PDF (4.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Original Paper | Open Access

Geochemistry and origins of hydrogen-containing natural gases in deep Songliao Basin, China: Insights from continental scientific drilling

Shuang-Biao Hana ()Chao-Han XiangaXin DuaLin-Feng XieaJie HuangaCheng-Shan Wangb
College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing, 100083, China
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China

Edited by Jie Hao and Teng Zhu

Show Author Information

Abstract

The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas. The gas composition and stable isotope characteristics vary significantly, but the origin analysis of different gas types has previously been weak. Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings, this research covers the diverse origins of natural gas in different strata. The gas components are mainly methane with a small amount of C2+, and non-hydrocarbon gases, including nitrogen (N2), hydrogen (H2), carbon dioxide (CO2), and helium (He). At greater depth, the carbon isotope of methane becomes heavier, and the hydrogen isotope points to a lacustrine sedimentary environment. With increasing depth, the origins of N2 and CO2 change gradually from a mixture of organic and inorganic to inorganic. The origins of hydrogen gas are complex and include organic sources, water radiolysis, water-rock (Fe2+-containing minerals) reactions, and mantle-derived. The shales of Denglouku and Shahezi Formations, as source rocks, provide the premise for generation and occurrence of organic gas. Furthermore, the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas. The discovery of a high content of H2 in study area not only reveals the organic and inorganic association of natural-gas generation, but also provides a scientific basis for the exploration of deep hydrogen-rich gas.

References

 

Abrajano, T.A., Sturchio, N.C., Bohlke, J.K., Lyon, G.L., Poreda, R.J., Stevens, C.M., 1988. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin. Chem. Geol. 71 (1–3), 211-222. https://doi.org/10.1016/0009-2541(88)90116-7.

 

Bernard, B.B., Brooks, J.M., Sackett, W.M., 1976. Natural gas seepage in the Gulf of Mexico. Earth Planet Sci. Lett. 31 (1), 48-54. https://doi.org/10.1016/0012-821X(76)90095-9.

 

Boreham, C.J., Edwards, D.S., Czado, K., Rollet, N., Wang, L.Q., Wielen, S.V.D., Champion, D., Blewett, R., Feitz, A., Henson, P.A., 2021. Hydrogen in Australian natural gas: occurrences, sources and resources. APPEA J 61 (1), 163-191. https://doi.org/10.1071/AJ20044.

 

Byrne, D.J., Barry, P.H., Lawson, M., Ballentine, C.J., 2018. Noble gases in conventional and unconventional petroleum systems. Geol. Soc. Lond. Spec. Publ. 468 (1), 127-149. https://doi.org/10.1144/SP468.5.

 

Cai, Q.S., Hu, M.Y., Ngia, N.R., Hu, Z.G., 2017. Sequence stratigraphy, sedimentary systems and implications for hydrocarbon exploration in the northern Xujiaweizi Fault Depression, Songliao Basin, NE China. J. Pet. Sci. Eng. 152, 471-494. https://doi.org/10.1016/j.petrol.2017.02.022.

 

Cesar, J., Mayer, B., Becker, V., Nightingale, M., Ardakani, O.H., 2022. Molecular and stable carbon isotope geochemistry of mud-gas-derived hydrocarbons and its application for the assessment of low-permeability reservoirs from the Montney Formation. Western Canada. Org. Geochem. 163, 104328. https://doi.org/10.1016/J.ORGGEOCHEM.2021.104328.

 

Chi, J., Yu, H.M., 2018. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 39 (3), 390-394. https://doi.org/10.1144/SP468.5.

 

Dai, J.X., Hu, G.Y., Ni, Y.Y., Li, J., Luo, X., Yang, C., Hu, A.P., Zhou, Q.H., 2009. Distribution characteristics of natural gas in eastern China. Nat. Gas Geosci. 20 (4), 471-487 (in Chinese). https://kns.cnki.net/kcms/detail/detail.aspx?FileName=TDKX200904002&DbName=CJFQ2009.

