AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Paper | Open Access

A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics

Qian Zhanga,bWen-Dong Wanga,b( )Yu-Liang Sua,bWei ChencZheng-Dong LeidLei Lia,bYong-Mao Haoa,b
Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, Shandong, China
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
Shale Oil Development Branch, Changqing Oilfield Company, PetroChina, Qingyang, 745708, Gansu, China
PetroChina Research Institute of Petroleum Exploration & Development, Beijing, 100083, China

Edited by Yan-Hua Sun

Show Author Information

Abstract

A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.

Electronic Supplementary Material

Download File(s)
petsci-21-1-327_ESM.pdf (91.4 KB)

References

 
Al-Obaidy, R.T., Gringarten, A.C., Sovetkin, V., 2014. Modeling of induced hydraulically fractured wells in shale reservoirs using ‘branched’ fractals. In: SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/170822-MS.
 

Bernabe, Y., 1986. The effective pressure law for permeability in Chelmsford granite and Barre granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstracts. https://doi.org/10.1016/0148-9062(86)90972-1.

 
Bustin, R.M., Bustin, A.M., Cui, X., Ross, D.J.K., Pathi, V.M., 2008. Impact of shale properties on pore structure and storage characteristics. In: SPE Shale Gas Production Conference. https://doi.org/10.2118/119892-MS.
 

Cai, J., Zhang, Z., Wei, W., Guo, D., Li, S., Zhao, P., 2019. The critical factors for permeability-formation factor relation in reservoir rocks: pore-throat ratio, tortuosity and connectivity. Energy 188, 116051. https://doi.org/10.1016/j.energy.2019.116051.

 

Chen, D., Pan, Z., Ye, Z., 2015. Dependence of gas shale fracture permeability on effective stress and reservoir pressure: model match and insights. Fuel 139, 383–392. https://doi.org/10.1016/j.fuel.2014.09.018.

 
Chhatre, S.S., Sinha, S., Esch, W.L., Determan, M.D., Passey, Q.R., Leonardi, S.A., Braun, E.M., 2014. Effect of stress, creep, and fluid type on steady state permeability measurements in tight liquid unconventional reservoirs. In: Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2014-1922578.
 

Cui, J., Sang, Q., Li, Y., Yin, C., Li, Y., Dong, M., 2017. Liquid permeability of organic nanopores in shale: calculation and analysis. Fuel 202, 426–434. https://doi.org/10.1016/j.fuel.2017.04.057.

 

Ding, D.Y., 2019. Modeling of matrix/fracture transfer with nonuniform-block distributions in low-permeability fractured reservoirs. SPE J. 24 (6), 2653–2670. https://doi.org/10.2118/191811-PA.

 

Fan, D., Ettehadtavakkol, A., 2017. Semi-analytical modeling of shale gas flow through fractal induced fracture networks with microseismic data. Fuel 193, 444–459. https://doi.org/10.1016/j.fuel.2016.12.059.

 

Feng, Q., Xu, S., Wang, S., Li, Y., Gao, F., Xu, Y., 2019. Apparent permeability model for shale oil with multiple mechanisms. J. Petrol. Sci. Eng. 175, 814–827. https://doi.org/10.1016/j.petrol.2019.01.038.

 

Gonzalez, L., Nasreldin, G., Rivero, J., Welsh, P., Aguilera, R., 2014. 3D modeling of multistage hydraulic fractures and two-way-coupling geomechanics/fluid-flow simulation of a horizontal well in the nikanassin tight gas formation, Western Canada sedimentary basin. SPE Reservoir Eval. Eng. 17 (2), 257–270. https://doi.org/10.2118/159765-PA.

 

Guo, T., Tang, S., Liu, S., Liu, X., Xu, J., Qi, N., Rui, Z., 2021. Physical simulation of hydraulic fracturing of large-sized tight sandstone outcrops. SPE J. 26 (1), 372–393. https://doi.org/10.2118/204210-PA.

 

Gutierrez, M., Katsuki, D., Tutuncu, A., 2015. Determination of the continuous stress-dependent permeability, compressibility and poroelasticity of shale. Mar. Petrol. Geol. 68, 614–628. https://doi.org/10.1016/j.marpetgeo.2014.12.002.

 

Hu, B., Wang, J., Ma, Z., Sang, S., 2021. Permeability and thermal conductivity models of shale matrix with a bundle of tortuous fractal tree-like branching micropore networks. Int. J. Therm. Sci. 164, 106876. https://doi.org/10.1016/j.ijthermalsci.2021.106876.

 

Katende, A., Rutqvist, J., Massion, C., Radonjic, M., 2023. Experimental flow-through a single fracture with monolayer proppant at reservoir conditions: a case study on Caney Shale, Southwest Oklahoma, USA. Energy 273, 127181. https://doi.org/10.1016/j.energy.2023.127181.

