AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Paper | Open Access

Main controlling factor and mechanism of gas-in-place content of the Lower Cambrian shale from different sedimentary facies in the western Hubei area, South China

Gang LiaXian-Ming Xiaoa,b( )Bo-Wei ChengaChen-Gang LuaYue FengaDong-Sheng Lia
School of Energy Resources, China University of Geosciences (Beijing), Beijing, 100083, China
Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing, 100083, China

Edited by Jie Hao and Meng-Jiao Zhou

Show Author Information

Abstract

The Lower Cambrian shale gas in the western Hubei area, South China has a great resource prospect, but the gas-in-place (GIP) content in different sedimentary facies varies widely, and the relevant mechanism has been not well understood. In the present study, two sets of the Lower Cambrian shale samples from the Wells YD4 and YD5 in the western Hubei area, representing the deep-water shelf facies and shallow-water platform facies, respectively, were investigated on the differences of pore types, pore structure and methane adsorption capacity between them, and the main controlling factor and mechanism of their methane adsorption capacities and GIP contents were discussed. The results show that the organic matter (OM) pores in the YD4 shale samples are dominant, while the inorganic mineral (IM) pores in the YD5 shale samples are primary, with underdeveloped OM pores. The pore specific surface area (SSA) and pore volume (PV) of the YD4 shale samples are mainly from micropores and mesopores, respectively, while those of the YD5 shale samples are mainly from micropores and macropores, respectively. The methane adsorption capacity of the YD4 shale samples is significantly higher than that of the YD5 shale samples, with a maximum absolute adsorption capacity of 3.13 cm3/g and 1.31 cm3/g in average, respectively. Compared with the shallow-water platform shale, the deep-water shelf shale has a higher TOC content, a better kerogen type and more developed OM pores, which is the main mechanism for its higher adsorption capacity. The GIP content models based on two samples with a similar TOC content selected respectively from the Wells YD4 and YD5 further indicate that the GIP content of the deep-water shelf shale is mainly 3−4 m3/t within a depth range of 1000–4000 m, with shale gas exploration and development potential, while the shallow-water platform shale has normally a GIP content of <1 m3/t, with little shale gas potential. Considering the geological and geochemical conditions of shale gas formation and preservation, the deep-water shelf facies is the most favorable target for the Lower Cambrian shale gas exploration and development in the western Hubei area, South China.

References

 

Bae, J.S., Bhatia, S.K., 2006. High-pressure adsorption of methane and carbon dioxide on coal. Energy Fuels 20, 2599–2607. http://doi.org/10.1021/ef060318y.

 

Cheng, P., Xiao, X.M., Tian, H., Wang, X., 2018. Water content and equilibrium saturation and their influencing factors of the Lower Paleozoic overmature organic-rich shales in the Upper Yangtze region of Southern China. Energy Fuels 32, 11452–11466. http://doi.org/10.1021/acs.energyfuels.8b03011.

 

Chen, X.H., Wei, K., Zhang, B.M., Li, P.J., Li, H., Liu, A., Luo, S.Y., 2018. Main geological factors controlling shale gas reservoir in the Cambrian Shuijingtuo Formation in Yichang of Hubei Province as well as its and enrichment patterns. Chin. Geol. 45 (2), 207–226. https://doi.org/10.12029/gc20180201 (in Chinese).

 

Chen, J., Xu, Y.H., Gai, H.F., Xiao, Q.L., Wen, J.Z., Zhou, Q., Li, T.F., 2021. Understanding water accessibility and pore information of overmature marine shales using water vapor sorption. Mar. Petrol. Geol. 130, 105120. http://doi.org/10.1016/j.marpetgeo.2021.105120.

 

Chalmers, G.R.L., Bustin, R.M., 2008. Lower Cretaceous gas shales in northeastern British Columbia, part 1: geological controls on methane sorption capacity. Bull. Can. Petrol. Geol. 56, 1–21. http://doi.org/10.2113/gscpgbull.56.1.1.