 

Dai, J.X., Ni, Y.Y., Qin, S.F., Huang, S.P., Gong, D.Y., Liu, D., Feng, Z.Q., Peng, W.L., Han, W.X., Fang, C.C., 2017. Geochemical characteristics of He and CO2 from the Ordos (cratonic) and Bohaibay (rift) basins in China. Chem. Geol. 469, 192-213. https://doi.org/10.1016/j.chemgeo.2017.02.011.

 

Dai, J.X., Zou, C.N., Dong, D.Z., Ni, Y.Y., Wu, W., Gong, D.Y., Wang, Y.M., Huang, S.P., Huang, J.L., Fang, C.C., Liu, D., 2016. Geochemical characteristics of marine and terrestrial shale gas in China. Mar. Petrol. Geol. 76, 444-463. https://doi.org/10.1016/j.marpetgeo.2016.04.027.

 

Etiope, G., Feyzullayev, A., Baciu, C.L., 2009. Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin. Mar. Petrol. Geol. 26 (3), 333-344. https://doi.org/10.1016/j.marpetgeo.2008.03.001.

 

Feng, Z.Q., Jia, C.Z., Xie, X.N., 2010. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin. Basin Res. 22 (1), 79-95. https://doi.org/10.1111/j.1365-2117.2009.00445.x.

 
Goebel, E.D., Coveney Jr., R.M., Angino, E.E., Zeller, E., 1983. Naturally occurring hydrogen gas from a borehole on the western flank of Nemaha anticline in Kansas. AAPG Bull. 67 (8), 1324. https://doi.org/10.1306/03B5B76D-16D1-11D7-8645000102C1865D, 1324.
 

Han, S.B., Tang, Z.Y., Wang, C.S., Horsfield, B., Wang, T.T., Mahlstedt, N., 2022. Hydrogen-rich gas discovery in continental scientific drilling project of Songliao Basin, northeast China: new insights into deep earth exploration. Sci. Bull. 67 (10), 1003-1006. https://doi.org/10.1016/J.SCIB.2022.02.008.

 

Han, S.B., Tang, Z.Y., Yang, C.L., Xie, L.F., Xiang, C.H., Horsfield, B., Wang, C.S., 2021. Genesis and energy significance of hydrogen in natural gas. Nat. Gas Geosci. 32 (9), 1270-1284. https://doi.org/10.11764/j.issn.1672-1926.2021.04.005.

 

Hou, H.S., Wang, C.S., Zhang, J.D., Ma, F., Fu, W., Wang, P.J., Huang, Y.J., Zou, C.C., Gao, Y.F., Gao, Y., Zhang, L.M., Yang, J., Guo, R., 2018. Deep continental scientific drilling engineering in Songliao Basin: progress in earth science research. Geol. China. 45 (4), 641-657. https://doi.org/10.31035/cg2018036.

 

Horsfield, B., Mahlstedt, N., Weniger, P., Misch, D., Vranjes-Wessely, S., Han, S., Wang, C., 2022. Molecular hydrogen from organic sources in the deep Songliao Basin, P.R China. Int. J. Hydrogen Energy 47, 16750-16774. https://doi.org/10.1016/J.IJHYDENE.2022.02.208.

 

Jeffrey, A.W.A., Kaplan, I.R., 1988. Hydrocarbons and inorganic gases in the gravberg-1 wells, siljan ring, Sweden. Chem. Geol. 71, 237-255. https://doi.org/10.1016/0009-2541(88)90118-0.

 

Jenden, P.D., Drazan, D.J., Kaplan, I.R., 1993. Mixing of thermogenic natural gases in northern appalachian basin. AAPG Bull. 77 (6), 980-998. https://doi.org/10.1306/BDFF8DBC-1718-11D7-8645000102C1865D.

 

Jin, Z.J., Hu, W.X., Zhang, L.P., Tao, M.X., 2007. Deep Fluid Activity and its Hydrocarbon Accumulation Effect. Sci Press, Beijing.