 

Kazemi, H., 1969. Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution. SPE J. 9 (4), 451–462. https://doi.org/10.2118/2156-PA.

 

Lei, Z., Li, J., Chen, Z., Dai, X., Ji, D., Wang, Y., Liu, Y., 2023. Characterization of multiphase flow in shale oil reservoirs considering multiscale porous media by high-resolution numerical simulation. SPE J. 1–16. https://doi.org/10.2118/215847-PA.

 

Li, K., Zeng, F., Cai, J., Sheng, G., Xia, P., Zhang, K., 2018. Fractal characteristics of pores in Taiyuan formation shale from Hedong coal field, China. Fractals 26 (2), 1840006. https://doi.org/10.1142/S0218348X18400066.

 

Li, Y., Liu, X., Hu, Z., Duan, X.G., Chang, J., Zhou, G.Z., 2019. Research progress on fracture network simulation in shale reservoirs. Oil Geophys. Prospect. 54 (2), 480–492. https://doi.org/10.13810/j.cnki.issn.1000-7210.2019.02.028. (in Chinese).

 

Li, Z., Zou, Y.R., Xu, X.Y., Sun, J.N., Li, M., 2016. Adsorption of mudstone source rock for shale oil–Experiments, model and a case study. Org. Geochem. 92, 55–62. https://doi.org/10.1016/j.orggeochem.2015.12.009.

 

Luo, W., Tang, C., Feng, Y., Zhu, M., 2018. Mechanism of fluid flow along a dynamic conductivity fracture with pressure-dependent permeability under constant wellbore pressure. J. Petrol. Sci. Eng. 166, 465–475. https://doi.org/10.1016/j.petrol.2018.03.059.

 

Mattia, D., Calabrò, F., 2012. Explaining high flow rate of water in carbon nanotubes via solid–liquid molecular interactions. Microfluid. Nanofluidics 13, 125–130. https://doi.org/10.1007/s10404-012-0949-z.

 

Mei, L., Zhang, H., Wang, L., Zhang, Q., Cai, J., 2020. Fractal analysis of shape factor for matrix-fracture transfer function in fractured reservoirs. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles 75, 47. https://doi.org/10.2516/ogst/2020043.

 

Nandlal, K., Weijermars, R., 2019. Drained rock volume around hydraulic fractures in porous media: planar fractures versus fractal networks. Petrol. Sci. 16, 1064–1085. https://doi.org/10.1007/s12182-019-0333-7.

 
Pedrosa Jr., O.A., 1986. Pressure transient response in stress-sensitive formations. In: SPE Western Regional Meeting. https://doi.org/10.2118/15115-MS.
 
Qanbari, F., Clarkson, C.R., 2013. Analysis of transient linear flow in tight oil and gas reservoirs with stress-sensitive permeability and multi-phase flow. In: SPE Canada Unconventional Resources Conference. https://doi.org/10.2118/167176-MS.
 

Ren, Z., Wu, X., Han, G., Liu, L., Wu, X., Zhang, G., Lin, H., Zhang, J., Zhang, X., 2017. Transient pressure behavior of multi-stage fractured horizontal wells in stress-sensitive tight oil reservoirs. J. Petrol. Sci. Eng. 157, 1197–1208. https://doi.org/10.1016/j.petrol.2017.07.073.

 

Sheng, G., Javadpour, F., Su, Y., Liu, J., Li, K., Wang, W., 2019. A semianalytic solution for temporal pressure and production rate in a shale reservoir with nonuniform distribution of induced fractures. SPE J. 24 (4), 1856–1883. https://doi.org/10.2118/195576-PA.

 

Valdes-Perez, A., Blasingame, T.A., 2021. Pressure-transient behavior of double-porosity reservoirs with transient interporosity transfer with fractal matrix blocks. SPE J. 26 (4), 2417–2439. https://doi.org/10.2118/190841-PA.

 

Wang, Q., Wang, T., Liu, W., Zhang, J., Feng, Q., Lu, H., 2019. Relationships among composition, porosity and permeability of longmaxi shale reservoir in the weiyuan block, sichuan basin, China. Mar. Petrol. Geol. 102, 33–47. https://doi.org/10.1016/j.marpetgeo.2018.12.026.

 

Wang, S., Javadpour, F., Feng, Q., 2016. Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel 171, 74–86. https://doi.org/10.1016/j.fuel.2015.12.071.

 

Wang, W., Shahvali, M., Su, Y., 2015. A semi-analytical fractal model for production from tight oil reservoirs with hydraulically fractured horizontal wells. Fuel 158, 612–618. https://doi.org/10.1016/j.fuel.2015.06.008.

 

Wang, X., Li, J., Jiang, W., Zhang, H., Feng, Y., Yang, Z., 2022. Characteristics, current exploration practices, and prospects of continental shale oil in China. Advances in Geo-Energy Research 6 (6), 454–459. https://doi.org/10.46690/ager.2022.06.02.