 

Chalmers, G.R.L., Bustin, R.M., 2007. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. Int. J. Coal Geol. 70, 223–239. http://doi.org/10.1016/j.coal.2006.05.001.

 

Cheng, A.L., Huang, W.L., 2004. Selective adsorption of hydrocarbon gases on clays and organic matter. Org. Geochem. 35 (4), 413–423. http://doi.org/10.1016/j.orggeochem.2004.01.007.

 

Cheng, P., Xiao, X.M., Tian, H., Gai, H.F., Zhou, Q., Li, T.F., Fan, Q.Z., 2022. Differences in the distribution and occurrence phases of pore water in various nanopores of marine-terrestrial transitional shales in the Yangquan area of the northeast Qinshui Basin, China. Mar. Petrol. Geol. 137, 105510. https://doi.org/10.1016/j.marpetgeo.2021.105510.

 

Feng, Y., Xiao, X.M., Gao, P., Wang, E.Z., Hu, D.F., Liu, R.B., Li, G., Lu, C.G., 2023a. Restoration of sedimentary environment and geochemical features of deep marine Longmaxi shale and its significance for shale gas: a case study of the Dingshan area in the Sichuan Basin, South China. Mar. Petrol. Geol. 151, 106186. https://doi.org/10.1016/j.marpetgeo.2023.106186.

 

Feng, Y., Xiao, X.M., Wang, E.Z., Gao, P., Lu, C.G., Li, G., 2023b. Gas storage in shale pore system: a review of the mechanism, control and assessment. Petrol. Sci. 20, 2605–2636. https://doi.org/10.1016/j.petsci.2023.05.012.

 

Fang, R.H., Liu, X.Q., Zhang, C., Li, M.J., Xia, X.H., Huang, Z.L., Yang, C.Y., Han, Q.Y., Tang, H.Q., 2022. Molecular simulation of shale gas adsorption under temperature and pressure coupling: case study of the Lower Cambrian in western Hubei Province. Nat. Gas Geosci. 33 (1), 138–152. https://doi.org/10.11764/j.issn.1672-1926.2021.07.017 (in Chinese).

 

Ge, M.N., Chen, K., Chen, X.L., Wang, C., Bao, S.J., 2020. The influence factors of gas-bearing and geological characteristics of Niutitang Formation shale in the southern margin of Xuefeng Mountain ancient uplift: a case of Well Huangdi 1. China Geology 3 (4), 533–544. http://doi.org/10.31035/cg2020072.

 

Guo, T.L., Zhang, H.R., 2014. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin. Petrol. Explor. Dev. 41 (1), 28–36. http://doi.org/10.11698/PED.2014.01.03.

 

Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., Krooss, B.M., Littke, R., 2014. Geological controls on the methane storage capacity in organic-rich shales. Int. J. Coal Geol. 123, 34–51. http://doi.org/10.1016/j.coal.2013.06.010.

 

Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S., Krooss, B.M., 2012. High-pressure methane sorption isotherms of black shales from The Netherlands. Energy Fuel. 26, 4995–5004. http://doi.org/10.1021/ef300405g.

 

Hao, F., Zou, H., Lu, Y., 2013. Mechanisms of shale gas storage: implications for shale gas exploration in China. AAPG (Am. Assoc. Pet. Geol.) Bull. 97 (8), 1325–1346. http://doi.org/10.1306/02141312091.

 

Ji, L.M., Qiu, J.L., Zhang, T.W., Xia, Y.Q., 2012a. Experiments on methane adsorption of common clay minerals in shale. Earth Sci. J. China Univ. Geosci. 37 (5), 1043–1050. https://doi.org/10.3799/dqkx.2012.111 (in Chinese).

 

Ji, L.M., Zhang, T.W., Milliken, K.L., Qu, J.L., Zhang, X.L., 2012b. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl. Geochem. 27 (12), 2533–2545. http://doi.org/10.1016/j.apgeochem.2012.08.027.

