Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide. These reservoirs present unique challenges due to their deep burial depth (4500–8882 m), low matrix permeability, complex crustal stress conditions, high temperature and pressure (HTHP, 150–200℃, 105–155 MPa), coupled with high salinity of formation water. Consequently, the costs associated with their exploitation and development are exceptionally high. In deep and ultra-deep reservoirs, hydraulic fracturing is commonly used to achieve high and stable production. During hydraulic fracturing, a substantial volume of fluid is injected into the reservoir. However, statistical analysis reveals that the flowback rate is typically less than 30%, leaving the majority of the fluid trapped within the reservoir. Therefore, hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved. The challenging “three-high” environment of a deep reservoir, characterized by high temperature, high pressure, and high salinity, exacerbates conventional forms of damage, including water sensitivity, retention of fracturing fluids, rock creep, and proppant breakage. In addition, specific damage mechanisms come into play, such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions. Presently, the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing, comprehending the underlying mechanisms, and selecting appropriate solutions. It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs, with limited attention given to deep reservoirs and a lack of systematic summaries. In light of this, our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs. Subsequently, we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs, taking into account the unique reservoir characteristics of high temperature, high pressure, and high in-situ stress. In addition, we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix, both artificial and natural fractures, and sand-packed fractures. We conclude by offering a summary of current research advancements and future directions, which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.
Al-Ameri, A., Gamadi, T., Ispas, I., 2018. Evaluation of the near fracture face formation damage caused by the spontaneously imbibed fracturing fluid in unconventional gas reservoirs. J. Petrol. Sci. Eng. 171, 23–36. https://doi.org/10.1016/j.petrol.2018.07.021.
Ali, A., Potter, D., Imhmed, S., Schleifer, N., 2011. Quantifying the effects of core cleaning, core flooding and fines migration using sensitive magnetic techniques: implications for permeability determination and formation damage. Petrophysics 52, 444-451.
Almeida, F., Gireesha, B.J., Venkatesh, P., Ramesh, G.K., 2020. Intrinsic irreversibility of Al2O3–H2O nanofluid Poiseuille flow with variable viscosity and convective cooling. Int. J. Numer. Methods Heat Fluid Flow 31, 2042–2063. https://doi.org/10.1108/HFF-09-2020-0575.
Almubarak, T., Ng, J.H., Nasr–El–Din, H.A., Sokhanvarian, K., AlKhaldi, M., 2019. Dual-polymer hydraulic-fracturing fluids: a synergy between polysaccharides and polyacrylamides. SPE J. 24, 2635–2652. https://doi.org/10.2118/191580-PA.
Almubarak, T., Ng, J.H.C., AlKhaldi, M., Panda, S., Nasr-El-Din, H.A., 2020. Insights on potential formation damage mechanisms associated with the use of gel breakers in hydraulic fracturing. Polymers 12, 2722. https://doi.org/10.3390/polym12112722.
Alotaibi, M.B., Nasr-El-Din, H.A., Hill, A.D., Al Moajil, A.M., 2009. An optimized method to remove filter cake formed by formate-based drill-in fluid in extended-reach wells. SPE Drill. Complet. 25, 253–262. https://doi.org/10.2118/109754-PA.
An, Z., 2019. Water lock prevention/removal technology used in the “three-high” tight sandstone gas reservoirs of the Tarim Oilfield. Oil Drilling & Production Technology 41, 763–767. https://doi.org/10.13639/j.odpt.2019.06.014 (in Chinese).
Ayoub, J.A., Hutchins, R.D., van der Bas, F., et al., 2009. New results improve fracture-cleanup characterization and damage mitigation. SPE Prod. Oper. 24, 374–380. https://doi.org/10.2118/102326-PA.
Bahrami, H., Rezaee, R., Clennell, B., 2012. Water blocking damage in hydraulically fractured tight sand gas reservoirs: an example from Perth Basin, Western Australia. J. Petrol. Sci. Eng. 88 (89), 100–106. https://doi.org/10.1016/j.petrol.2012.04.002.
Bandara, K.M.A.S., Ranjith, P.G., Haque, A., Wanniarachchi, W.A.M., Zheng, W., Rathnaweera, T.D., 2021. An experimental investigation of the effect of long-term, time-dependent proppant embedment on fracture permeability and fracture aperture reduction. Int. J. Rock Mech. Min. Sci. 144, 104813. https://doi.org/10.1016/j.ijrmms.2021.104813.
Barati, R., Liang, J.-T., 2014. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. J. Appl. Polym. Sci. 131. https://doi.org/10.1002/app.40735.
Barboza, B.R., Chen, B., Li, C., 2021. A review on proppant transport modelling. J. Petrol. Sci. Eng. 204, 108753. https://doi.org/10.1016/j.petrol.2021.108753.
Bazin, B., Bekri, S., Vizika, O., Herzhaft, B., Aubry, E., 2010. Fracturing in tight gas reservoirs: application of special-core-analysis methods to investigate formation-damage mechanisms. SPE J. 15, 969–976. https://doi.org/10.2118/112460-PA.
Bennion, D.B., 2002. An overview of formation damage mechanisms causing a reduction in the productivity and injectivity of oil and gas producing formations. J. Can. Petrol. Technol. 41. https://doi.org/10.2118/02-11-das.
Burke, M.D., Park, J.O., Srinivasarao, M., Khan, S.A., 2000. Diffusion of macromolecules in polymer solutions and gels: a laser scanning confocal microscopy study. Macromolecules 33, 7500–7507. https://doi.org/10.1021/ma000786l.
Cao, Y., Qu, Z., Guo, T., Huaru, X., Gong, D., 2016. Experimental study on damage mechanism of water-based fracturing fluid to reservoir. Journal of Xi’an Shiyou University (Natural Science Edition) 31, 87–92+98 (in Chinese).
Cao, Y., Qu, Z., Xu, H., Guo, T., Yang, S., Gong, D., 2016. Experimental study on damage of water-based fracturing fluid to reservoir liquid phase. Fault-Block Oil Gas Field 23, 676–680. https://doi.org/10.6056/dkyqt201605030 (in Chinese).
Charoenwongsa, S., Kazemi, H., Fakcharoenphol, P., Miskimins, J.L., 2013. Simulation of gel filter-cake formation, gel cleanup, and post-fracture well performance in hydraulically fractured gas wells. SPE Prod. Oper. 28, 235–245. https://doi.org/10.2118/150104-PA.
