PDF (6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Original Paper | Open Access

New insights into the deposition of natural gas hydrate on pipeline surfaces: A molecular dynamics simulation study

Jun ZhangaHai-Qiang FuaMu-Zhi GuoaZhao WangbLi-Wen LiaQi YinaYou-Guo YanaWei WeicWei-Feng HancJie Zhongb()
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
Department of Alternative Energy, PetroChina Research Institute of Petroleum Exploration & Development, Langfang 065007, Hebei, China

Edited by Jia-Jia Fei and Min Li

Show Author Information

Abstract

Natural gas hydrate (NGH) can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures. Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages. Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system. Herein, by performing the molecular dynamics simulations, we find in water-dominant system, the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces. Specifically, due to the strong affinity of water on Fe surface, the deposited hydrate cannot convert the adsorbed water into hydrate, thus, a water film exists. As water affinities decrease (Fe > Fe2O3 > FeO > Fe3O4), adsorbed water would convert to amorphous hydrate on Fe2O3 and form the ordered hydrate on FeO and Fe3O4 after hydrate deposition. While absorbed water film converts to amorphous or to hydrate, the adhesion strength of hydrate continuously increases (Fe < Fe2O3 < FeO < Fe3O4). This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer, the process of which becomes harder as liquid layer vanishes. As a result, contrary to gas-dominant system, the water film plays the weakening roles on hydrate adhesion in water-dominant system. Overall, our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces.

References

 

Abascal, J.L.F., Sanz, E., Fernández, R.G., et al., 2005. A potential model for the study of ices and amorphous water: TIP4P/Ice. J. Chem. Phys. 122 (23), 234511. https://doi.org/10.1063/1.1931662.

 
Abraham, M.J., Murtola, T., Schulz, R., et al., 2015. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25. https://doi.org/10.1016/j.softx.2015.06.001. -2.
 

Algaba, J., Acuña, E., Míguez, J.M., et al., 2022. Simulation of the carbon dioxide hydrate-water interfacial energy. J. Colloid Interface Sci. 623, 354–367.

 

Aman, Z.M., Brown, E.P., Sloan, E.D., et al., 2011. Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion. Phys. Chem. Chem. Phys. 13 (44), 19796–19806. https://doi.org/10.1039/C1CP21907C.

 

Aman, Z.M., Sloan, E.D., Sum, A.K., et al., 2014. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces. Phys. Chem. Chem. Phys. 16 (45), 25121–25128. https://doi.org/10.1039/C4CP02927E.

 

Aspenes, G., Dieker, L.E., Aman, Z.M., et al., 2010. Adhesion force between cyclopentane hydrates and solid surface materials. J. Colloid Interface Sci. 343 (2), 529–536. https://doi.org/10.1016/j.jcis.2009.11.071.

 

Fan, S., Zhang, H., Yang, G., et al., 2020. Reduction clathrate hydrates growth rates and adhesion forces on surfaces of inorganic or polymer coatings. Energy Fuel. 34 (11), 13566–13579. https://doi.org/10.1021/acs.energyfuels.0c01904.

 

Gao, D.L., 2022. Focus on research advances in the natural gas hydrate resource evaluation: introduction to papers in the special section of Evaluation of Natural Gas Hydrate Resource Potential in the South China Sea. Petrol. Sci. 19 (1), 1–2. https://doi.org/10.1016/j.petsci.2021.12.020.

 

Gao, Z., Xiong, S., Wei, L., 2022. The new multistage water adsorption model of Longmaxi Formation shale considering the spatial configuration relationship between organic matter and clay minerals. Petrol. Sci. 19 (5), 1950–1963. https://doi.org/10.1016/j.petsci.2022.05.014.

 

Guo, G.J., Zhang, Y.G., Liu, C.J., et al., 2011. Using the face-saturated incomplete cage analysis to quantify the cage compositions and cage linking structures of amorphous phase hydrates. Phys. Chem. Chem. Phys. 13 (25), 12048–12057. https://doi.org/10.1039/C1CP20070D.

 

Hao, Y., Xu, Z., Du, S., et al., 2021. Iterative cup overlapping: an efficient identification algorithm for cage structures of amorphous phase hydrates. J. Phys. Chem. B 125 (4), 1282–1292. https://doi.org/10.1021/acs.jpcb.0c08964.

 

Hu, P., Chen, D., Zi, M., et al., 2018. Effects of carbon steel corrosion on the methane hydrate formation and dissociation. Fuel 230, 126–133. https://doi.org/10.1016/j.fuel.2018.05.024.

 

Hu, Y.Q., Xie, J., Xue, S.N., et al., 2022. Research and application of thermal insulation effect of natural gas hydrate freezing corer based on the wireline-coring principle. Petrol. Sci. 19 (3), 1291–1304. https://doi.org/10.1016/j.petsci.2021.11.019.