 

Warren, J.E., Root, P.J., 1963. The behavior of naturally fractured reservoirs. SPE J. 3 (3), 245–255. https://doi.org/10.2118/426-PA.

 

Yan, X., Sun, J., Liu, D., 2019. Numerical simulation of shale gas multiscale seepage mechanism-coupled stress sensitivity. J. Chem. 2019, 1–13. https://doi.org/10.1155/2019/7387234.

 

Yang, D., Wang, W., Chen, W., Wang, S., Wang, X., 2017. Experimental investigation on the coupled effect of effective stress and gas slippage on the permeability of shale. Sci. Rep. 7 (1), 44696. https://doi.org/10.1038/srep44696.

 

Yang, D., Wang, W., Li, K., Chen, W., Yang, J., Wang, S., 2019. Experimental investigation on the stress sensitivity of permeability in naturally fractured shale. Environ. Earth Sci. 78, 1–10. https://doi.org/10.1007/s12665-019-8045-2.

 

Yao, J., Sun, H., Fan, D., Huang, Z., Sun, Z., Zhang, G., 2013. Transport mechanisms and numerical simulation of shale gas reservoirs. Journal of China University of Petroleum 37 (1), 91–98 (in Chinese).

 

Yu, B., Cheng, P., 2002. A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Tran. 45 (14), 2983–2993. https://doi.org/10.1016/S0017-9310(02)00014-5.

 

Yu, H., Wang, Z., Rezaee, R., Zhang, Y., Han, T., Arif, M., Johnson, L., 2018. Porosity estimation in kerogen-bearing shale gas reservoirs. J. Nat. Gas Sci. Eng. 2, 575–581. https://doi.org/10.1016/j.jngse.2018.02.012.

 

Zeng, F., Zhang, Y., Guo, J., Ren, W., Jiang, Q., Xiang, J., 2020. Prediction of shale apparent liquid permeability based on fractal theory. Energy Fuels 34 (6), 6822–6833. https://doi.org/10.1021/acs.energyfuels.0c00318.

 

Zeng, J., Liu, J., Li, W., Leong, Y.K., Elsworth, D., Guo, J., 2021. Shale gas reservoir modeling and production evaluation considering complex gas transport mechanisms and dispersed distribution of kerogen. Petrol. Sci. 18, 195–218. https://doi.org/10.1007/s12182-020-00495-1.

 

Zhang, F., Emami-Meybodi, H., 2020. Flowback fracture closure of multi-fractured horizontal wells in shale gas reservoirs. J. Petrol. Sci. Eng. 186, 106711. https://doi.org/10.1016/j.petrol.2019.106711.

 

Zhang, F.Y., Zou, L.J., Rui, Z.H., Emami-Meybodi, H., Ayala, L.F., Zhang, Z.X., 2023. A two-phase type-curve method with multiscale fluid transport mechanisms in hydraulically fractured shale reservoirs. Petrol. Sci. 20 (4), 2253–2267. https://doi.org/10.1016/j.petsci.2023.02.004.

 

Zhang, Q., Su, Y., Wang, W., Lu, M., Sheng, G., 2017. Apparent permeability for liquid transport in nanopores of shale reservoirs: coupling flow enhancement and near wall flow. Int. J. Heat Mass Tran. 115, 224–234. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.024.

 

Zhang, T., Li, X., Shi, J., Sun, Z., Yin, Y., Wu, K., Feng, D., 2018. An apparent liquid permeability model of dual-wettability nanoporous media: a case study of shale. Chem. Eng. Sci. 187, 280–291. https://doi.org/10.1016/j.ces.2018.05.016.

 

Zhang, T., Li, X., Yin, Y., He, M., Liu, Q., Huang, L., Shi, J., 2019. The transport behaviors of oil in nanopores and nanoporous media of shale. Fuel 242, 305–315. https://doi.org/10.1016/j.fuel.2019.01.042.

 

Zheng, S., Manchanda, R., Sharma, M.M., 2020. Modeling fracture closure with proppant settling and embedment during shut-in and production. SPE Drill. Complet. 35 (4), 668–683. https://doi.org/10.2118/201205-PA.

 

Zhu, C., Sheng, J.J., Ettehadtavakkol, A., Li, Y., Dong, M., 2020. Numerical and experimental study of oil transfer in laminated shale. Int. J. Coal Geol. 217, 103365. https://doi.org/10.1016/j.coal.2019.103365.

Petroleum Science
Pages 327-342
Cite this article:
Zhang Q, Wang W-D, Su Y-L, et al. A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics. Petroleum Science, 2024, 21(1): 327-342. https://doi.org/10.1016/j.petsci.2023.10.003

38

Views

0

Downloads

9

Crossref

10

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 30 May 2023
Revised: 26 September 2023
Accepted: 01 October 2023
Published: 05 October 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return