Che, M., Wang, Y., Peng, J., Yang, X., Zou, G., Wang, L., 2018. Sand fracturing technologies for deep and ultra-deep fractured tight sandstone gas reservoirs: a case study of Dabei and Keshen gas reservoirs in the Tarim Basin. Nat. Gas. Ind. 38, 63–68. https://doi.org/10.3787/j.issn.1000-0976.2018.08.009.
Chen, Y., Ma, C., Ren, W., Liu, X., Liu, X., Gu, W., 2023. Development and performance of a sustained-release solid salt inhibitor. China Sciencepaper 18, 50–56 (in Chinese).
Cheng, Z., Wang, Q., Ning, Z., Li, M., Lyu, C., Huang, L., Wu, X., 2018. Experimental investigation of countercurrent spontaneous imbibition in tight sandstone using nuclear magnetic resonance. Energy Fuels 32, 6507–6517. https://doi.org/10.1021/acs.energyfuels.8b00394.
Cui, G., Tan, Y., Chen, T., Feng, X.-T., Elsworth, D., Pan, Z., Wang, C., 2020. Multidomain two-phase flow model to study the impacts of hydraulic fracturing on shale gas production. Energy Fuels 34, 4273–4288. https://doi.org/10.1021/acs.energyfuels.0c00062.
Da, Q.-A., Yao, C.-J., Zhang, X., Wang, X.-P., Qu, X.-H., Lei, G.-L., 2022. Investigation on microscopic invasion characteristics and retention mechanism of fracturing fluid in fractured porous media. Petrol. Sci. 19, 1745–1756. https://doi.org/10.1016/j.petsci.2022.03.009.
Dai, C., Wang, T., Zhao, M., et al., 2018. Impairment mechanism of thickened supercritical carbon dioxide fracturing fluid in tight sandstone gas reservoirs. Fuel 211, 60–66. https://doi.org/10.1016/j.fuel.2017.09.041.
Dong, B., Qiu, Z., Wang, W., Hanyi, Z., Song, D., 2015. Preparation and performance of novel reservoir protection agent SDME-2 used for shale gas reservoirs. J. Petrochem. Univ. 28, 61–65+79. doi:10.3969/j.issn.1006-396X.2015.06.012. (in Chinese).
Dong, B., Meng, M., Qiu, Z., Lu, Z., Zhang, Y., Zhong, H., 2019. Formation damage prevention using microemulsion in tight sandstone gas reservoir. J. Petrol. Sci. Eng. 173, 101–111. https://doi.org/10.1016/j.petrol.2018.10.003.
Du, D., Zhao, Y., Zhang, J., Liu, C., Tang, J., 2017. Progress and trends in shale gas seepage mechanism research. Journal of Southwest Petroleum University (Science & Technology Edition) 39, 136–144. https://doi.org/10.11885/j.issn.16745086.2015.12.24.04 (in Chinese).
Du, J., Liu, J., Zhao, L., Liu, P., Chen, X., Wang, Q., Yu, M., 2022. Water-soluble polymers for high-temperature resistant hydraulic fracturing: a review. J. Nat. Gas Sci. Eng. 104, 104673. https://doi.org/10.1016/j.jngse.2022.104673.
Dutta, R., Lee, C.H., Odumabo, S., Ye, P., Walker, S.C., Karpyn, Z.T., Ayala, H.L.F., 2014. Experimental investigation of fracturing-fluid migration caused by spontaneous imbibition in fractured low-permeability sands. SPE Reservoir Eval. Eng. 17, 74–81. https://doi.org/10.2118/154939-pa.
Fang, J., Guo, P., Xiao, X., Du, J., Dong, C., Xiong, Y., Long, F., 2015. Gas-water relative permeability measurement of high temperature and high pressure tight gas reservoirs. Petrol. Explor. Dev. 42, 92–96. https://doi.org/10.1016/s1876-3804(15)60010-6.
Feng, J., Gao, Z., Cui, J., Zhou, C., 2016. The exploration status and research advances of deep and ultra-deep clastic reservoirs. Adv. Earth Sci. 31, 718–736. https://doi.org/10.11867/j.issn.1001-8166.2016.07.0718 (in Chinese).
Fu, D., Zhu, H., Liu, Y., Hu, Y., 2008. Experimental study of the movable water in the rock pore of low permeability gas layer. J. Daqing Pet. Inst. 32 (5), 23–26+123. (in Chinese).
Fu, L., Liao, K., Ge, J., et al., 2019. Study of ethylenediammonium dichloride as a clay stabilizer used in the fracturing fluid. J. Petrol. Sci. Eng. 179, 958–965. https://doi.org/10.1016/j.petrol.2019.05.026.
Fu, L., Liao, K., Ge, J., Huang, W., Chen, L., Sun, X., Zhang, S., 2020. Study on the damage and control method of fracturing fluid to tight reservoir matrix. J. Nat. Gas Sci. Eng. 82, 103464. https://doi.org/10.1016/j.jngse.2020.103464.
Fu, L., Liao, K., Ge, J., He, Y., Guo, W., Zhang, S., 2020. Synergistic effect of sodium p-perfluorononenyloxybenzenesulfonate and alkanolamide compounding system used as cleanup additive in hydraulic fracturing. Energy Fuels 34, 7029–7037. https://doi.org/10.1021/acs.energyfuels.0c01043.
Fu, M., Zhang, Z., Hou, B., Wang, J., Xian, R., 2021. Polymer plugging mechanism and prevent technology of polymer injection wells in Henan Oilfield. Journal of Yangtze University (Natural Science Edition) 18, 37–48. https://doi.org/10.16772/j.cnki.1673-1409.2021.03.005 (in Chinese).
Ghanbari, E., Dehghanpour, H., 2016. The fate of fracturing water: a field and simulation study. Fuel 163, 282–294. https://doi.org/10.1016/j.fuel.2015.09.040.
Govier, G.W., Aziz, K., Schowalter, W.R., 1973. The flow of complex mixtures in pipes. J. Appl. Mech. 40, 404. https://doi.org/10.1115/1.3422996.
Gu, X., Pu, C., Huang, H., Huang, F., Li, Y., Liu, Y., Liu, H., 2017. Micro-influencing mechanism of permeability on spontaneous imbibition recovery for tight sandstone reservoirs. Petrol. Explor. Dev. 44, 1003–1009. https://doi.org/10.1016/s1876-3804(17)30112-x (in Chinese).
