Staggered-grid finite-difference (SGFD) schemes have been widely used in acoustic wave modeling for geophysical problems. Many improved methods are proposed to enhance the accuracy of numerical modeling. However, these methods are inevitably limited by the maximum Courant-Friedrichs-Lewy (CFL) numbers, making them unstable when modeling with large time sampling intervals or small grid spacings. To solve this problem, we extend a stable SGFD scheme by controlling SGFD dispersion relations and maximizing the maximum CFL numbers. First, to improve modeling stability, we minimize the error between the FD dispersion relation and the exact relation in the given wave-number region, and make the FD dispersion approach a given function outside the given wave-number area, thus breaking the conventional limits of the maximum CFL number. Second, to obtain high modeling accuracy, we use the SGFD scheme based on the Remez algorithm to compute the FD coefficients. In addition, the hybrid absorbing boundary condition is adopted to suppress boundary reflections and we find a suitable weighting coefficient for the proposed scheme. Theoretical derivation and numerical modeling demonstrate that the proposed scheme can maintain high accuracy in the modeling process and the value of the maximum CFL number of the proposed scheme can exceed that of the conventional SGFD scheme when adopting a small maximum effective wavenumber, indicating that the proposed scheme improves stability during the modeling.
Alford, R., Kelly, K., Boore, D.M., 1974. Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics 39, 834–842. https://doi.org/10.1190/1.1440470.
Amundsen, L., Pedersen, Ø., 2017. Time step n-tupling for wave equations. Geophysics 82, T249–T254. https://doi.org/10.1190/geo2017-0377.1.
Bansal, R., Sen, M.K., 2008. Finite-difference modelling of S-wave splitting in anisotropic media. Geophys. Prospect. 56, 293–312. https://doi.org/10.1111/j.1365-2478.2007.00693.x.
Baysal, E., Kosloff, D.D., Sherwood, J.W., 1983. Reverse time migration. Geophysics 48, 1514–1524. https://doi.org/10.1190/1.1441434.
Chang, S.L., Liu, Y., 2013. A truncated implicit high-order finite-difference scheme combined with boundary conditions. Appl. Geophys. 10, 53–62. https://doi.org/10.1007/s11770-012-0342-4.
Chen, H., Zhou, H., Zhang, Q., et al., 2016a. Modeling elastic wave propagation us ing k-space operator-based temporal high-order staggered-grid finite-difference method. IEEE Trans. Geosci. Rem. Sens. 55, 801–815. https://doi.org/10.1109/TGRS.2016.2615330.
Chen, H., Zhou, H., Zhang, Q., et al., 2016b. A k-space operator-based least-squares staggered-grid finite-difference method for modeling scalar wave propagation. Geophysics 81, T45–T61. https://doi.org/10.1190/geo2015-0090.1.
Chen, J.B., 2007. High-order time discretizations in seismic modeling. Geophysics 72, SM115–SM122. https://doi.org/10.1190/1.2750424.
Chen, Y., Yang, G., Ma, X., et al., 2016c. A time–space domain stereo finite difference method for 3D scalar wave propagation. Comput. Geosci.-UK. 96, 218–235. https://doi.org/10.1016/j.cageo.2016.08.009.
Clayton, R., Engquist, B., 1977. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seismol. Soc. Am. 67, 1529–1540. https://doi.org/10.1785/BSSA0670061529.
Dablain, M., 1986. The application of high-order differencing to the scalar wave equation. Geophysics 51, 54–66. https://doi.org/10.1190/1.1442040.
Feng, Z., Schuster, G.T., 2017. Elastic least-squares reverse time migration. Geophysics 82, S143–S157. https://doi.org/10.1190/geo2016-0254.1.
Finkelstein, B., Kastner, R., 2008. A comprehensive new methodology for formulating FDTD schemes with controlled order of accuracy and dispersion. IEEE Trans. Antenn. Propag. 56, 3516–3525. https://doi.org/10.1109/TAP.2008.2005458.
Fornberg, B., 1988. Generation of finite difference formulas on arbitrarily spaced grids. Math. Comput. 51, 699–706. https://doi.org/10.1090/S0025-5718-1988-0935077-0.
Gaffar, M., Jiao, D., 2014. An explicit and unconditionally stable FDTD method for electromagnetic analysis. IEEE T. Microw. Theory. 62, 2538–2550. https://doi.org/10.1109/TMTT.2014.2358557.
Gaffar, M., Jiao, D., 2015. Alternative method for making explicit FDTD unconditionally stable. IEEE T. Microw. Theory. 63, 4215–4224. https://doi.org/10.1109/TMTT.2015.2496255.
Gao, Y., Zhang, J., Yao, Z., 2019. Extending the stability limit of explicit scheme with spatial filtering for solving wave equations. J. Comput. Phys. 397, 108853. https://doi.org/10.1016/j.jcp.2019.07.051.