 

Li, J., Li, Z.S., Wang, X.B., Wang, D.L., Xie, Z.Y., Li, J., Wang, Y.F., Han, Z.X., Ma, C.H., Wang, Z.H., Cui, H.Y., Wang, R., Hao, A.S., 2017. New indexes and charts for genesis identification of multiple natural gases. Petrol. Explor. Dev. 44 (4), 503-512. https://doi.org/10.11698/PED.2017.04.03.

 

Li, Z.S., Zhang, W.J., Wu, X.Q., Liu, D.L., 2011. Gas source of carbon dioxide and its degassing model in Songliao basin, 01 Nat. Gas Geosci. 22, 29-37. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=TDKX201101007&DbName=CJFQ2011.

 

Lin, L.-H., Hall, J., Lippmann-Pipke, J., Ward, J.A., Sherwood Lollar, B., de Flaun, M., Rothmel, M., Moser, D., Gihring, T.M., 2005a. Radiolytic H2 in continental crust: nuclear power for deep subsurface microbial communities. G-cubed Q07003. https://doi.org/10.1029/2004GC000907.

 

Lin, L.-H., Slater, G.F., Sherwood Lollar, B., Lacrampe-Couloume, G., Onstott, T.C., 2005b. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochem. Cosmochim. Acta 69, 893-903. https://doi.org/10.1016/j.gca.2004.07.032.

 

Liu, H.B., Wang, P.J., Gao, Y.F., Hou, H.S., Yin, Y.K., Li, H.H., Feng, Y.H., 2021. New data from icdp borehole SK2 and its constraint on the beginning of the lower cretaceous shahezi formation in the Songliao Basin, NE China. Sci. Bull. 66 (5), 411-413. https://doi.org/10.1016/J.SCIB.2020.12.002.

 

Liu, Q.Y., Wu, X.Q., Jia, H.C., Ni, C.H., Zhu, J.H., Miao, J.J., Zhu, D.Y., Meng, Q.Q., Peng, W.L., Xu, H.Y., 2022. Geochemical characteristics of helium in natural gas from the Daniudi gas field, Ordos Basin, central China. Front. Earth Sci. 51. https://doi.org/10.3389/FEART.2022.823308.

 
Liu, Y., 2017. Geochemical Genesis Model and its Applications of Natural Gas in High-Over Matured Shale. China Univ. Geosci. (Beijing). https://kns.cnki.net/kcms/detail/detail.aspx?FileName=1017136496.nh&DbName=CDFD2017 (in Chinese).
 

Löffler, M., Schrader, M., Lüders, K., Werban, U., Hornbruch, G., Dahmke, A., Vogt, C., Richnow, H.H., 2022. Stable hydrogen isotope fractionation of hydrogen in a field injection experiment: simulation of a gaseous H2 leakage. ACS Earth Space Chem. 6 (3), 631-641. https://doi.org/10.1021/acsearthspacechem.1c00254.

 

Lu, X.S., Song, Y., Wang, Z.H., Ma, S.F., Liu, S.B., Hong, F., 2009. Origin and main control factors of CO2 in the Songliao Basin. Nat. Gas. Ind. 29 (3), 125-128. https://doi.org/10.3787/j.issn.1000-0976.2009.03.037.

 

Meng, Q.A., Zhang, S., Sun, G.X., Fu, X.L., Wang, C., Shang, Y., 2016. A seismic geomorphology study of the fluvial and lacustrine-delta facies of the cretaceous quantou-nenjiang formations in Songliao Basin, China. Mar. Petrol. Geol. 78, 836-847. https://doi.org/10.1016/j.marpetgeo.2016.01.017.

 

Meng, Q.Q., 2022. Identification method for the origin of natural hydrogen gas in geological bodies. Pet. Geol. Exp. 44 (3), 552-558. https://doi.org/10.11781/sysydz202203552.

