Recently, significant oil discoveries have been made in the shallower pay zones of the Jurassic Badaowan Formation (J1b) in the Mahu Sag, Junggar Basin, Northwest China. However, little work has been done on the geochemical characteristics and origins of the oil in the J1b reservoir. This study analyzes 44 oil and 14 source rock samples from the area in order to reveal their organic geochemical characteristics and the origins of the oils. The J1b oils are characterized by a low Pr/Ph ratio and high β-carotene and gammacerane indices, which indicate that they were mainly generated from source rocks deposited in a hypersaline environment. The oils are also extremely enhanced in C29 regular steranes, possibly derived from halophilic algae. Oil-source correlation shows that the oils were derived from the Lower Permian Fengcheng Formation (P1f) source rocks, which were deposited in a strongly stratified and highly saline water column with a predominance of algal/bacterial input in the organic matter. The source rocks of the Middle Permian lower-Wuerhe Formation (P2w), which were deposited in fresh to slightly saline water conditions with a greater input of terrigenous organic matter, make only a minor contribution to the J1b oils. The reconstruction of the oil accumulation process shows that the J1b oil reservoir may have been twice charged during Late Jurassic–Early Cretaceous and the Paleogene–Neogene, respectively. A large amount volume of hydrocarbons generated in the P1f source rock and leaked from T1b oil reservoirs migrated along faults connecting source beds and shallow-buried secondary faults into Jurassic traps, resulting in large-scale accumulations in J1b. These results are crucial for understanding the petroleum system of the Mahu Sag and will provide valuable guidance for petroleum exploration in the shallower formations in the slope area of the sag.
Abulimit, I., Tang, Y., Cao, J., Chen, G., Chen, J., Tao, K., 2016. Accumulation mechanism and controlling factors of the continuous hydrocarbon plays in the lower triassic Baikouquan Formation of the Mahu sag, Junggar Basin, China. J. Nat. Gas. Geosci. 1 (4), 309–318. https://doi.org/10.1016/j.jnggs.2016.10.003.
Bian, B., Zhang, J., Wu, J., Wu, J., Li, Z., Wang, Y., Cao, J., 2019. Re-characterization of the Dazhuluogou strike-slip fault in northwestern Junggar Basin and the implications for hydrocarbon accumulation. Earth Sci. Front. 26 (1), 238–247. https://doi.org/10.13745/j.esf.sf.2019.1.14 (in Chinese)
Banks, H.P., 1975. Early vascular land plants: proof and conjecture. Bioscience 25 (11), 730–737. https://doi.org/10.2307/1297453.
Brooks, J.D., Gould, K., Smith, J.W., 1969. Isoprenoid hydrocarbons in coal and petroleum. Nature 222 (5190), 257–259. https://doi.org/10.1038/222257a0.
Brooks, J.D., Smith, J.W., 1969. The diagenesis of plant lipids during the formation of coal, petroleum and natural gas—Ⅱ. Coalification and the formation of oil and gas in the Gippsland Basin. Geochem. Cosmochim. Acta 33 (10), 1183–1194. https://doi.org/10.1016/0016-7037(69)90040-4.
Cao, J., Zhang, Y., Hu, W., Yao, S., Wang, X., Zhang, Y., Tang, Y., 2005. The Permian hybrid petroleum system in the northwest margin of the Junggar Basin, northwest China. Mar. Petrol. Geol. 22 (3), 331–349. https://doi.org/10.1016/j.marpetgeo.2005.01.005.
Cao, J., Lei, D., Li, Y., Tang, Y., Imin, A., Chang, Q., Wang, T., et al., 2015. Ancient high-quality alkaline lacustrine source rocks discovered in the lower permian Fengcheng Formation, Junggar Basin. Acta Petrol. Sin. 36 (7), 781–790. https://doi.org/10.7623/syxb201507002 (in Chinese).
Cao, J., Xia, L., Wang, T., Zhi, D., Tang, Y., Li, W., 2020. An alkaline lake in the Late Paleozoic Ice Age (LPIA): a review and new insights into paleoenvironment and petroleum geology. Earth Sci. Rev. 202, 103091. https://doi.org/10.1016/j.earscirev.2020.103091.