He, Z., Zhang, J., Yao, Z., 2019. Determining the optimal coefficients of the explicit finite-difference scheme using the Remez exchange algorithm. Geophysics 84, S137–S147. https://doi.org/10.1190/geo2018-0446.1.
Higdon, R.L., 1991. Absorbing boundary conditions for elastic waves. Geophysics 56, 231–241. https://doi.org/10.1190/1.1443035.
Holberg, O., 1987. Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena. Geophys. Prospect. 35, 629–655. https://doi.org/10.1111/j.1365-2478.1987.tb00841.x.
Jing, H., Chen, Y., Yang, D., et al., 2017. Dispersion-relation preserving stereo-modeling method beyond Nyquist frequency for acoustic wave equation. Geophysics 82, T1–T15. https://doi.org/10.1190/geo2016-0104.1.
Kelly, K.R., Ward, R.W., Treitel, S., et al., 1976. Synthetic seismograms: a finite-difference approach. Geophysics 41, 2–27. https://doi.org/10.1190/1.1440605.
Kindelan, M., Kamel, A., Sguazzero, P., 1990. On the construction and efficiency of staggered numerical differentiators for the wave equation. Geophysics 55, 107–110. https://doi.org/10.1190/1.1442763.
Koene, E.F., Robertsson, J.O., Broggini, F., et al., 2018. Eliminating time dispersion from seismic wave modeling. Geophys. J. Int. 213, 169–180. https://doi.org/10.1093/gji/ggx563.
Kosloff, D., Pestana, R.C., Tal-Ezer, H., 2010. Acoustic and elastic numerical wave simulations by recursive spatial derivative operators. Geophysics 75, T167–T174. https://doi.org/10.1190/1.3485217.
Levander, A.R., 1988. Fourth-order finite-difference P-SV seismograms. Geophysics 1425–1436. https://doi.org/10.1190/1.1442422.
Liu, H., Dai, N., Niu, F., et al., 2014. An explicit time evolution method for acoustic wave propagation. Geophysics 79, T117–T124. https://doi.org/10.1190/geo2013-0073.1.
Liu, Y., 2013. Globally optimal finite-difference schemes based on least squares. Geophysics 78, T113–T132. https://doi.org/10.1190/geo2012-0480.1.
Liu, Y., 2014. Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling. Geophys. J. Int. 197, 1033–1047. https://doi.org/10.1093/gji/ggu032.
Liu, Y., 2020a. Acoustic and elastic finite-difference modeling by optimal variable-length spatial operators variable-length spatial finite difference. Geophysics 85, T57–T70. https://doi.org/10.1190/geo2019-0145.1.
Liu, Y., 2020b. Maximizing the CFL number of stable time–space domain explicit finite-difference modeling. J. Comput. Phys. 416, 109501. https://doi.org/10.1016/j.jcp.2020.109501.
Liu, Y., 2022. Removing the stability limit of the time–space domain explicit finite-difference schemes for acoustic modeling with stability condition-based spatial operators. Geophysics 87, T205–T223. https://doi.org/10.1190/geo2021-0141.1.
Liu, Y., Sen, M.K., 2009. A new time–space domain high-order finite-difference method for the acoustic wave equation. J. Comput. Phys. 228, 8779–8806. https://doi.org/10.1016/j.jcp.2009.08.027.
Liu, Y., Sen, M.K., 2010. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation. Geophysics 75, A1–A6. https://doi.org/10.1190/1.3295447.
Liu, Y., Sen, M.K., 2011. Scalar wave equation modeling with time–space domain dispersion-relation-based staggered-grid finite-difference schemes. Bull. Seismol. Soc. Am. 101, 141–159. https://doi.org/10.1785/0120100041.
Liu, Y., Sen, M.K., 2013. Time–space domain dispersion-relation-based finite-difference method with arbitrary even-order accuracy for the 2D acoustic wave equation. J. Comput. Phys. 232, 327–345. https://doi.org/10.1016/j.jcp.2012.08.025.
Liu, Y., Sen, M.K., 2018. An improved hybrid absorbing boundary condition for wave equation modeling. J. Geophys. Eng. 15, 2602–2613. https://doi.org/10.1088/1742-2140/aadd31.
Long, G., Zhao, Y., Zou, J., 2013. A temporal fourth-order scheme for the first-order acoustic wave equations. Geophys. J. Int. 194, 1473–1485. https://doi.org/10.1093/gji/ggt168.
Ma, X., Yang, D., 2017. A phase-preserving and low-dispersive symplectic partitioned Runge–Kutta method for solving seismic wave equations. Geophys. J. Int. 209, 1534–1557. https://doi.org/10.1093/gji/ggx097.
McMechan, G.A., 1983. Migration by extrapolation of time-dependent boundary values. Geophys. Prospect. 31, 413–420. https://doi.org/10.1111/j.1365-2478.1983.tb01060.x.