Guan, B., Zhou, H., Cheng, Y., Ren, X., Liu, J., Xie, X., 2007. Microcosmic analysis of damage of fracturing fluids to reservoirs in Xifeng Oilfield of Ordos Basin. China Petroleum Exploration (4), 59–62+8. https://doi.org/10.3969/j.issn.1672-7703.2007.04.014 (in Chinese).
Guo, J., He, C., 2012. Microscopic mechanism of the damage caused by gelout process of fracturing fluids. Acta Pet. Sin. 33, 1018. https://doi.org/10.7623/syxb201206013 (in Chinese).
Guo, J., Wang, S., Wu, L., 2011. Research and application of ultra-high temperature fracture fluids. Oilfield Chem. 28, 201–205. https://doi.org/10.19346/j.cnki.1000-4092.2011.02.021 (in Chinese).
Guo, J., Li, Y., Wang, S., 2018. Adsorption damage and control measures of slick-water fracturing fluid in shale reservoirs. Petrol. Explor. Dev. 45, 336–342. https://doi.org/10.1016/s1876-3804(18)30037-5.
Guo, T., Gong, F., Lin, X., Lin, Q., Wang, X., 2018. Experimental investigation on damage mechanism of guar gum fracturing fluid to low-permeability reservoir based on nuclear magnetic resonance. J. Energy Resour. Technol. 140. https://doi.org/10.1115/1.4039324.
Guzmán, J.D., Pineda, D., Franco, C.A., Botero, Ó.F., Lopera, S.H., Cortés, F.B., 2017. Effect of nanoparticle inclusion in fracturing fluids applied to tight gas-condensate reservoirs: reduction of Methanol loading and the associated formation damage. J. Nat. Gas Sci. Eng. 40, 347–355. https://doi.org/10.1016/j.jngse.2017.02.032.
Haluszczak, L.O., Rose, A.W., Kump, L.R., 2013. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania. Appl. Geochem. 28, 55–61. https://doi.org/10.1016/j.apgeochem.2012.10.002.
Han, H., He, Q., Wang, L., 2017. The current situation of flowback technology and its further development research for shale-gas wells in Changning block. Drill. Prod. Technol. 40, 69–71+77+5. https://doi.org/10.3969/J.ISSN.1006-768X.2017.04.22 (in Chinese).
Han, M., Kim, C., Kim, M., Lee, S., 1999. Particle migration in tube flow of suspensions. Journal of Rheology 43, 1157. https://doi.org/10.1122/1.551019.
Hu, J., Zhang, C., Rui, Z., Yu, Y., d Chen, Z., 2017. Fractured horizontal well productivity prediction in tight oil reservoirs. J. Petrol. Sci. Eng. 151, 159–168. https://doi.org/10.1016/j.petrol.2016.12.037.
Hurnaus, T., Plank, J., 2015. Behavior of titania nanoparticles in cross-linking hydroxypropyl guar used in hydraulic fracturing fluids for oil recovery. Energy Fuels 29, 3601–3608. https://doi.org/10.1021/acs.energyfuels.5b00430.
Jia, H., Huang, P., Wang, Q., et al., 2019. Investigation of inhibition mechanism of three deep eutectic solvents as potential shale inhibitors in water-based drilling fluids. Fuel 244, 403–411. https://doi.org/10.1016/j.fuel.2019.02.018.
Jian, W., Weiqiang, F., Haoren, Y., 2011. The research of water lock removal for low permeability sandstone reservoirs in Chunhua Oilfield. Journal of Yangtze University (Natural Science Edition) 8, 54–56+278. https://doi.org/10.3969/j.issn.1673-1409.2011.08.017 (in Chinese).
Jiang, H., Li, T., Liu, S., Tang, Y., Yuan, S., 2022. Quantitative characterization of salting out during development of deep high temperature gas reservoirs. J. Petrol. Sci. Eng. 211, 110125. https://doi.org/10.1016/j.petrol.2022.110125.
Jiang, J., Lu, H., 2009. Research and application of new carboxymethyl fracture fluid. Oil Drilling & Production Technology 31, 65–68. https://doi.org/10.13639/j.odpt.2009.05.001 (in Chinese).
Jiang, T., Teng, X., Yang, X., 2016. Integrated techniques for rapid and highly-efficient development and production of ultra-deep tight sand gas reservoirs of Keshen 8 Block in the Tarim Basin. Nat. Gas. Ind. 36, 1–9. https://doi.org/10.3787/j.issn.1000-0976.2016.10.001 (in Chinese).
Kang, Y., Huang, F., You, L., Li, X., Gao, B., 2016. Study of water locking damage mechanism and water unlocking of low permeability reservoir. Int. J. Coal Geol. 154 (155), 123–135. https://doi.org/10.1016/j.coal.2016.01.003 (in Chinese).
Kang, Y., Zhang, X., You, L., Chen, Q., Zhang, D., Cui, Z., 2017. The experimental research on spontaneous flowback relieving aqueous phase trapping damage in shale gas reservoirs. Nat. Gas Geosci. 28, 819–827. https://doi.org/10.11764/J.ISSN.1672-1926.2017.05.009 (in Chinese).
Katende, A., O'Connell, L., Rich, A., Rutqvist, J., Radonjic, M., 2021. A comprehensive review of proppant embedment in shale reservoirs: experimentation, modeling and future prospects. J. Nat. Gas Sci. Eng. 95, 104143. https://doi.org/10.1016/j.jngse.2021.104143.
King, H.E., Eberle, A.P.R., Walters, C.C., Kliewer, C.E., Ertas, D., Huynh, C., 2015. Pore architecture and connectivity in gas shale. Energy Fuels 29, 1375–1390. https://doi.org/10.1021/ef502402e.
Lei, Q., Xu, Y., Yang, Z., et al., 2021. Progress and development directions of stimulation techniques for ultra-deep oil and gas reservoirs. Petrol. Explor. Dev. 48, 221–231. https://doi.org/10.1016/s1876-3804(21)60018-6.
Lei, Q., Tang, H., Zhang, L., Zhu, B., 2018. Invasion depth model for drilling fluids in fractures in dense sandstones. Journal of Southwest Petroleum University (Science & Technology Edition) 40, 97. https://doi.org/10.11885/j.issn.1674-5086.2017.04.25.03 (in Chinese).
Li, C., Gong, Y., Li, F., Lei, K., Zhang, H., 2020. Development and preparation of clay stabilizers for oil and gas fields. Appl. Chem. Ind. 49, 1256 1260+1265 (in Chinese).
Li, J., Cai, J., 2023. Quantitative characterization of fluid occurrence in shale reservoirs. Advances in Geo-Energy Research 9 (3), 146-151 https://doi.org/10.46690/ager.2023.09.02.