Cai, C., Li, K., Anlai, M., Zhang, C., Xu, Z., Worden, R.H., Wu, G., Zhang, B., Chen, L., 2009. Distinguishing cambrian from upper ordovician source rocks: evidence from sulfur isotopes and biomarkers in the Tarim Basin. Org. Geochem. 40 (7), 755–768. https://doi.org/10.1016/j.orggeochem.2009.04.008.
Cai, H., Jin, J., Li, E., Zhang, Z., Gu, Y., Wang, Y., Yu, S., Pan, C., 2023. Unraveling gas charging and leakage for oil reservoirs in the Mahu sag of the Junggar Basin, NW China using concentrations and ratios of biomarkers, light hydrocarbons and diamondoids. Org. Geochem. 177, 104543. https://doi.org/10.1016/j.orggeochem.2022.104543.
Chen, J., Wang, X., Deng, C., Liang, D., Zhang, Y., Zhao, Z., Ni, Y., Zhi, D., Yang, H., Wang, Y., 2016. Geochemical features of source rocks and crude oil in the Junggar Basin, Northwest China. Acta Geol. Sin. 90 (3), 37–67. https://doi.org/10.19762/j.cnki.dizhixuebao.2016103 (in Chinese).
Chen, L., Yang, Y., Wang, F., Lu, H., Zhang, Y., Wang, X., Li, Y., Li, C., 2020. Exploration history and enlightenment in Junggar Basin. Xinjing Pet. Geol. 41 (5), 505–518. https://doi.org/10.7657/JPG20200501 (in Chinese).
Chen, Y., Cheng, X., Zhang, H., Li, C., Ma, Y., Wang, G., 2018. Fault characteristics and control on hydrocarbon accumulation of middle-shallow layers in the slope zone of Mahu sag, Junggar Basin, NW China. Petrol. Explor. Dev. 45 (6), 1050–1060. https://doi.org/10.1016/S1876-3804(18)30108-3.
Chen, Z., Liu, G., Wang, X., Gao, G., Xiang, B., Ren, J., Ma, W., Zhang, Q., 2016. Origin and mixing of crude oils in Triassic reservoirs of Mahu slope area in Junggar Basin, NW China: implication for control on oil distribution in basin having multiple source rocks. Mar. Petrol. Geol. 78, 373–389. https://doi.org/10.1016/j.marpetgeo.2016.09.022.
Chen, Z., Liu, G., Wang, X., Ren, J., Gao, G., Ma, W., Gao, P., 2017. Application of trace elements in mixed-oils classification and oil-source correlation. J. China Univ. Petrol. Nat. Sci. 41 (6), 50–63. https://doi.org/10.3969/j.issn.1673-5005.2017.06.006 (in Chinese).
Damsté, J.S.S., Kenig, F., Koopmans, M.P., et al., 1995. Evidence for gammacerane as an indicator of water column stratification. Geochem. Cosmochim. Acta 59 (9), 1895–1900. https://doi.org/10.1016/0016-7037(95)00073-9.
Ding, W., Hou, D., Jiang, L., Jiang, Y., Wu, P., 2020. High abundance of carotanes in the brackish-saline lacustrine sediments: a possible cyanobacteria source? Int. J. Coal Geol. 219, 103373. https://doi.org/10.1016/j.coal.2019.103373.
Ding, X., Gao, C., Zha, M., Chen, H., Su, Y., 2017. Depositional environment and factors controlling β-carotane accumulation: a case study from the Jimsar Sag, Junggar Basin, northwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 485, 833–842. https://doi.org/10.1016/j.palaeo.2017.07.040.
Espitalié, J., Deroo, G., Marquis, F., 1985a. La pyrolyse Rock-Eval et ses applications. Deuxième partie. Rev. Inst. Fr. Petrol 40 (6), 755–784. https://doi.org/10.2516/ogst:1985045.
Espitalié, J., Deroo, G., Marquis, F., 1985b. Rock-Eval pyrolysis and its applications (part one). Oil Gas Sci. Technol. 40 (5), 563–579. https://doi.org/10.2516/ogst:1985035.
Feng, C., Lei, D., Qu, J., Huo, J., 2019. Controls of paleo-overpressure, faults and sedimentary facies on the distribution of the high pressure and high production oil pools in the lower Triassic Baikouquan Formation of the Mahu Sag, Junggar Basin, China. J. Petrol. Sci. Eng. 176, 232–248. https://doi.org/10.1016/j.petrol.2019.01.012.