 

Liu, Z.B., Gao, B., Zhang, Y.Y., Du, W., Feng, D.J., Nie, H.K., 2017. Types and distribution of the shale sedimentary facies of the lower cambrian in upper Yangtze area, south China. Petrol. Explor. Dev. 44 (1), 21–31. http://doi.org/10.11698/PED.2017.01.03.

 

Li, G., Bai, G.P., Gao, P., Ma, S.H., Chen, J., Qiu, H.H., 2021. Geological characteristics and distribution of global primary hydrocarbon accumulations of Precambrian-Lower Cambrian. Petroleum Geology & Experiment 43 (6), 958–966. https://doi.org/10.11781/sysydz202106958 (in Chinese).

 

Lin, T., Zhang, J.C., Li, B., Yang, S.Y., He, W., Tang, X., Ma, L.R., Pei, S.W., 2014. Shale gas accumulation conditions and gas-bearing properties of the lower cambrian niutitang formation in well changye 1, northwestern hunan. Acta Pet. Sin. 35 (5), 839–846. https://doi.org/10.7623/syxb201405003 (in Chinese).

 
Li, G., Gao, P., Xiao, X.M., Lu, C.G., Feng, Y., 2022a. Lower Cambrian organic-rich shales in southern China: a review of gas-bearing property, pore structure, and their controlling factors. Geofluids, 9745313. https://doi.org/10.1155/2022/9745313, 2022.
 

Luo, S.Y., Chen, X.H., Li, H., Liu, A., Wang, C.S., 2019a. Shale gas accumulation conditions and target optimization of lower cambrian Shuijingtuo Formation in Yichang area, west Hubei. Earth Sci. 44 (11), 3598–3615. https://doi.org/10.3799/dqkx.2019.179 (in Chinese).

 

Luo, S.Y., Liu, A., Li, H., Chen, X.H., Zhang, M., 2019b. Gas-bearing characteristics and controls of the cambrian Shuijingtuo Formation in Yichang area, middle Yangtze region. Petroleum Geology and Experiment 41 (1), 56–677. https://doi.org/10.11781/sysydz201901056 (in Chinese).

 

Liu, Z.X., Yan, D.T., Yuan, D.E., Niu, X., Fu, H.J., 2022. Multiple controls on the organic matter accumulation in early Cambrian marine black shales, middle Yangtze Block, South China. Mar. Petrol. Geol. 100, 104454. https://doi.org/10.1016/j.jngse.2022.104454.

 

Liu, D.H., Xiao, X.M., Tian, H., Min, Y.S., Zhou, Q., Cheng, P., Shen, J.G., 2013. Sample maturation calculated using Raman spectroscopic parameters for solid organics: methodology and geological applications. Chin. Sci. Bull. 58 (11), 1285–1298. https://doi.org/10.1007/s11434-012-5535-y.

 

Li, G., Xiao, X.M., Gai, H.F., Feng, Y., Lu, C.G., Meng, G.M., 2022b. Nanopore structure evolution of Lower Cambrian shale in the western Hubei area, Southern China, and its geological implications based on thermal simulation experimental results. Nat. Resour. Res. 32 (2), 731–754. https://doi.org/10.1007/s11053-022-10149-1.

 

Li, G., Xiao, X.M., Gai, H.F., Lu, C.G., Feng, Y., 2023a. Nanopore structure characteristics and controlling mechanism of the Lower Cambrian shale reservoir in the western Hubei area, South China. J. Asian Earth Sci. 254, 105738. https://doi.org/10.1016/j.jseaes.2023.105738.

 

Li, G., Gao, P., Lu, C.G., Feng, Y., Meng, G.M., Li, D.S., Xiao, X.M., 2023b. Fractal Characteristics of Nanopores and Their Controlling Factors of the Lower Cambrian Shale in the Western Hubei Area, South China. Energy & Fuels. 37, 18801–18816. https://doi.org/10.1021/acs.energyfuels.3c02928.