Li, L., Tan, J., Wood, D.A., 2019. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs. Fuel 242, 195–210. https://doi.org/10.1016/j.fuel.2019.01.026.
Li, L., Qiu, X., Fang, Y., Fu, N., Liu, X., Zhao, J., 2019. Development and evaluation of ultra-low concentration guar gum fracturing fluid system in Daniudi tight gas reservoir. Drill. Prod. Technol. 42, 104–107+12 (in Chinese).
Li, M., Zou, Q., Zhou, H., et al., 2018. Preparation and properties of amphoteric polymer fracturing fluid. Polym. Mater. Sci. Eng. 34, 7–12 (in Chinese).
Li, W., Lu, H., Guo, F., Dai, S., Quan, H., 2012. Synthesis and performance evaluation of oligomer quaternary ammonium salt as an anti-Swelling chemical. Petrochemical Industry Application 31, 71–73+76 (in Chinese).
Li, W., Liu, J., Zeng, J., Leong, Y.-K., Elsworth, D., Tian, J., Li, L., 2020. A fully coupled multidomain and multiphysics model for evaluation of shale gas extraction. Fuel 278, 118214. https://doi.org/10.1016/j.fuel.2020.118214.
Liang, F., Sayed, M., Al-Muntasheri, G.A., Chang, F.F., Li, L., 2016. A comprehensive review on proppant technologies. Petroleum 2, 26–39. https://doi.org/10.1016/j.petlm.2015.11.001.
Liang, T., Li, Q., Liang, X., et al., 2018. Evaluation of liquid nanofluid as fracturing fluid additive on enhanced oil recovery from low-permeability reservoirs. J. Petrol. Sci. Eng. 168, 390–399. https://doi.org/10.1016/j.petrol.2018.04.073.
Liang, X., Zhou, F., Han, G., Zhu, Z., Xiang, H., Liang, T., 2022. Experimental study on fracture conductivity in high temperature and high pressure tight gas formation: a case of Tarim Basin in China. Gondwana Res. 107, 49–58. https://doi.org/10.1016/j.gr.2022.03.003.
Lin, H., Yang, B., Song, X., Sun, X., Dong, L., 2021. Fracturing fluid retention in shale gas reservoir from the perspective of pore size based on nuclear magnetic resonance. J. Hydrol. 601, 126590. https://doi.org/10.1016/j.jhydrol.2021.126590.
Liu, D., Yao, Y., Yuan, X., Yang, Y., 2022. Experimental evaluation of the dynamic water-blocking effect in coalbed methane reservoir. J. Petrol. Sci. Eng. 217, 110887. https://doi.org/10.1016/j.petrol.2022.110887.
Liu, H., Bai, H., Lv, B., et al., 2022. Parameter optimization and field test of nano variable-viscosity slick water fracturing in Changqing shale reservoir. IOP Conf. Ser. Earth Environ. Sci. 984, 012004. https://doi.org/10.1088/1755-1315/984/1/012004.
Liu, J., Liu, Y., Song, X., Wu, Z., Zhang, X., 2021. Characteristics and evaluation method of low concentration guar-based fracturing fluid formation damage. China Mining Magazine 30, 304–309 (in Chinese).
Liu, K., Du, H., Zheng, T., et al., 2021. Recent advances in cellulose and its derivatives for oilfield applications. Carbohydr. Polym. 259, 117740. https://doi.org/10.1016/j.carbpol.2021.117740.
Liu, P., He, D., Pan, K., Wang, Q., 2022. Research and application of multifunctional slick-water system in unconventional reservoirs. Advances in Fine Petrochemicals 23, 1–5. https://doi.org/10.13534/j.cnki.32-1601/te.2022.06.007 (in Chinese).
Liu, Y., Li, L., Liu, J., Wu, J., Xu, J., Huang, J., Du, F., 2015. Research and application of low concentration guar fracturing fluid in highly-deviated wells with high temperature. Drill. Prod. Technol. 38, 89–92+11. https://doi.org/10.3969/J.ISSN.1006-768X.2015.04.26 (in chinese).
Liu, Y., Liu, J., Li, Y., et al., 2020. Development and field application of a new ultralow guar gum concentration weighted fracturing fluid in HPHT reservoirs. J. Chem. 7846372. https://doi.org/10.1155/2020/7846372.
Liu, Z., Shao, J., Xie, S., Conil, N., Zha, W., 2018. Effects of relative humidity and mineral compositions on creep deformation and failure of a claystone under compression. Int. J. Rock Mech. Min. Sci. 103, 68–76. https://doi.org/10.1016/j.ijrmms.2018.01.015.
Lu, Y., Yang, F., Ge, Z., Wang, S., Wang, Q., 2015. The influence of viscoelastic surfactant fracturing fluids on gas desorption in soft seams. J. Nat. Gas Sci. Eng. 27, 1649–1656. https://doi.org/10.1016/j.jngse.2015.10.031.
Ma, S., Zhang, Y., Man, Y., et al., 2020. Study on influence of temperature and pressure on reservoir sensitivity of offshore oilfield. Sino-Global Energy 25, 45–49 (in Chinese).
Makhanov, K., Habibi, A., Dehghanpour, H., Kuru, E., 2014. Liquid uptake of gas shales: a workflow to estimate water loss during shut-in periods after fracturing operations. Journal of Unconventional Oil and Gas Resources 7, 22–32. https://doi.org/10.1016/j.juogr.2014.04.001.
Mao, J., Liao, Z., Jiang, J., et al., 2022. One practical CaCl2-weighted fracturing fluid for high-temperature and high-pressure reservoir. Petrol. Sci. Technol. 40, 2877–2889. https://doi.org/10.1080/10916466.2022.2050388.
Maranini, E., Brignoli, M., 1999. Creep behaviour of a weak rock: experimental characterization. Int. J. Rock Mech. Min. Sci. 36, 127–138. https://doi.org/10.1016/s0148-9062(98)00171-5.
Miao, Y., Zhao, C., Wu, K., Li, X., 2019. Analysis of production prediction in shale reservoirs: influence of water film in inorganic matter. J. Nat. Gas Sci. Eng. 63, 1–9. https://doi.org/10.1016/j.jngse.2019.01.002.
Mittal, A., Rai, C.S., Sondergeld, C.H., 2018. Proppant-conductivity testing under simulated reservoir conditions: impact of crushing, embedment, and diagenesis on long-term production in shales. SPE J. 23, 1304–1315. https://doi.org/10.2118/191124-PA.
