2023.08.018
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return