Feng, C., Li, T., He, W., Zheng, M., 2020. Organic geochemical traits and paleo-depositional conditions of source rocks from the carboniferous to permian sediments of the northern Mahu sag, Junggar Basin, China. J. Petrol. Sci. Eng. 191, 107117. https://doi.org/10.1016/j.petrol.2020.107117.
Gao, G., Yang, S., Ren, J., Zhang, W., Xiang, B., 2018. Geochemistry and depositional conditions of the carbonate-bearing lacustrine source rocks: a case study from the Early Permian Fengcheng Formation of Well FN7 in the northwestern Junggar Basin. J. Petrol. Sci. Eng. 162, 407–418. https://doi.org/10.1016/j.petrol.2017.12.065.
Grba, N., Šajnović, A., Stojanović, K., Simić, V., Jovančićević, B., Roglić, G., Erić, V., 2014. Preservation of diagenetic products of β-carotene in sedimentary rocks from the Lopare Basin (Bosnia and Herzegovina). Geochem. (Tokyo. 1967) 74 (1), 107–123. https://doi.org/10.1016/j.chemer.2013.10.002.
Hackley, P.C., Parris, T.M., Eble, C.F., Greb, S.F., Harris, D.C., 2021. Oil–source correlation studies in the shallow Berea Sandstone petroleum system, eastern Kentucky. AAPG Bull. 105 (3), 517–542. https://doi.org/10.1306/08192019077.
He, D., Chen, X., Kuang, J., Yuan, H., Fan, C., Tang, Y., 2010. Distribution of Carboniferous source rocks and petroleum systems in the Junggar Basin. Petrol. Explor. Dev. 37 (4), 397–408. https://doi.org/10.1016/S1876-3804(10)60041-9.
He, D., Zhang, L., Wu, S., Li, D., Yu, Z., 2018. Tectonic evolution stages and features of the Junggar Basin. Oil Gas Geol. 39 (5), 845–861. http://doi.org/10.11743/ogg20180501 (in Chinese).
Hopmans, E.C., Schouten, S., Rijpstra, W.I.C., Damsté, J.S.S., 2005. Identification of carotenals in sediments. Org. Geochem. 36 (3), 485–495. https://doi.org/10.1016/j.orggeochem.2004.10.001.
Hou, M., Qiu, J., Zha, M., Swennen, R., Ding, X., Imin, A., Liu, H., Bian, B., 2022. Significant contribution of haloalkaliphilic cyanobacteria to organic matter in an ancient alkaline lacustrine source rock: a case study from the Permian Fengcheng Formation, Junggar Basin, China. Mar. Petrol. Geol. 138, 105546. https://doi.org/10.1016/j.marpetgeo.2022.105546.
Hu, X., Qu, Y., Hu, S., Pan, J., Yin, L., Xu, D., Teng, T., Wang, B., 2020. Geological conditions and exploration potential of shallow oil and gas in slope area of Mahu Sag. Junggar Basin. Lithol. Reservo. 32 (2), 67–77. https://doi.org/10.12108/yxyqc.20200207 (in Chinese).
Huang, W., Meinschein, W.G., 1979. Sterols as ecological indicators. Geochem. Cosmochim. Acta 43 (5), 739–745. https://doi.org/10.1016/0016-7037(79)90257-6.
Jia, H., Ji, H., Wang, L., Gao, Y., Li, X., Zhou, H., 2017. Reservoir quality variations within a conglomeratic fan-delta system in the Mahu sag, northwestern Junggar Basin: characteristics and controlling factors. J. Petrol. Sci. Eng. 152, 165–181. https://doi.org/10.1016/j.petrol.2017.03.002.
Killops, S.D., Zhang, S., Lichtfouse, E., 2021. Triaromatic dinosteroids–Isomeric distributions and their geochemical significance. Org. Geochem. 162, 104300. https://doi.org/10.1016/j.orggeochem.2021.104300.
Li, D., He, D., Santosh, M., Ma, D., 2015. Tectonic framework of the northern Junggar Basin Part Ⅱ: the island arc basin system of the western Luliang Uplift and its link with the West Junggar terrane. Gondwana Res. 27 (3), 1110–1130. https://doi.org/10.1016/j.gr.2014.08.019.