 

Jorgensen, W.L., Tirado-Rives, J., 1988. The OPLS potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110 (6), 1657–1666. https://doi.org/10.1021/ja00214a001.

 

Li, L., Zhong, J., Yan, Y., et al., 2020. Unraveling nucleation pathway in methane clathrate formation. Proc. Natl. Acad. Sci. USA 117 (40), 24701–24708. https://doi.org/10.1073/pnas.2011755117.

 

Li, M.H., Zhou, F.J., Wang, B., et al., 2022a. Numerical simulation on the multiple planar fracture propagation with perforation plugging in horizontal wells. Petrol. Sci. 19 (5), 2253–2267. https://doi.org/10.1016/j.petsci.2022.05.004.

 

Li, Y., Cheng, Y.F., Yan, C.L., et al., 2022b. Effects of creep characteristics of natural gas hydrate-bearing sediments on wellbore stability. Petrol. Sci. 19 (1), 220–233. https://doi.org/10.1016/j.petsci.2021.10.026.

 

Lin, Y., Li, T., Liu, S., et al., 2023. Interfacial mechanical properties of tetrahydrofuran hydrate-solid surfaces: implications for hydrate management. J. Colloid Interface Sci. 629, 326–335. https://doi.org/10.1016/j.jcis.2022.09.081.

 

Lin, Y., Liu, Y., Xu, K., et al., 2022. Strengthening and weakening of methane hydrate by water vacancies. Advances in Geo-Energy Research 6 (1), 23–37. https://doi.org/10.46690/ager.2022.01.03.

 

Liu, C., Yang, L., Zhou, C., et al., 2022a. Effects of hydrate inhibitors on the adhesion strengths of sintered hydrate deposits on pipe walls. J. Colloid Interface Sci. 624, 593–601. https://doi.org/10.1016/j.jcis.2022.06.004.

 

Liu, C., Zhou, C., Li, M., et al., 2023. Direct measurements of the interactions between methane hydrate particle-particle/droplet in high pressure gas phase. Fuel 332, 126190. https://doi.org/10.1016/j.fuel.2022.126190.

 

Liu, C.W., Zeng, X., Yan, C., et al., 2020. Effects of solid precipitation and surface corrosion on the adhesion strengths of sintered hydrate deposits on pipe walls. Langmuir 36 (50), 15343–15351. https://doi.org/10.1021/acs.langmuir.0c02818.

 

Liu, J., Fu, R., Lin, Y., et al., 2022b. Mechanical destabilization and cage transformations in water vacancy-contained CO2 Hydrates. ACS Sustain. Chem. Eng. 10 (31), 10339–10350. https://doi.org/10.1021/acssuschemeng.2c03072.

 

Liu, S.B., Han, T.C., Fu, L.Y., 2022c. Laboratory insights into the effects of methane hydrate on the anisotropic joint elastic-electrical properties in fractured sandstones. Petrol. Sci. 20 (2), 803–814. https://doi.org/10.1016/j.petsci.2022.09.007.

 

Liu, S.Y., Ren, B., Li, H.Y., et al., 2022d. CO2 storage with enhanced gas recovery (CSEGR): a review of experimental and numerical studies. Petrol. Sci. 19 (2), 594–607. https://doi.org/10.1016/j.petsci.2021.12.009.

 

Liu, X.H., Hu, T., Pang, X.Q., et al., 2022e. Evaluation of natural gas hydrate resources in the South China Sea using a new genetic analogy method. Petrol. Sci. 19 (1), 48–57. https://doi.org/10.1016/j.petsci.2021.12.004.

 

Liu, X., Yuan, A., Li, Y., et al., 2022f. Numerical simulation of hydrate slurry flow and deposit behavior based on openfoam-IATE. Fuel 310, 122426. https://doi.org/10.1016/j.fuel.2021.122426.

 

Liu, Y., Xu, K., Xu, Y., et al., 2022g. HTR: an ultra-high speed algorithm for cage recognition of clathrate hydrates. Nanotechnol. Rev. 11 (1), 699–711. https://doi.org/https://doi.org/10.1515/ntrev-2022-0044.

 

Liu, Z., Li, Y., Wang, W., et al., 2022h. Investigation into the formation, blockage and dissociation of cyclopentane hydrate in a visual flow loop. Fuel 307, 121730. https://doi.org/10.1016/j.fuel.2021.121730.

 

Lv, X., Zhang, J., Liu, Y., et al., 2022. Simulation study of natural gas hydrate slurry flow characteristics in a high-pressure flow loop. Fuel 316, 123332. https://doi.org/10.1016/j.fuel.2022.123332.