Nicot, J.-P., Scanlon, B.R., Reedy, R.C., Costley, R.A., 2014. Source and fate of hydraulic fracturing water in the barnett shale: a historical perspective. Environ. Sci. Technol. 48, 2464–2471. https://doi.org/10.1021/es404050r.
Ozden, S., Li, L., Al-Muntasheri, G.A., Liang, F., 2017. Nanomaterials-enhanced high-temperature viscoelastic surfactant VES well treatment fluids. SPE International Conference on Oilfield Chemistry. https://doi.org/10.2118/184551-MS.
Peng, J., Rong, G., Tang, Z., Sha, S., 2019. Microscopic characterization of microcrack development in marble after cyclic treatment with high temperature. Bull. Eng. Geol. Environ. 78, 5965–5976. https://doi.org/10.1007/s10064-019-01494-2.
Qiu, Z., Dong, B., Zhong, H., Wang, W., Zhao, X., Song, D., Yang, L., 2015. Preparation of oil-in-water nanoemulsions used for protection of shale gas reservoirs. CIE J. 66, 4565–4571. https://doi.org/10.11949/j.issn.0438-1157.20150560 (in Chinese).
Raysoni, N., Weaver, J., 2013. Long-term hydrothermal proppant performance. SPE Prod. Oper. 28, 414–426. https://doi.org/10.2118/150669-pa.
Reinicke, A., Blöcher, G., Zimmermann, G., et al., 2012. Mechanically induced fracture-face skin—insights from laboratory testing and modeling approaches. SPE Prod. Oper. 28, 26–35. https://doi.org/10.2118/144173-PA.
Ren, Z., 2015. Formulation design and cleanup effect of a cleanup additive with high interfacial activity. Journal of Xi’an Shiyou University (Natural Science Edition) 30, 97–102+10. https://doi.org/10.3969/j.issn.1673-064X.2015.04.020 (in Chinese).
Roshan, H., Lv, A., Aghighi, M.A., Sarmadivaleh, M., Siddiqui, M.A.Q., As, D. van, Ehsani, S., 2022. Stabilization of clay-rich interburdens using silica nanoparticles. J. Petrol. Sci. Eng. 211, 110126. https://doi.org/10.1016/j.petrol.2022.110126.
Rybacki, E., Herrmann, J., Wirth, R., Dresen, G., 2017. Creep of posidonia shale at elevated pressure and temperature. Rock Mech. Rock Eng. 50, 3121–3140. https://doi.org/10.1007/s00603-017-1295-y.
Sayed, M.A., Al-Muntasheri, G.A., Liang, F., 2017. Development of shale reservoirs: knowledge gained from developments in North America. J. Petrol. Sci. Eng. 157, 164–186. https://doi.org/10.1016/j.petrol.2017.07.014.
Shan, S., Lü, X., Xin, H., Liu, J., Lü, H., Fan, H., 2017. The development and application of a cleanup additive with low interfacial tension and high contact angle in the Longdong tight reservoir. Sci. Technol. Eng. 17 (13), 15–19 (in Chinese).
Sibson, R.H., 1994. Crustal stress, faulting and fluid flow. Geological Society, London, Special Publications 78, 69–84. https://doi.org/10.1144/GSL.SP.1994.078.01.07.
Siddiqui, M.A., Nasr-El-Din, H.A., 2005. Evaluation of special enzymes as a means to remove formation damage induced by drill-in fluids in horizontal gas wells in tight reservoirs. SPE Prod. Facil. 20, 177–184. https://doi.org/10.2118/81455-PA.
Singh, H., 2016. A critical review of water uptake by shales. J. Nat. Gas Sci. Eng. 34, 751–766. https://doi.org/10.1016/j.jngse.2016.07.003.
Song, Z., Hou, J., Zhang, L., Chen, Z., Li, M., 2018. Experimental study on disproportionate permeability reduction caused by non-recovered fracturing fluids in tight oil reservoirs. Fuel 226, 627–634. https://doi.org/10.1016/j.fuel.2018.04.044.
Sun, J., Liu, T., Teng, Z., Dai, X., Chen, G., Wei, J., 2021. Preparation and properties of borate crosslinking weighted fracturing fluid with high temperature resistance and low friction. Appl. Chem. Ind. 50, 2649–2652+2656. https://doi.org/10.16581/j.cnki.issn1671-3206.2021.10.003 (in Chinese).
Sun, L., Zou, C., Zhu, R., et al., 2013. Formation, distribution and potential of deep hydrocarbon resources in China. Petrol. Explor. Dev. 40, 687–695. https://doi.org/10.1016/S1876-3804(13)60093-2.
Sun, Z., Lu, X., Jia, X., Bai, Y., Hu, W., 2017. Optimization of mercury intrusion capillary pressure measurement for characterizing the pore structure of tight rocks. J. Nanosci. Nanotechnol. 17 (9), 6242–6251. https://doi.org/10.1166/jnn.2017.14483.
Szopinski, D., Kulicke, W.-M., Luinstra, G.A., 2015. Structure–property relationships of carboxymethyl hydroxypropyl guar gum in water and a hyperentanglement parameter. Carbohydr. Polym. 119, 159–166. https://doi.org/10.1016/j.carbpol.2014.11.050.
Tang, H., Tang, H., He, J., et al., 2021. Damage mechanism of water-based fracturing fluid to tight sandstone gas reservoirs: improvement of the evaluation measurement for properties of water-based fracturing fluid: SY/t 5107-2016. Nat. Gas. Ind. B 8 (2), 163–172. https://doi.org/10.1016/j.ngib.2020.09.016.
Tang, Y., Ranjith, P.G., 2018. An experimental and analytical study of the effects of shear displacement, fluid type, joint roughness, shear strength, friction angle and dilation angle on proppant embedment development in tight gas sandstone reservoirs. Int. J. Rock Mech. Min. Sci. 107, 94–109. https://doi.org/10.1016/j.ijrmms.2018.03.008.
Tang, Y., Ranjith, P.G., Perera, M.S.A., 2018. Major factors influencing proppant behaviour and proppant-associated damage mechanisms during hydraulic fracturing. Acta Geotechnica 13, 757–780. https://doi.org/10.1007/s11440-018-0670-5.
Tariq, Z., Kamal, M.S., Mahmoud, M., Murtaza, M., Abdulraheem, A., Zhou, X., 2021. Dicationic surfactants as an additive in fracturing fluids to mitigate clay swelling: a petrophysical and rock mechanical assessment. ACS Omega 6, 15867–15877. https://doi.org/10.1021/acsomega.1c01388.