Li, D., He, D., Sun, M., Zhang, L., 2020. The role of arc-arc collision in accretionary orogenesis: insights from~320 ma tectono-sedimentary transition in the karamaili area, NW China. Tectonics 39 (1), e2019T–e5623T. https://doi.org/10.1029/2019TC005623.
Li, D., He, D., Tang, Y., 2016. Reconstructing multiple arc-basin systems in the altai–junggar area (NW China): implications for the architecture and evolution of the western central asian orogenic belt. J. Asian Earth Sci. 121, 84–107. https://doi.org/10.1016/j.jseaes.2016.02.010.
Li, M., Simoneit, B., Zhong, N., Fang, R., 2013. The distribution and origin of dimethyldibenzothiophenes in sediment extracts from the Liaohe Basin, East China. Org. Geochem. 65, 63–73. https://doi.org/10.1016/j.orggeochem.2013.10.007.
Li, M., Wang, T., Shi, S., Zhu, L., Fang, R., 2014. Oil maturity assessment using maturity indicators based on methylated dibenzothiophenes. Petrol. Sci. 11, 234–246. https://doi.org/10.1007/s12182-014-0336-3.
Li, J., Tang, Y., Wu, T., Zhan, J., Wu, H., Wu, W., Bai, Y., 2020. Overpressure origin and its effects on petroleum accumulation in the conglomerate oil province in Mahu Sag, Junggar Basin, NW China. Petrol. Explor. Dev. 47 (4), 726–739. https://doi.org/10.1016/S1876-3804(20)60088-X.
Liang, X., Xu, Z., Zhang, Z., Wang, W., Zhang, J., Lu, H., Zhang, L., Zou, C., Wang, G., Mei, J., Rui, Y., 2020. Breakthrough of shallow shale gas exploration in Taiyang anticline area and its significance for resource development in Zhaotong, Yunnan Province, China. Petrol. Explor. Dev. 47 (1), 12–29. https://doi.org/10.1016/S1876-3804(20)60002-7.
Liu, G., Chen, Z., Wang, X., Gao, G., Xiang, B., Ren, J., Ma, W., 2016. Migration and accumulation of crude oils from Permian lacustrine source rocks to Triassic reservoirs in the Mahu depression of Junggar Basin, NW China: constraints from pyrrolic nitrogen compounds and fluid inclusion analysis. Org. Geochem. 101, 82–98. https://doi.org/10.1016/j.orggeochem.2016.08.013.
Liu, S., Gao, G., Jin, J., Gang, W., Xiang, B., 2022. Source rock with high abundance of C28 regular sterane in typical brackish-saline lacustrine sediments: biogenic source, depositional environment and hydrocarbon generation potential in Junggar Basin, China. J. Petrol. Sci. Eng. 208, 109670. https://doi.org/10.1016/j.petrol.2021.109670.
Ma, D., He, D., Li, D., Tang, J., Liu, Z., 2015. Kinematics of syn-tectonic unconformities and implications for the tectonic evolution of the hala'alat mountains at the northwestern margin of the Junggar Basin, central asian orogenic belt. Geosci. Front. 6 (2), 247–264. https://doi.org/10.1016/j.gsf.2014.07.004.
Mi, L., Zhang, X., Ding, L., Du, J., Zhang, S., 2018. Distribution characteristics and exploration strategy of middle-shallow lithologic reservoirs in offshore mature exploration areas: a case study on Huizhou sag in the Pearl River Mouth Basin. China Petrol. Explor. 23 (6), 10–19. http://doi.org/10.3969/j.issn.1672-7703.2018.06.002 (in Chinese).
Moldowan, J.M., Seifert, W.K., Gallegos, E.J., 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bull. 69 (8), 1255–1268. https://doi.org/10.1306/AD462BC8-16F7-11D7-8645000102C1865D.
Murphy, M.T., McCormick, A., Eglinton, G., 1967. Perhydro-β-carotene in the green river shale. Science 157 (3792), 1040–1042. https://doi.org/10.1126/science.157.3792.1040.
Peng, G., Wen, H., Liu, C., Huang, F., Xu, Y., Quan, Z., Liu, H., 2013. Practice of shallow oil and gas exploration in Zhu I depression of the pearl river mouth basin: a case from Pangyu4 sag. Mar. Geol. Front. 29 (3), 22–28. https://doi.org/10.16028/j.1009-2722.2013.03.003 (in Chinese).