 

Meng, Q.Q., Sun, Y.H., Tong, J.Y., Fu, Q., Zhu, J., Zhu, D.Y., Jin, J.Z., 2015. Distribution and geochemical characteristics of hydrogen in natural gas from the Jiyang Depression, Eastern China. Acta Geol. Sin-Engl. 89 (5), 1616-1624. https://doi.org/10.1111/1755-6724.12568.

 

Milkov, A.V., 2022. Molecular hydrogen in surface and subsurface natural gases: abundance, origins and ideas for deliberate exploration. Earth Sci. Rev. 230, 104063. https://doi.org/10.1016/J.EARSCIREV.2022.104063.

 

Moore, M.T., Phillips, S.C., Cook, A.E., Darrah, T.H., 2022. Integrated geochemical approach to determine the source of methane in gas hydrate from Green Canyon Block 955 in the Gulf of Mexico. AAPG Bull. 106 (5), 949-980. https://doi.org/10.1306/05272120087.

 

Neal, C., Stanger, G., 1983. Hydrogen generation from mantle source rocks in Oman. Earth Planet Sci. Lett. 66, 315-320. https://doi.org/10.1016/0012-821X(83)90144-9.

 

Ni, Y.Y., Ma, Q.S., Ellis, G.S., Dai, J.X., Katz, B., Zhang, S.C., Tang, Y.C., 2011. Fundamental studies on kinetic isotope effect (KIE) of Hydrogen isotope fractiona-tion in natural gas systems. Geochem. Cosmochim. Acta 75 (10), 2696-2707. https://doi.org/10.1016/j.gca.2011.02.016.

 

Nikolaidis, P., Poullikkas, A., 2017. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 67, 597-611. https://doi.org/10.1016/j.rser.2016.09.044.

 

Nuttall, W.J., Bakenne, A.T., 2020. Fossil Fuel Hydrogen: Technical, Economic and Environmental Potential. Springer Nature, Switzerland AG.

 

Oni, A.O., Anaya, K., Giwa, T., Di Lullo, G., Kumar, A., 2022. Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Convers. Manag. 254, 115245. https://doi.org/10.1016/J.ENCONMAN.2022.115245.

 

Prinzhofer, A., Cissé, C.S.T., Diallo, A.B., 2018. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). Int. J. Hydrogen Energy 43 (42), 19315-19326. https://doi.org/10.1016/j.ijhydene.2018.08.193.

 

Reeves, E.P., Fiebig, J., 2020. Abiotic synthesis of methane and organic compounds in Earth’s lithosphere. Elements: Int. Mag. Mineral. Geochem. Petrol. 16 (1), 25-31. https://doi.org/10.2138/gselements.16.1.25.

 

Ricci, A., Kleine, B.I., Fiebig, J., Gunnarsson-Robin, J., Kamunya, K.M., Mountain, B., Stefánsson, A., 2022. Equilibrium and kinetic controls on molecular hydrogen abundance and hydrogen isotope fractionation in hydrothermal fluids. Earth Planet Sci. Lett. 579, 117338. https://doi.org/10.1016/J.EPSL.2021.117338.

 

Schoell, M., 1983. Genetic characterization of natural gases. AAPG Bull. 67 (12), 2225-2238. https://doi.org/10.1306/03b5b4c5-16d1-11d7-8645000102c1865d.

 

Shi, Z.J., Li, W.J., Luo, Q.C., Zhang, J., Wang, Y., Tian, Y.M., Yin, G., 2020. Emeishan mantle plume activity and carbon isotope responses in the Middle Permian, South China. J. Asian Earth Sci. 189, 104145. https://doi.org/10.1016/j.jseaes.2019.104145.

 

Strąpoć, D., Mastalerz, M., Eble, C., Schimmelmann, C., 2007. Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios. Org. Geochem. 38 (2), 267-287. https://doi.org/10.1016/j.orggeochem.2006.09.005.