Teklu, T.W., Li, X., Zhou, Z., Alharthy, N., Wang, L., Abass, H., 2018. Low-salinity water and surfactants for hydraulic fracturing and EOR of shales. J. Petrol. Sci. Eng. 162, 367–377. https://doi.org/10.1016/j.petrol.2017.12.057.
Teng, X., Pei, C.M.Y., Ning, L., Bo, Z., 2016. Whole well ROP enhancement technology for super-deep wells in Kuqa Foreland Basin. China Petroleum Exploration 21 (1), 76–88. https://doi.org/10.3969/j.issn.1672-7703.2016.01.008 (in Chinese).
Vankeuren, A.N.P., Hakala, J.A., Jarvis, K., Moore, J.E., 2017. Mineral reactions in shale gas reservoirs: barite scale formation from reusing produced water as hydraulic fracturing fluid. Environ. Sci. Technol. 51, 9391–9402. https://doi.org/10.1021/acs.est.7b01979.
Vishkai, M., Gates, I., 2019. On multistage hydraulic fracturing in tight gas reservoirs: montney Formation, Alberta, Canada. J. Petrol. Sci. Eng. 174, 1127–1141. https://doi.org/10.1016/j.petrol.2018.12.020.
Wang, D., Dong, Y., Sun, D., Yu, B., 2020. A three-dimensional numerical study of hydraulic fracturing with degradable diverting materials via CZM-based FEM. Engineering Fracture Mechanics 237, 107251. https://doi.org/10.1016/j.engfracmech.2020.107251.
Wang, D., Zlotnik, S., Diez, P., Ge, H., Zhou, F., Yu, B., 2020. A numerical study on hydraulic fracturing problems via the proper generalized decomposition method. Computer Modeling in Engineering and Sciences 122 (1), 703–720. https://doi.org/10.32604/cmes.2020.08033.
Wang, D., Zhou, F., Li, Y., Yu, B., Martyushev, D., Liu, X., Wang, M., He, C., Han, D., Sun, D., 2022. Numerical simulation of fracture propagation in Russia carbonate reservoirs during refracturing. Petrol. Sci. 19 (6), 2781–2795. https://doi.org/10.1016/j.petsci.2022.05.013.
Wang, F., Pan, Z., Zhang, S., 2016. Modeling fracturing-fluid flowback behavior in hydraulically fractured shale gas under chemical potential dominated conditions. Appl. Geochem. 74, 194–202. https://doi.org/10.1016/j.apgeochem.2016.10.008.
Wang, F., Pan, Z., Zhang, S., 2017. Impact of chemical osmosis on water leakoff and flowback behavior from hydraulically fractured gas shale. J. Petrol. Sci. Eng. 151, 264–274. https://doi.org/10.1016/j.petrol.2017.01.018.
Wang, G., Li, Z., Gao, Y., et al., 2019. Development and application of a functional slick water. Drill. Fluid Complet. Fluid 36, 257–260. https://doi.org/10.3969/j.issn.1001-5620.2019.02.022 (in Chinese).
Wang, J., Zhou, F.-J., 2021. Cause analysis and solutions of water blocking damage in cracked/non-cracked tight sandstone gas reservoirs. Petrol. Sci. 18, 219–233. https://doi.org/10.1007/s12182-020-00482-6.
Wang, J., Zhu, J., Li, C., Li, J., Zhang, J., 2017. Behavior evaluation and application of weak-damage guar gum clean fracturing fluid. Appl. Chem. Ind. 46, 948–950+954. https://doi.org/10.1155/2020/8302310.
Wang, J., Huang, Y., Zhang, Y., Zhou, F., Yao, E., Wang, R., 2020. Study of fracturing fluid on gel breaking performance and damage to fracture conductivity. J. Petrol. Sci. Eng. 193, 107443. https://doi.org/10.1016/j.petrol.2020.107443.
Wang, L., Yang, J., Gao, Y., Yang, Z., Teng, Q., Han, X., Xu, M., 2020. Study on weighted slick water fracturing fluid for deep buried oil and gas. Drill. Fluid Complet. Fluid 37, 794, 797+802. https://doi:10.3969/j.issn.1001-5620.2020.06.020 (in Chinese).
Wang, S.B., Zhang, Y.Y., Guo, J.C., Wang, D.A., Zhang, Y.C., 2014. Preparation of guar gum with low molecular weight by enzymatic degradation. Oilfield Chem. 31, 195–198. https://doi.org/10.19346/j.cnki.1000-4092.2014.02.009 (in Chinese).
Wang, W., Wu, W., Gao, T., Wang, Y., Wang, T., Liu, X., 2014. The research and evaluation of HL-C3 slippery water formula system. Petrochemical Industry Application 33, 51–53+66. https://doi.org/10.3969/j.issn.1673-5285.2014.06.013 (in Chinese).
Wang, Z., Zhang, H., Xu, K., Wang, H., Liu, X., Lai, S., 2022. Key technology and practice of well stimulation with geology and engineering integration of ultra-deep fractured sandstone gas reservoir. China Petroleum Exploration 27, 164–171. https://doi.org/10.3969/j.issn.1672-7703.2022.01.016 (in Chinese).
Wanniarachchi, W.A.M., Ranjith, P.G., Perera, M.S.A., 2017. Shale gas fracturing using foam-based fracturing fluid: a review. Environ. Earth Sci. 76, 91. https://doi.org/10.1007/s12665-017-6399-x.
Wen, Q., Zhang, S., Wang, L., Liu, Y., Li, X., 2007. The effect of proppant embedment upon the long-term conductivity of fractures. J. Petrol. Sci. Eng. 55, 221–227. https://doi.org/10.1016/j.petrol.2006.08.010.
Wu, L., Wang, S., Lei, Y., 2011. Weighting performance research of ultra-high temperature guar gum fracturing fluid. Journal of Chongqing University of Science and Technology (Natural Sciences Edition) 13, 98–100+116. https://doi.org/10.19406/j.cnki.cqkjxyxbzkb.2011.01.031 (in Chinese).
Wu, X., Pu, H., Zhu, K., Lu, S., 2017. Formation damage mechanisms and protection technology for Nanpu nearshore tight gas reservoir. J. Petrol. Sci. Eng. 158, 509–515. https://doi.org/10.1016/j.petrol.2017.07.033.