 

Li, J., Zhou, S.X., Gaus, G., Li, Y.J., Ma, Y., Chen, K.F., Zhang, Y.H., 2018. Characterization of methane adsorption on shale and isolated kerogen from the Sichuan Basin under pressure up to 60 MPa: experimental results and geological implications. Int. J. Coal Geol. 189, 83–93. https://doi.org/10.1016/j.coal.2018.02.020.

 

Li, T.F., Tian, H., Xiao, X.M., Cheng, P., Zhou, Q., Wei, Q., 2017. Geochemical characterization and methane adsorption capacity of overmature organic-rich Lower Cambrian shales in northeast Guizhou region, Southwest China. Mar. Petrol. Geol. 86, 858–873. http://doi.org/10.1016/j.marpetgeo.2017.06.043.

 

Luo, S.Y., Chen, X.H., Yue, Y., Li, P.J., Cai, Q.S., Yang, R.Z., 2020. Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area, Middle Yangtze. Nat. Gas Geosci. 31 (8), 1052–1068. https://doi.org/10.11764/j.issn.1672-1926.2020.04.031 (in Chinese).

 

Li, H., Liu, A., Luo, S.Y., Chen, X.H., Chen, L., 2019. Characteristics of the cambrian Shuijingtuo shale reservoir on Yichang slope, western Hubei province: a case study of well EYY 1. Petroleum Geology and Experiment 41 (1), 76–82. https://doi.org/10.11781/sysydz201901076 (in Chinese).

 

Meng, G.M., Li, T.F., Gai, H.F., Xiao, X.M., 2022. Pore characteristics and gas preservation of the lower cambrian shale in a strongly deformed zone, northern chongqing, China. Energies 15, 2956. https://doi.org/10.3390/en15082956.

 

Ma, Y., Zhong, N.N., Li, D.H., Pan, Z.J., Cheng, L.J., Liu, K.Y., 2015. Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping Shale in the north-eastern part of the upper Yangtze area, China: a possible microscopic mechanism for gas preservation. Int. J. Coal Geol. 137, 38–54. http://doi.org/10.1016/j.coal.2014.11.001.

 

Murata, K., El-Merraoui, M., Kaneko, K., 2001. A new determination method of absolute adsorption isotherm of supercritical gases under high pressure with a special relevance to density-functional theory study. J. Chem. Phys. 114 (9), 4196–4205. http://doi.org/10.1063/1.1344926.

 

Murata, K., Miyawaki, J., Kaneko, K., 2002. A simple determination method of the absolute adsorbed amount for high pressure gas adsorption. Carbon 40, 425–428. http://doi.org/10.1016/s0008-6223(01)00126-9.

 

Pu, B.L., Dong, D.Z., Wang, F.Q., Wang, Y.M., Huang, J.L., 2020. The effect of sedimentary facies on Longmaxi shale gas in southern Sichuan Basin. Chin. Geol. 47 (1), 111–120. https://doi.org/10.12029/gc20200109 (in Chinese).

 

Pan, L., Xiao, X.M., Tian, H., Zhou, Q., Cheng, P., 2016. Geological models of gas in place of the longmaxi shale in southeast chongqing, south China. Mar. Petrol. Geol. 73, 433–444. http://doi.org/10.1016/j.marpetgeo.2016.03.018.

 

Rexer, T.F.T., Benham, M.J., Aplin, A.C., Thomas, K.M., 2013. Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy Fuels 27, 3099–3106. http://doi.org/10.1021/ef400381v.

 

Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., Unger, K.K., 1994. Physical chemistry division commission on colloid and surface chemistry, subcommittee on characterization of porous solids: recommendations for the characterization of porous solids. Pure Appl. Chem. 66 (8), 1739–1758.

 

Ross, D.J.K., Bustin, R.M., 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Petrol. Geol. 26, 916–927. http://doi.org/10.1016/j.marpetgeo.2008.06.004.