 

Su, Y., Wang, W.M., Li, J.J., Gong, D.J., Shu, F., 2019. Origin of nitrogen in marine shale gas in Southern China and its significance as an indicator. Oil Gas Geol. 40 (6), 1185-1196. https://doi.org/10.11743/ogg20190603.

 

Suzuki, N., Saito, H., Hoshino, T., 2017. Hydrogen gas of organic origin in shales and metapelites. Int. J. Coal Geol. 173, 227-236. https://doi.org/10.1016/j.coal.2017.02.014.

 

Truche, L., Joubert, G., Dargent, M., Martz, P., Cathelineau, M., Rigaudier, T., Quirt, D., 2018. Clay minerals trap hydrogen in the earth's crust: evidence from the cigar lake uranium deposit, athabasca. Earth Planet Sci. Lett. 493, 186-197. https://doi.org/10.1016/j.epsl.2018.04.038.

 

Vacquand, C., Deville, E., Beaumont, V., Guyot, F., Sissmann, O., Pillot, D., Arcilla, A., Prinzhofer, A., 2018. Reduced gas seepages in ophiolitic complexes: evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochem. Cosmochim. Acta 223, 437-461. https://doi.org/10.1016/j.gca.2017.12.018.

 

Wang, C.S., Scott, R.W., Wan, X.Q., Graham, S.A., Huang, Y.J., Wang, P.J., Wu, H.C., Dean, W., Zhang, L.M., 2013. Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata. Earth Sci. Rev. 126, 275-299. https://doi.org/10.1016/j.earscirev.2013.08.016.

 

Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161 (1–3), 291-314. https://doi.org/10.1016/S0009-2541(99)00092-3.

 

Woolnough, W.G., 1934. Natural gas in Australia and new Guinea. AAPG Bull. 18 (2), 226-242.

 

Yang, X.B., Wang, H.Y., Li, Z.Y., Guan, C., Wang, X., 2021. Tectonic-sedimentary evolution of a continental rift basin: a case study of the Early Cretaceous Changling and Lishu fault depressions, southern Songliao Basin, China. Mar. Petrol. Geol. 128, 105068. https://doi.org/10.1016/J.MARPETGEO.2021.105068.

 

Zhang, L., Meng, Y.L., Cui, C.X., Li, X.N., Tao, S.Z., Wu, C.L., Hu, A.W., Xu, C., 2017. A new kinetic model of organic thermal evolution under the condition of hydrogen suppression: a case study from the Lucaogou Formation in the Santanghu Basin. Oil Gas Geol. 38 (5), 862-868. https://doi.org/10.11743/ogg20170504.

 

Zhang, Q.C., Hu, S.Y., Wang, L.W., Li, J.Z., Dong, J.H., Wang, Y., Zheng, M., 2010. Formation and distribution of volcanic CO2 gas pools in Songliao Basin. Acta Petrol. Sin. 26 (1), 109-120 (in Chinese). https://kns.cnki.net/kcms/detail/detail.aspx?FileName=YSXB201001014&DbName=CJFQ2010.

 

Zhu, Y.N., Shi, B.Q., Fang, C.B., 2000. The isotopic compositions of molecular nitrogen: implications on their origins in natural gas accumulations. Chem. Geol. 164 (3–4), 321-330. https://doi.org/10.1016/s0009-2541(99)00151-5.

 

Zumberge, J.E., Ferworn, K.A., Curtis, J.B., 2009. Gas character anomalies found in highly productive shale gas wells. Geochem. Cosmochim. Acta 73 (13), A1539. https://doi.org/10.1007/s11770-011-0294-0.

Petroleum Science
Pages 741-751
Cite this article:
Han S-B, Xiang C-H, Du X, et al. Geochemistry and origins of hydrogen-containing natural gases in deep Songliao Basin, China: Insights from continental scientific drilling. Petroleum Science, 2024, 21(2): 741-751. https://doi.org/10.1016/j.petsci.2023.10.031
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return