Wu, Y., Pan, Z., Zhang, D., Down, D.I., Lu, Z., Connell, L.D., 2018. Experimental study of permeability behaviour for proppant supported coal fracture. J. Nat. Gas Sci. Eng. 51, 18–26. https://doi.org/10.1016/j.jngse.2017.12.023.
Xiong, B., Miller, Z., Roman-White, S., et al., 2018. Chemical degradation of polyacrylamide during hydraulic fracturing. Environ. Sci. Technol. 52, 327–336. https://doi.org/10.1021/acs.est.7b00792.
Xiong, J., Li, C., Zhang, L., An, Q., Yang, S., Li, Y., Wang, S., 2018. The study and application of low damage fracturing fluid for horizontal well in tight sandstone gas fracturing of Ordos basin. Petrochemical Industry Application 37, 93–96 (in Chinese).
Xiong, Y., Liu, Y., Mei, Z., Zhang, Y., Long, S., 2019. Slick water technology of high salinity resistance for shale gas development in Sichuan. Chem. Eng. Oil Gas 48 (3), 62–65+71 (in Chinese).
Xu, B., Hill, A.D.D., Zhu, D., Wang, L., 2011. Experimental evaluation of guar-fracture-fluid filter-cake behavior. SPE Prod. Oper. 26 (4), 381–387. https://doi.org/10.2118/140686-PA.
Xu, C., Kang, Y., You, Z., Chen, M., 2016. Review on formation damage mechanisms and processes in shale gas reservoir: known and to be known. J. Nat. Gas Sci. Eng. 36, 1208–1219. https://doi.org/10.1016/j.jngse.2016.03.096.
Xu, J., Qiu, Z., Zhao, X., Zhong, H., Huang, W., 2019. Study of 1-octyl-3-methylimidazolium bromide for inhibiting shale hydration and dispersion. J. Petrol. Sci. Eng. 177, 208–214. https://doi.org/10.1016/j.petrol.2019.02.064.
Xu, K., Hou, Z., Weng, D., Liu, W., Shi, Y., Fang, B., Lu, X., 2022. Research progress of high temperature resistant fracturing fluid system and additives. Contemp. Chem. Ind. 51, 936–940+974. https://doi.org/10.13840/j.cnki.cn21-1457/tq.2022.04.006 (in Chinese).
Xu, L., Li, Y., Jiang, G., Ye, L., Wang, D., 2014. Quantum chemical study of fluorocarbon wettability reversal additives in drilling fluid. Sci. Technol. Eng. 14, 193–197. https://doi.org/10.3969/j.issn.1671-1815.2014.27.038 (in Chinese).
Xu, Y., Dehghanpour, H., Ezulike, O., Virues, C., 2017. Effectiveness and time variation of induced fracture volume: lessons from water flowback analysis. Fuel 210, 844–858. https://doi.org/10.1016/j.fuel.2017.08.027.
Xu, Y., Tang, Y., Li, W., Liu, Y., Jing, X., 2019. Research on a new type of cleanup additive based on degradable Gemini fluorocarbon surfactant. Chem. Eng. Oil Gas 48, 62–65. https://doi.org/10.3969/j.issn.1007-3426.2019.05.012 (in Chinese).
Xu, Z., Dai, Y., Li, L., 2016. Performance evaluation on JK-1002 high temperature carboxymethyl gum fracturing fluid and its application in Jilin Oilfield. Journal of Yangtze University (Natural Science Edition) 13, 64–69+6. https://doi.org/10.16772/j.cnki.1673-1409.2016.08.014 (in Chinese).
Yang, H., Zhang, R., Yang, X., Wang, K., Wang, J., Tang, Y., Zhou, L., 2018. Characteristics and reservoir improvement effect of structural fracture in ultra-deep tight sandstone reservoir: a case study of Keshen Gasfield, Kuqa Depression, Tarim Basin. Nat. Gas Geosci. 29, 942–950. https://doi.org/10.11764/j.issn.1672-1926.2018.06.018 (in Chinese).
Yang, R., Huang, Z., Li, G., et al., 2017. A semianalytical approach to model two-phase flowback of shale-gas wells with complex-fracture-network geometries. SPE J. 22, 1808–1833. https://doi.org/10.2118/181766-PA.
Yang, Z., Liu, F., Song, L., Lin, L., 2018. A new fracturing fluid with temperature resistance of 230℃. Drill. Fluid Complet. Fluid 35 (1), 101–104. https://doi.org/10.3969/j.issn.1673-064X.2007.02.025 (in Chinese).
Yao, E., Bai, H., Zhou, F., Zhang, M., Wang, J., Li, F., 2021. Performance evaluation of the multifunctional variable-viscosity slick water for fracturing in unconventional reservoirs. ACS Omega 6, 20822–20832. https://doi.org/10.1021/acsomega.1c01986.
Yao, G., Wu, X., Sun, Z., et al., 2017. Status and prospects of exploration and exploitation key technologies of the deep oil & gas resources in onshore China. Nat. Gas Geosci. 28, 1154–1164 (in Chinese).
Yao, G., Wu, X., Sun, Z., et al., 2018. Status and prospects of exploration and exploitation key technologies of the deep petroleum resources in onshore China. Journal of Natural Gas Geoscience 3 (1), 25–35. https://doi.org/10.1016/j.jnggs.2018.03.002.
You, L., Wang, Z., Kang, Y., Zhao, Y., Zhang, D., 2018. Experimental investigation of porosity and permeability change caused by salting out in tight sandstone gas reservoirs. Journal of Natural Gas Geoscience 3 (6), 347–352. https://doi.org/10.1016/j.jnggs.2018.12.003.
You, L., Xie, B., Yang, J., Kang, Y., Han, H., Wang, L., Yang, B., 2019. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs. Nat. Gas. Ind. B 6, 366–373. https://doi.org/10.1016/j.ngib.2018.12.005 (in Chinese).
Yuan, D., Zhao, Q., Yan, S., Tang, S.-Y., Alici, G., Zhang, J., Li, W., 2018. Recent progress of particle migration in viscoelastic fluids. Lab Chip 18, 551–567. https://doi.org/10.1039/c7lc01076a.
Zelenev, A.S., Champagne, L.M., Hamilton, M., 2011. Investigation of interactions of diluted microemulsions with shale rock and sand by adsorption and wettability measurements. Colloids Surf. A Physicochem. Eng. Asp. 391, 201–207. https://doi.org/10.1016/j.colsurfa.2011.07.007.
Zhang, F., Mack, M., 2017. Integrating fully coupled geomechanical modeling with microsesmicity for the analysis of refracturing treatment. J. Nat. Gas Sci. Eng. 46, 16–25. https://doi.org/10.1016/j.jngse.2017.07.008.