 

Rexer, T.F.T., Mathia, E.J., Aplin, A.C., Thomas, K.M., 2014. High-pressure methane adsorption and characterization of pores in Posidonia Shales and isolated kerogens. Energy Fuels 28 (5), 2886–2901. http://doi.org/10.1021/ef402466m.

 
Shi, S.F., 2020. Sedimentary Facies and the Law of Shale Gas Accumulation of Niutitang Formation of Lower Cambrian in Western Hubei. Chengdu University of Technology. https://doi.org/10.26986/d.cnki.gcdlc.2020.001139 (in Chinese).
 

Sun, J., Xiao, X.M., Cheng, P., 2021. Influence of water on shale pore heterogeneity and the implications for shale gas-bearing property - a case study of marine Longmaxi Formation shale in northern Guizhou. Mar. Petrol. Geol. 134, 105379. https://doi.org/10.1016/j.marpetgeo.2021.105379.

 

Sakurovs, R., Day, S., Weir, S., Duffy, G., 2007. Application of a modified Dubinin - radushkevich equation to adsorption of gases by coals under supercritical conditions. Energy Fuels 21, 992–997. http://doi.org/10.1021/ef0600614.

 

Sun, J., Xiao, X.M., Cheng, P., 2022. Methane absorption of coal-measure shales with and without pore water from the Qinshui Basin, North China: based on high-pressure methane absorption experiments. Int. J. Coal Geol. 263, 104116. https://doi.org/10.1016/j.coal.2022.104116.

 

Sircar, S., 1992. Estimation of isosteric heats of adsorption of single gas and multicomponent gas mixtures. Ind. Eng. Chem. Res. 31, 1813–1819. https://doi.org/10.1021/ie00007a030.

 

Tian, H., Pan, L., Zhang, T.W., Xiao, X.M., Meng, Z.P., Huang, B.J., 2015. Pore characterization of organic-rich lower cambrian shales in qiannan depression of guizhou province, southwestern China. Mar. Petrol. Geol. 62, 28–43. http://doi.org/10.1016/j.marpetgeo.2015.01.004.

 

Tian, H., Li, T.F., Zhang, T.W., Xiao, X.M., 2016. Characterization of methane adsorption on overmature Lower Silurian-Upper Ordovician shales in Sichuan Basin, southwest China: experimental results and geological implications. Int. J. Coal Geol. 156, 36–49. http://doi.org/10.1016/j.coal.2016.01.013.

 

Tang, X., Ripepi, N., Stadie, N.P., Yu, L., Hall, M.R., 2016. A dual-site Langmuir equation for accurate estimation of high pressure deep shale gas resources. Fuel 185, 10–17. http://doi.org/10.1016/j.fuel.2016.07.088.

 

Wei, G.Q., Yang, W., Xie, W.R., Jin, H., Su, N., Sun, A., Shen, Y.H., Hao, C.G., 2018. Accumulation modes and exploration domains of Sinian-Cambrian natural gas in Sichuan Basin. Acta Pet. Sin. 39 (12), 1317–1327. https://doi.org/10.7623/syxb201812001 (in Chinese).

 

Wang, K.M., 2021. Geological characteristics and controlling factors of shale gas accumulation of the Lower Cambrian in the southern Anhui of Lower Yangtze area. China Petroleum Exploration 26 (5), 83–99. https://doi.org/10.3969/j.issn.1672-7703.2021.05.008 (in Chinese).

 

Wang, M.L., Xiao, X.M., Wei, Q., Zhou, Q., 2015. Thermal maturation of solid bitumen in shale as revealed by Raman spectroscopy. Nat. Gas Geosci. 26 (9), 1712–1718. https://doi.org/10.11764/j.issn.1672-1926.2015.09.1712 (in Chinese).

 

Wang, P.F., Jiang, Z.X., Han, B., Lv, P., Jin, C., Zhang, K., Li, X., Li, T.W., 2018. Reservoir geological parameters for efficient exploration and development of Lower Cambrian Niutitang Formation shale gas in South China. Acta Pet. Sin. 39 (2), 152–162. https://doi.org/10.7623/syxb201802003 (in Chinese).