 

Ma, R., Wang, F., Chang, Y., et al., 2021. Unraveling adhesion strength between gas hydrate and solid surfaces. Langmuir: the ACS journal of surfaces and colloids 37 (47), 13873–13881. https://doi.org/10.1021/acs.langmuir.1c02315.

 

Mahmoudinobar, F., Dias, C.L., 2019. GRADE: a code to determine clathrate hydrate structures. Comput. Phys. Commun. 244, 385–391. https://doi.org/10.1016/j.cpc.2019.06.004.

 

Mi, F., He, Z., Zhao, Y., et al., 2022. Effects of surface property of mixed clays on methane hydrate formation in nanopores: a molecular dynamics study. J. Colloid Interface Sci. 627, 681–691. https://doi.org/10.1016/j.jcis.2022.07.101.

 

Morita, Y., Onodera, T., Suzuki, A., et al., 2008. Development of a new molecular dynamics method for tribochemical reaction and its application to formation dynamics of MoS2 tribofilm. Appl. Surf. Sci. 254 (23), 7618–7621. https://doi.org/10.1016/j.apsusc.2008.01.123.

 

Nguyen, A.H., Molinero, V., 2015. Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: the CHILL+ algorithm. J. Phys. Chem. B 119 (29), 9369–9376. https://doi.org/10.1021/jp510289t.

 

Nguyen, N.N., Berger, R., Kappl, M., et al., 2021. Clathrate adhesion induced by quasi-liquid layer. J. Phys. Chem. C 125 (38), 21293–21300. https://doi.org/10.1021/acs.jpcc.1c06997.

 

Nicholas, J.W., Dieker, L.E., Sloan, E.D., et al., 2009. Assessing the feasibility of hydrate deposition on pipeline walls—adhesion force measurements of clathrate hydrate particles on carbon steel. J. Colloid Interface Sci. 331 (2), 322–328. https://doi.org/10.1016/j.jcis.2008.11.070.

 

Pang, X.Q., Jia, C.Z., Chen, Z.X., et al., 2022. Reduction of global natural gas hydrate (NGH) resource estimation and implications for the NGH development in the South China Sea. Petrol. Sci. 19 (1), 3–12. https://doi.org/10.1016/j.petsci.2021.12.006.

 

Perfeldt, C.M., Sharifi, H., von Solms, N., et al., 2015. Oil and gas pipelines with hydrophobic surfaces better equipped to deal with gas hydrate flow assurance issues. J. Nat. Gas Sci. Eng. 27, 852–861. https://doi.org/10.1016/j.jngse.2015.09.044.

 

Pronk, S., Páll, S., Schulz, R., et al., 2013. Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29 (7), 845–854. https://doi.org/10.1093/bioinformatics/btt055.

 

Radhakrishnan, R., Trout, B.L., 2022. A new approach for studying nucleation phenomena using molecular simulations: application to CO2 hydrate clathrates. J. Chem. Phys. 117 (4), 1786–1796. https://doi.org/10.1063/1.1485962.

 

Ronneberg, S., He, J., Zhang, Z., 2020a. The need for standards in low ice adhesion surface research: a critical review. J. Adhes. Sci. Technol. 34 (3), 319–347. https://doi.org/10.1080/01694243.2019.1679523.

 

Ronneberg, S., Xiao, S., He, J., et al., 2020b. Nanoscale correlations of ice adhesion strength and water contact angle. Coatings 10 (4), 379. https://doi.org/10.3390/coatings10040379.

 

Smith, J.D., Meuler, A.J., Bralower, H.L., et al., 2012. Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction. Phys. Chem. Chem. Phys. 14 (17), 6013–6020. https://doi.org/10.1039/C2CP40581D.

 

Song, S.F., Fu, S.K., Liao, Q.Y., et al., 2022. Investigations on methane hydrate formation, dissociation, and viscosity in gas-water-sand system. Petrol. Sci. 19 (5), 2420–2430. https://doi.org/10.1016/j.petsci.2022.07.001.

 

Sum, A.K., Koh, C.A., Sloan, E.D., 2009. Clathrate hydrates: from laboratory science to engineering practice. Ind. Eng. Chem. Res. 48 (16), 7457–7465. https://doi.org/10.1021/ie900679m.

 

Sun, Y.F., Cao, B.J., Chen, H.N., et al., 2022. Influences of pore fluid on gas production from hydrate-bearing reservoir by depressurization. Petrol. Sci. 20 (2), 1238–1246. https://doi.org/10.1016/j.petsci.2022.09.015.

 

Sunday, N., Settar, A., Chetehouna, K., et al., 2022. Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM. Petrol. Sci. 20 (2), 1183–1199. https://doi.org/10.1016/j.petsci.2022.10.008.