Peters, K.E., 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull. 70 (3), 318–329. https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D.
Peters, K.E., Moldowan, J.M., 1991. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Org. Geochem. 17 (1), 47–61. https://doi.org/10.1016/0146-6380(91)90039-M.
Philp, R.P., Chen, J.H., Fu, J.M., Sheng, G.Y., 1992. A geochemical investigation of crude oils and source rocks from Biyang Basin. China. Org. Geochem. 18 (6), 933–945. https://doi.org/10.1016/0146-6380(92)90060-B.
Qian, T., Yu, X., Wei, Y., Zhang, Q., 2018. Characteristics of hydrocarbon accumulation in the Jurassic Badaowan Formation of Maxi slope and its exploration direction. Petrol. Geol. Recov. Eff. 25 (5), 32–38. https://doi.org/10.13673/j.cnki.cn37-1359/te.2018.05.005 (in Chinese).
Radke, M., Welte, D.H., Willsch, H., 1986. Maturity parameters based on aromatic hydrocarbons: influence of the organic matter type. Org. Geochem. 10 (1–3), 51–63. https://doi.org/10.1016/0146-6380(86)90008-2.
Shanmugam, G., 1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. AAPG Bull. 69 (8), 1241–1254. https://doi.org/10.1306/AD462BC3-16F7-11D7-8645000102C1865D.
Song, T., Huang, F., Wang, S., Yang, F., Lv, W., Ce, L., Peng, J., Fan, J., 2019. Characteristics and exploration potential of Jurassic oil and gas reservoirs in Mahu sag of the Junggar Basin. China Petrol. Explor. 24 (3), 341–350. https://doi.org/10.3969/j.issn.1672-7703.2019.03.007 (in Chinese).
Tang, Y., Guo, W., Wang, X., Bao, H., Wu, H., 2019. A new breakthrough in exploration of large conglomerate oil province in Mahu Sag and its implications. Xinjing Pet. Geol. 39 (2), 127–137. https://doi.org/10.7657/XJPG20190201 (in Chinese).
Taylor, F.B., 1967. Outlook for shallow oil exploration and development, United States. AAPG Bull. 51 (1), 134–141. https://doi.org/10.1306/5D25B79D-16C1-11D7-8645000102C1865D.
Ten Haven, H.L., Rohmer, M., Rullkötter, J., Bisseret, P., 1989. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochem. Cosmochim. Acta 53 (11), 3073–3079. https://doi.org/10.1016/0016-7037(89)90186-5.
Tissot, P.B., Welte, D.H., 1984. Petroleum Formation and Occurrence. Springer, Berlin.
Volkman, J.K., 1988. Biological marker compounds as indicators of the depositional environments of petroleum source rocks. Geological Society, London, Special Publications 40 (1), 103–122. https://doi.org/10.1144/GSL.SP.1988.040.01.10.
Volkman, J.K., Barrett, S.M., Dunstan, G.A., Jeffrey, S.W., 1994. Sterol biomarkers for microalgae from the green algal class Prasinophyceae. Org. Geochem. 21 (12), 1211–1218. https://doi.org/10.1016/0146-6380(94)90164-3.
Wan, L., Liu, J., Mao, F., Lv, M., Bang, L., 2014. The petroleum geochemistry of the termit Basin, Eastern Niger. Mar. Petrol. Geol. 51, 167–183. https://doi.org/10.1016/j.marpetgeo.2013.11.006.
Wang, D.Y., Li, M.J., Yang, L., Yang, Y., Li, E., Jin, J., Zou, X., Xu, B., 2022. The distribution of triaromatic steroids in Permian source rocks and implications for oil-source correlations in the Mahu Sag, Junggar Basin, NW China. Nat. Gas Geosci. 33 (11), 1862–1873. https://doi.org/10.11764/j.issn.1672-1926.2022.06.010 (in Chinese).
Wang, T., Cao, J., Carroll, A.R., Zhi, D., Tang, Y., Wang, X., Li, Y., 2021. Oldest preserved sodium carbonate evaporite: late paleozoic Fengcheng Formation, Junggar Basin, NW China. GSA Bull 133 (7–8), 1465–1482. https://doi.org/10.1130/B35727.1.