 

Wei, S.L., He, S., Pan, Z.J., Guo, X.W., Yang, R., Dong, T., Yang, W., Gao, J., 2019. Models of shale gas storage capacity during burial and uplift: application to Wufeng - longmaxi shales in the Fuling shale gas field. Mar. Petrol. Geol. 109, 233–244. https://doi.org/10.1016/j.marpetgeo.2019.06.012.

 
Wei, S.L., 2020. Reservoir Characteristics and Shale Gas Occurrence Mechanism of the Lower Cambrian Shuijingtuo Shale in the South of Huangling Anticline, Western Hubei. China University of Geosciences, Wuhan. https://doi.org/10.27492/d.cnki.gzdzu.2020.000081 (in Chinese).
 

Wang, Y.C., 2018. On shale organic geochemical characteristics of Niutitang Formation in western Hunan-Hubei area. Journal of Jianghan Petroleum University of Staff and Workers 31 (1), 8–10 (in Chinese).

 

Wu, J., Li, H., Goodarzi, F., 2022. Geochemistry and depositional environment of the Mesoproterozoic Xiamaling shales, northern North China. J. Pet. Sci. Eng. 215, 100730. https://doi.org/10.1016/j.petrol.2022.110730.

 

Wang, B.Q., Xiao, Y.X., Xu, Q.C., 2022. Structural evolution of the Huangling uplift, South China: implications for the shale gas exploration in the middle and lower Yangtze River area. J. Geomechanics 28 (4), 561–572. https://doi.org/10.12090/j.issn.1006-6616.2021130 (in Chinese).

 

Wang, S.J., Yang, T., Zhang, G.S., Li, D.H., Chen, X.M., 2012. Shale gas enrichment factors and the selection and evaluation of the core area. Strategic Study of CAE 14 (6), 94–100 (in Chinese).

 

Xiao, X.M., Wang, M.L., Wei, Q., Tian, H., Pan, L., Li, T.F., 2015. Evaluation of Lower Paleozoic shale with shale gas prospect in south China. Nat. Gas Geosci. 26 (8), 1433–1445. https://doi.org/10.11764/j.issn.1672-1926.2015.08.1433 (in Chinese).

 

Xu, L.L., Liu, Z.X., Wen, Y.R., Zhou, X.H., Luo, F., 2020. Shale gas reservoir and gas-bearing properties of middle Yangtze niutitang formation in western Hubei. Special Oil Gas Reservoirs 27 (4), 1–9. https://doi.org/10.3969/j.issn.1006-6535.2020.04.001 (in Chinese).

 

Xu, L.W., Yang, K.J., Wei, H., Liu, L.F., Jiang, Z.X., Li, Xiao, Chen, L., Xu, T., Wang, X.M., 2021. Pore evolution model and diagenetic evolution sequence of the Mesoproterozoic Xiamaling shale in Zhangjiakou, Hebei. J. Petrol. Sci. Eng. 207, 109115. https://doi.org/10.1016/j.petrol.2021.109115.

 

Zou, C.N., Dong, D.Z., Wang, S.J., Li, J.Z., Li, X.J., Wang, Y.M., Li, D.H., Cheng, K.M., 2010. Geological characteristics and resource potential of shale gas in China. Petrol. Explor. Dev. 37 (6), 641–653.

 

Zhang, J.F., Xu, H., Zhou, Z., Ren, P.F., Guo, J.Z., Wang, Q., 2019. Geological characteristics of shale gas reservoir in Yichang area, western Hubei. Acta Pet. Sin. 40 (8), 887–899. https://doi.org/10.7623/syxb201908001 (in Chinese).

 

Zhao, W.Z., Li, J.Z., Yang, T., Yang, T., Wang, S.F., Huang, J.L., 2016. Geological difference and its significance of marine shale gases in South China. Petrol. Explor. Dev. 43 (4), 499–510. http://doi.org/10.11698/PED.2016.04.01.