Zhang, J., Kamenov, A., Zhu, D., Hill, A.D., 2015a. Development of new testing procedures to measure propped fracture conductivity considering water damage in clay-rich shale reservoirs: an example of the Barnett Shale. J. Petrol. Sci. Eng. 135, 352–359. https://doi.org/10.1016/j.petrol.2015.09.025.
Zhang, K., Liu, Y., Sheng, L., Li, B., Chen, T., Liu, X., Yao, E., 2022. Study on the effect of fracturing fluid on the structure and mechanical properties of igneous rock. ACS Omega 7, 11903–11913. https://doi.org/10.1021/acsomega.1c07386.
Zhang, L., Pu, C., Cui, S., Nasir, K., Liu, Y., 2016. Experimental study on a new type of water shutoff agent used in fractured low permeability reservoir. J. Energy Resour. Technol. 139. https://doi.org/10.1115/1.4035146.
Zhang, L., Zhou, F., Zhang, S., Li, Z., Wang, J., Wang, Y., 2019. Evaluation of permeability damage caused by drilling and fracturing fluids in tight low permeability sandstone reservoirs. J. Petrol. Sci. Eng. 175, 1122–1135. https://doi.org/10.1016/j.petrol.2019.01.031.
Zhang, S., Pu, H., Zhao, J.X., 2019. Experimental and numerical studies of spontaneous imbibition with different boundary conditions: case studies of Middle Bakken and Berea Cores. Energy Fuels 33, 5135–5146. https://doi.org/10.1021/acs.energyfuels.9b00909.
Zhang, W., Guo, T., Qu, Z., Wang, Z., 2019. Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective. Energy 178, 508–521. https://doi.org/10.1016/j.energy.2019.04.131.
Zhang, Y., Chen, M., Deng, Y., Jin, Y., Lu, Y., Xia, Y., 2018. Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites. J. Chin. Ceram. Soc. 46, 1489–1498. https://doi.org/10.14062/j.issn.0454-5648.2018.10.21 (in Chinese).
Zhao, J., Chen, P., Liu, Y., Mao, J., 2018. Development of an LPG fracturing fluid with improved temperature stability. J. Petrol. Sci. Eng. 162, 548–553. https://doi.org/10.1016/j.petrol.2017.10.060.
Zhao, J., Fan, J., Mao, J., Yang, X., Zhang, H., Zhang, W., 2018. High performance clean fracturing fluid using a new tri-cationic surfactant. Polymers 10, 535. https://doi.org/10.3390/polym10050535.
Zhao, W., Hu, S., Liu, W., Wang, T., Jiang, H., 2015. The multi-staged “golden zones” of hydrocarbon exploration in superimposed petroliferous basins of onshore China and its significance. Petrol. Explor. Dev. 42 (1), 1–13. https://doi.org/10.1016/s1876-3804(15)60001-5.
Zhao, Y., 2020. Research on one low friction drag high temperature weighted fracturing fluid system and evaluation on its performance. Advances in Fine Petrochemicals 21 (6), 1–4+32. https://doi.org/10.13534/j.cnki.32-1601/te.2020.06.001 (in Chinese).
Zhao, Y., Zhang, L., Wang, W., Wan, W., Li, S., Ma, W., Wang, Y., 2017. Creep behavior of intact and cracked limestone under multi-level loading and unloading cycles. Rock Mech. Rock Eng. 50, 1409–1424. https://doi.org/10.1007/s00603-017-1187-1.
Zhao, Z., 2019. Analysis of global oil and gas exploration characteristics during the past decade. Oil Forum 38, 58–64. https://doi.org/10.3969/j.issn.1002-302x.2019.03.010 (in Chinese).
Zheng, W., Silva, S.C., Tannant, D.D., 2018. Crushing characteristics of four different proppants and implications for fracture conductivity. J. Nat. Gas Sci. Eng. 53, 125–138. https://doi.org/10.1016/j.jngse.2018.02.028.
Zhong, H., Qiu, Z., Zhang, D., Tang, Z., Huang, W., Wang, W., 2016. Inhibiting shale hydration and dispersion with amine-terminated polyamidoamine dendrimers. J. Nat. Gas Sci. Eng. 28, 52–60. https://doi.org/10.1016/j.jngse.2015.11.029.
Zhong, Y., Ergun, K., Zhang, H., Kuang, J., She, J., 2019. Effect of fracturing fluid/shale rock interaction on the rock physical and mechanical properties, the proppant embedment depth and the fracture conductivity. Rock Mech. Rock Eng. 52, 1011–1022. https://doi.org/10.1007/s00603-018-1658-z.
Zhou, F., Xiong, C., Yang, X., XiangDong, L., Li, S., ShengJiang, L., Liu, M., 2005. Middle-to-high density viscoelastic surfactant fracturing fluids: preparation and application. Oilfield Chem. 22 (2), 136–139+100. https://doi.org/10.19346/j.cnki.1000-4092.2005.02.012 (in Chinese).
Zhou, F., Su, H., Liang, X., Meng, L., Yuan, L., Li, X., Liang, T., 2019. Integrated hydraulic fracturing techniques to enhance oil recovery from tight rocks. Petrol. Explor. Dev. 46, 1065–1072. https://doi.org/10.1016/s1876-3804(19)60263-6.
Zhou, J., Yang, Z., Xu, M., Wang, L., Yao, M., Gao, Y., 2021. Research and field tests of weighted fracturing fluids with industrial calcium chloride and guar gum. Petroleum Drilling Techniques 49 (2), 96–101. https://doi.org/10.11911/syztjs.2021014 (in Chinese).
Zhou, Y., Guan, W., Zhao, C., Zou, X., He, Z., Zhao, H., 2023. Spontaneous imbibition behavior in porous media with various hydraulic fracture propagations: A pore-scale perspective. Advances in Geo-Energy Research 9 (3), 185-197 https://doi.org/10.46690/ager.2023.09.06.
Zhu, J., You, L., Li, J., Kang, Y., Zhang, J., Zhang, D., Huang, C., 2017. Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs. Nat. Gas. Ind. B 4, 249–255. https://doi.org/10.1016/j.ngib.2017.08.007.
Zolfaghari, A., Dehghanpour, H., Noel, M., Bearinger, D., 2016. Laboratory and field analysis of flowback water from gas shales. Journal of Unconventional Oil and Gas Resources 14, 113–127. https://doi.org/10.1016/j.juogr.2016.03.004.