Ren, Z., Dai, X., Bao, Q., et al., 2021. Time and space dispersion in finite difference and its influence on reverse time migration and full-waveform inversion. Chin. J. Geophys. 64, 4166–4180. https://doi.org/10.6038/cjg2021P0041 (in Chinese).
Ren, Z., Li, Z., 2017. Temporal high-order staggered-grid finite-difference schemes for elastic wave propagation temporal high-order SFD schemes. Geophysics 82, T207–T224. https://doi.org/10.1190/geo2017-0005.1.
Ren, Z., Liu, Y., 2015. Acoustic and elastic modeling by optimal time–pace domain staggered-grid finite-difference schemes optimal staggered-grid finite difference. Geophysics 80, T17–T40. https://doi.org/10.1190/geo2014-0269.1.
Robertsson, J.O., Blanch, J.O., Symes, W.W., 1994. Viscoelastic finite-difference modeling. Geophysics 59, 1444–1456. https://doi.org/10.1190/1.1443701.
Tam, C.K., Webb, J.C., 1993. Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281. https://doi.org/10.1006/jcph.1993.1142.
Tan, S., Huang, L., 2014. An efficient finite-difference method with high-order accuracy in both time and space domains for modelling scalar-wave propagation. Geophys. J. Int. 197, 1250–1267. https://doi.org/10.1093/gji/ggu077.
Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics 49, 1259–1266. https://doi.org/10.1190/1.1441754.
Vigh, D., Jiao, K., Watts, D., et al., 2014. Elastic full-waveform inversion application using multicomponent measurements of seismic data collection. Geophysics 79, R63–R77. https://doi.org/10.1190/geo2013-0055.1.
Virieux, J., 1984. SH-wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 49, 1933–1942. https://doi.org/10.1190/1.1441605.
Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51, 889–901. https://doi.org/10.1190/1.1442147.
Virieux, J., Operto, S., 2009. An overview of full-waveform inversion in exploration geophysics. Geophysics 74, WCC1–WCC26. https://doi.org/10.1190/1.3238367.
Wang, E., Liu, Y., Sen, M.K., 2016. Effective finite-difference modelling methods with 2D acoustic wave equation using a combination of cross and rhombus stencils. Geophys. J. Int. 206, 1933–1958. https://doi.org/10.1093/gji/ggw250.
Wang, W., Wen, X., Tang, C., et al., 2021. Variable-order optimal implicit finite-difference schemes for explicit time-marching solutions to wave equations. Geophysics 86, T91–T106. https://doi.org/10.1190/geo2020-0239.1.
Yan, J., Sava, P., 2008. Isotropic angle-domain elastic reverse-time migration. Geophysics 73, S229–S239. https://doi.org/10.1190/1.2981241.
Yang, L., Yan, H., Liu, H., 2014. Least squares staggered-grid finite-difference for elastic wave modelling. Explor. Geophys. 45, 255–260. https://doi.org/10.1071/EG13087.
Yang, L., Yan, H., Liu, H., 2016. Optimal implicit staggered-grid finite-difference schemes based on the sampling approximation method for seismic modelling. Geophys. Prospect. 64, 595–610. https://doi.org/10.1111/1365-2478.12325.
Yang, L., Yan, H., Liu, H., 2017. Optimal staggered-grid finite-difference schemes based on the minimax approximation method with the Remez algorithm. Geophysics 82, T27–T42. https://doi.org/10.1190/geo2016-0171.1.
Zhang, J., Yao, Z., 2013a. Optimized explicit finite-difference schemes for spatial derivatives using maximum norm. J. Comput. Phys. 250, 511–526. https://doi.org/10.1016/j.jcp.2013.04.029.
Zhang, J., Yao, Z., 2013b. Optimized finite-difference operator for broadband seismic wave modeling. Geophysics 78, A13–A18. https://doi.org/10.1190/geo2012-0277.1.
Zhao, Z., Chen, J., Liu, X., et al., 2019. Frequency-domain elastic wavefield simulation with hybrid absorbing boundary conditions. J. Geophys. Eng. 16, 690–706. https://doi.org/10.1093/jge/gxz038.
Zhou, H., Liu, Y., Wang, J., 2021a. Acoustic finite-difference modeling beyond conventional Courant-Friedrichs-Lewy stability limit: approach based on variable-length temporal and spatial operators. Earthq. Sci. 34, 123–136. https://doi.org/10.29382/eqs-2021-0009.
Zhou, H., Liu, Y., Wang, J., 2021b. Elastic wave modeling with high-order temporal and spatial accuracies by a selectively modified and linearly optimized staggered-grid finite-difference scheme. IEEE Trans. Geosci. Rem. Sens. 60, 1–22. https://doi.org/10.1109/TGRS.2021.3078626.
Zhou, H., Zhang, G., 2011. Prefactored optimized compact finite-difference schemes for second spatial derivatives. Geophysics 76, WB87–WB95. https://doi.org/10.1190/geo2011-0048.1.