 

Zhai, G.Y., Bao, S.J., Wang, Y.F., Chen, K., Wang, S.J., Zhou, Z., Song, T., Li, H.H., 2017a. Reservoir accumulation model at the edge of palaeohigh and significant discovery of shale gas in Yichang area, Hubei Province. Acta Geosci. Sin. 38 (4), 441–447. https://doi.org/10.3975/cagsb.2017.04.01 (in Chinese).

 

Zhai, G.Y., Wang, Y.F., Liu, G.H., Lu, Y.C., He, S., Zhou, Z., Li, J., Zhang, Y.X., 2020. Accumulation model of the Sinian-Cambrian shale gas in western Hubei Province, China. J. Geomechanics 26 (5), 696–713. https://doi.org/10.12090/j.issn.1006-6616.2020.26.05.058 (in Chinese).

 

Zhai, G.Y., Wang, Y.F., Bao, S.J., Guo, X.T., Zhou, Z., Chen, X.L., Wang, J.Z., 2017b. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in Southern China. Earth Sci. 42 (7), 1057–1068. https://doi.org/10.3799/dqkx.2017.085 (in Chinese).

 

Zhai, G.Y., Li, J., Jiao, Y., Wang, Y.F., Liu, G.H., Xua, Q., Wang, C., Chen, R., Guo, X.B., 2019. Applications of chemostratigraphy in a characterization of shale gas Sedimentary Microfacies and predictions of sweet spots-taking the Cambrian black shales in Western Hubei as an example. Mar. Petrol. Geol. 109, 547–560. https://doi.org/10.1016/j.marpetgeo.2019.06.045.

 

Zuo, J.X., Peng, S.C., Qi, Y.P., Zhu, X.J., Bagnoli, G., Fang, H.B., 2018. Carbon-isotope excursions recorded in the Cambrian System, South China: implications for mass extinctions and sea-level fluctuations. J. Earth Sci. 29 (3), 479–491. https://doi.org/10.1007/s12583-017-0963-x.

 

Zhou, Q., Xiao, X.M., Pan, L., Tian, H., 2014. The relationship between micro-Raman spectral parameters and reflectance of solid bitumen. Int. J. Coal Geol. 121, 19–25. http://doi.org/10.1016/j.coal.2013.10.013.

 

Zhang, T.W., Ellis, G.E., Ruppel, S.C., Milliken, K.L., Yang, R., 2012. Effect of organic matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 47, 120–131. http://doi.org/10.1016/j.orggeochem.2012.03.012.

 

Zhou, L., Zhou, Y., Li, M., Chen, P., Wang, Y., 2000. Experimental and modeling study of the adsorption of supercritical methane on a high surface activated carbon. Langmuir 16, 5955–5959. http://doi.org/10.1021/la991159w.

 

Zhou, W., Xu, H., Yu, Q., Xie, R.C., Deng, K., 2016. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas. Lithologic Reservoirs 28 (5), 18–25. http://doi.org/10.3969/j.issn.1673-8926.2016.05.002 (in Chinese).

 

Zhang, T.W., Luo, H., Meng, K., 2023. Main factors controlling the shale gas content of Cambrian shales of southern China - a discussion. Earth Sci. Front. 30 (3), 1–13. http://doi.org/10.13745/j.esf.sf.2022.5.31 (in Chinese).

Petroleum Science
Pages 1488-1507
Cite this article:
Li G, Xiao X-M, Cheng B-W, et al. Main controlling factor and mechanism of gas-in-place content of the Lower Cambrian shale from different sedimentary facies in the western Hubei area, South China. Petroleum Science, 2024, 21(3): 1488-1507. https://doi.org/10.1016/j.petsci.2023.12.012

48

Views

0

Downloads

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 14 May 2023
Revised: 16 September 2023
Accepted: 13 December 2023
Published: 19 December 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return