Wang, X., Wang, Y., Guan, D., Li, C., Liu, P., 2012. Shallow petroleum geology and exploration potential in the slope area, circum-Bozhong Sag. China Offshore Oil Gas 24 (3), 12–16. https://doi.org/10.3969/j.issn.1673-1506.2012.03.003 (in Chinese).
Wu, K., Qu, J., Wang, H., 2014. Strike-slip characteristics, forming mechanisms and controlling reservoirs of Dazhuluogou fault in Junggar Basin. J. China Univ. Petrol. (Ed Nat Sci). 38 (5), 41–47. https://doi.org/10.3969/j.issn.1673-5005.2014.05.006 (in Chinese).
Wu, W., Li, Q., Pei, J., Ning, S., Tong, L., Liu, W., Feng, Z., 2020. Seismic sedimentology, facies analyses, and high-quality reservoir predictions in fan deltas: a case study of the Triassic Baikouquan Formation on the western slope of the Mahu Sag in China's Junggar Basin. Mar. Petrol. Geol. 120, 104546. https://doi.org/10.1016/j.marpetgeo.2020.104546.
Xia, L., Cao, J., Bian, L., Hu, W., Wang, T., Zhi, D., Tang, Y., Li, E., 2022. Co-evolution of paleo-environment and bio-precursors in a Permian alkaline lake, Mahu mega - oil province, Junggar Basin: implications for oil sources. Sci. China Earth Sci. 65, 462–476. https://doi.org/10.1007/s11430-021-9861-4.
Xiao, Z., Chen, S., Liu, C., Lu, Z., Zhu, J., Han, M., 2021. Lake basin evolution from early to middle permian and origin of triassic baikouquan oil in the western margin of Mahu sag, Junggar Basin, China: evidence from geochemistry. J. Petrol. Sci. Eng. 203, 108612. https://doi.org/10.1016/j.petrol.2021.108612.
Yang, F., Wang, T., Li, M., 2015. The distribution of triaromatic steroids and oil group classification of Ordovician petroleum systems in the cratonic region of the Tarim Basin, NW China. Petrol. Sci. Technol. 33 (12), 1794–1800. https://doi.org/10.1080/10916466.2015.1092984.
Yang, F., Yun, L., Wang, T.G., Ding, Y., Li, M., 2017. Geochemical characteristics of the Cambrian source rocks in the Tarim Basin and oil-source correlation with typical marine crude oil. Oil Gas Geol. 38 (5), 851–861. https://doi.org/10.11764/j.issn.1672-1926.2016.05.0861 (in Chinese).
Yu, K., Cao, Y., Qiu, L., Sun, P., 2018. The hydrocarbon generation potential and migration in an alkaline evaporite basin: the Early Permian Fengcheng Formation in the Junggar Basin, northwestern China. Mar. Petrol. Geol. 98, 12–32. https://doi.org/10.1016/j.marpetgeo.2018.08.010.
Zhang, B., Li, M., Zhao, Q., Wang, T., Zhang, K., Xiao, Z., Huang, S., 2016. Determining the relative abundance of C26-C28 triaromatic steroids in crude oils and its application in petroleum geochemistry. Petrol. Geo. Exper. 38 (5), 692–697. https://doi.org/10.11781/sysydz201605692 (in Chinese).
Zhao, J., Chen, S., Deng, G., Shao, X., Zhang, H., Aminov, J., Chen, X., Ma, Z., 2019. Basement structure and properties of the western Junggar Basin, China. J. Earth Sci. 30, 223–235. https://doi.org/10.1007/s12583-018-1207-4.
Zhang, Z., Gu, Y., Jin, J., Li, E., Yu, S., Pan, C., 2022. Assessing source and maturity of oils in the Mahu sag, Junggar Basin: molecular concentrations, compositions and carbon isotopes. Mar. Petrol. Geol. 141, 105724. https://doi.org/10.1016/j.marpetgeo.2022.105724.
Zhi, D., Tang, Y., He, W., Guo, X., Zheng, M., Huang, L., 2021. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in lower permian Fengcheng Formation, Mahu sag, Junggar Basin. Petrol. Explor. Dev. 48 (1), 43–59. https://doi.org/10.1016/S1876-3804(21)60004-6.
Zumberge, J.E., 1987. Terpenoid biomarker distributions in low maturity crude oil. Org. Geochem. 11 (6), 479–496. https://doi.org/10.1016/0146-6380(87)90004-0.