 

Syed, F.I., Dahaghi, A.K., Muther, T., 2022. Laboratory to field scale assessment for EOR applicability in tight oil reservoirs. Petrol. Sci. 19 (5), 2131–2149. https://doi.org/10.1016/j.petsci.2022.04.014.

 

Van Der Spoel, D., Lindahl, E., Hess, B., et al., 2005. GROMACS: fast, flexible, and free. J. Comput. Chem. 26 (16), 1701–1718. https://doi.org/10.1002/jcc.20291.

 

Wang, J., Wang, Q., Meng, Y., et al., 2022a. Flow characteristic and blockage mechanism with hydrate formation in multiphase transmission pipelines: in-situ observation and machine learning predictions. Fuel 330, 125669. https://doi.org/10.1016/j.fuel.2022.125669.

 

Wang, P., Wang, J., Xu, K., et al., 2022b. Mechanical stability of fluorinated-methane clathrate hydrates. J. Mol. Liq. 360, 119553. https://doi.org/10.1016/j.molliq.2022.119553.

 

Wang, T., Hu, T., Pang, X.Q., et al., 2022c. Distribution and resource evaluation of natural gas hydrate in South China sea by combing phase equilibrium mechanism and volumetric method. Petrol. Sci. 19 (1), 26–36. https://doi.org/10.1016/j.petsci.2021.12.003.

 

Wang, Z., Pei, J., Zhang, J., et al., 2022d. Simulation of hydrate particle deposition in horizontal annular mist flow. SPE J. 27 (3), 1–19. https://doi.org/10.2118/209238-pa.

 

Wang, Z., Tong, S., Wang, C., et al., 2020. Hydrate deposition prediction model for deep-water gas wells under shut-in conditions. Fuel 275, 117944. https://doi.org/10.1016/j.fuel.2020.117944.

 

Wang, W.Y., Zhou, C.R., Liu, C.W., et al., 2022. Experimental investigation of the adhesion forces/strengths of cyclopentane hydrate in a gas phase. Fuel 323, 124359. https://doi.org/10.1016/j.fuel.2022.124359.

 

Xiao, S., Skallerud, B.H., Wang, F., et al., 2019. Enabling sequential rupture for lowering atomistic ice adhesion. Nanoscale 11 (35), 16262–16269. https://doi.org/10.1039/c9nr00104b.

 

Xu, J., Du, S., Hao, Y., et al., 2021. Molecular simulation study of methane hydrate formation mechanism in NaCl solutions with different concentrations. Chem. Phys. 551, 111323. https://doi.org/10.1016/j.chemphys.2021.111323.

 

Xu, Z., Hu, T., Pang, X.Q., et al., 2022. Research progress and challenges of natural gas hydrate resource evaluation in the South China Sea. Petrol. Sci. 19 (1), 13–25. https://doi.org/10.1016/j.petsci.2021.12.007.

 

Yang, S.O., Kleehammer, D.M., Huo, Z., et al., 2004. Temperature dependence of particle-particle adherence forces in ice and clathrate hydrates. J. Colloid Interface Sci. 277 (2), 335–341. https://doi.org/10.1016/j.jcis.2004.04.049.

 

Zhang, S.T., Wang, L.L., 2022. Pore pressure built-up in hydrate-bearing sediments during phase transition: a poromechanical approach. Petrol. Sci. 20 (1), 482–494. https://doi.org/10.1016/j.petsci.2022.08.009.

 

Zhang, X.W., Hu, T., Pang, X.Q., et al., 2022. Evaluation of natural gas hydrate resources in the South China Sea by combining volumetric and trend-analysis methods. Petrol. Sci. 19 (1), 37–47. https://doi.org/10.1016/j.petsci.2021.12.008.

 

Zhao, L., Liu, L., Sun, H., 2007. Semi-ionic model for metal oxides and their interfaces with organic molecules. J. Phys. Chem. C 111 (28), 10610–10617. https://doi.org/10.1021/jp071775y.

 

Zhu, L.Q., Sun, J., Zhou, X.Q., et al., 2022. Well logging evaluation of fine-grained hydrate-bearing sediment reservoirs: considering the effect of clay content. Petrol. Sci. 20 (2), 879–892. https://doi.org/10.1016/j.petsci.2022.09.018.

Petroleum Science
Pages 694-704
Cite this article:
Zhang J, Fu H-Q, Guo M-Z, et al. New insights into the deposition of natural gas hydrate on pipeline surfaces: A molecular dynamics simulation study. Petroleum Science, 2024, 21(1): 694-704. https://doi.org/10.1016/j.petsci.2023.08.027
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return