Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Deterministic inversion based on deep learning has been widely utilized in model parameters estimation. Constrained by logging data, seismic data, wavelet and modeling operator, deterministic inversion based on deep learning can establish nonlinear relationships between seismic data and model parameters. However, seismic data lacks low-frequency and contains noise, which increases the non-uniqueness of the solutions. The conventional inversion method based on deep learning can only establish the deterministic relationship between seismic data and parameters, and cannot quantify the uncertainty of inversion. In order to quickly quantify the uncertainty, a physics-guided deep mixture density network (PG-DMDN) is established by combining the mixture density network (MDN) with the deep neural network (DNN). Compared with Bayesian neural network (BNN) and network dropout, PG-DMDN has lower computing cost and shorter training time. A low-frequency model is introduced in the training process of the network to help the network learn the nonlinear relationship between narrowband seismic data and low-frequency impedance. In addition, the block constraints are added to the PG-DMDN framework to improve the horizontal continuity of the inversion results. To illustrate the benefits of proposed method, the PG-DMDN is compared with existing semi-supervised inversion method. Four synthetic data examples of Marmousi Ⅱ model are utilized to quantify the influence of forward modeling part, low-frequency model, noise and the pseudo-wells number on inversion results, and prove the feasibility and stability of the proposed method. In addition, the robustness and generality of the proposed method are verified by the field seismic data.
Alfarraj, M., AlRegib, G., 2019. Semisupervised sequence modeling for elastic impedance inversion. Interpretation 7 (3), SE237-SE249. https://doi.org/10.1190/Int-2018-0250.1.
Biswas, R., Sen, M.K., Das, V., Mukerji, T., 2019. Prestack and poststack inversion using a physics-guided convolutional neural network. Interpretation 7 (3), SE161-SE174. https://doi.org/10.1190/INT-2018-0236.1.
Buland, A., More, H., 2003. Bayesian linearized AVO inversion. Geophysics 68 (1), 185-198. https://doi.org/10.1190/1.1543206.
Cao, D., Su, Y., Cui, R., 2022. Multi-parameter pre-stack seismic inversion based on deep learning with sparse reflection coefficient constraints. J. Petrol. Sci. Eng. 209, 109836. https://doi.org/10.1016/j.petrol.2021.109836.
Chen, Y., Saygin, E., 2021. Seismic inversion by hybrid machine learning. J. Geophys. Res. Solid Earth 126 (9), 126. https://doi.org/10.1029/2020JB021589.
Cho, K., Merrienboer, B.V., Gulcehre, C., Hdanau, D.B., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Computer Science. https://doi.org/10.3115/v1/D14-1179.
Das, V., Mukerji, T., 2020. Petrophysical properties prediction from prestack seismic data using convolutional neural networks. Geophysics 85 (5), N41-N55. https://doi.org/10.1190/GEO2019-0650.1.
Das, V., Pollack, A., Wollner, U., Mukerji, T., 2019. Convolutional neural network for seismic impedance inversion. Geophysics 84 (6), R869-R880. https://doi.org/10.1190/GEO2018-0838.1.
Di, H., Abubakar, A., 2021. Estimating subsurface properties using a semisupervised neural network approach. Geophysics 87 (1), IM1-IM10. https://doi.org/10.1190/geo2021-0192.1.
Downton, J.E., 2005. Seismic Parameter Estimation from AVO Inversion. University of Calgary.
Earp, S., Curtis, A., 2020. Probabilistic neural network-based 2D travel-time tomography. Neural Comput. Appl. 32 (22), 17077-17095. https://doi.org/10.1007/s00521-020-04921-8.
Earp, S., Curtis, A., Zhang, X., Hansteen, F., 2020. Probabilistic neural network tomography across Grane field (North Sea) from surface wave dispersion data. Geophys. J. Int. 223 (3), 1741-1757. https://doi.org/10.1093/gji/ggaa328.
Feng, R., Grana, D., Balling, N., 2021. Variational inference in Bayesian neural network for well-log prediction. Geophysics 86 (3), M91-M99. https://doi.org/10.1190/geo2020-0609.1.
Gao, L., Chen, P.Y., Yu, S., 2016. Demonstration of convolution kernel operation on resistive cross-point array. IEEE Electron. Device Lett. 37 (7), 870-873. https://doi.org/10.1109/LED.2016.2573140.
Gao, Z., Li, C., Zhang, B., Jiang, X., Xu, Z., 2020. Building large-scale density model via a deep learning based data-driven method. Geophysics 86 (1), M1-M15. https://doi.org/10.1190/geo2019-0332.1.
Gholami, A., 2015. Nonlinear multichannel impedance inversion by total-variation regularization. Geophysics 80 (5), R217-R224. https://doi.org/10.1190/geo2015-0004.1.
Gholami, A., 2016. A fast automatic multichannel blind seismic inversion for high-resolution impedance recovery. Geophysics 81 (5), V357-V364. https://doi.org/10.1190/GEO2015-0654.1.
Grana, D., 2016. Bayesian linearized rock-physics inversion. Geophysics 81 (6), D625-D641. https://doi.org/10.1190/geo2016-0161.1.
Grana, D., Rossa, E.D., 2010. Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics 75 (3), O21-O37. https://doi.org/10.1190/1.3386676.
Hamid, H., Pidlisecky, A., 2015. Multitrace impedance inversion with lateral constraints. Geophysics 80 (6), M101-M111. https://doi.org/10.1190/geo2014-0546.1.
Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.
Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. International conference on machine learning, PMLR, 448-456. https://doi.org/10.48550/arXiv.1502.03167.
Junhwan, C., Seokmin, O., Joongmoo, B., 2022. Uncertainty estimation in AVO inversion using Bayesian dropout based deep learning. J. Petrol. Sci. Eng. 208, 109288. https://doi.org/10.1016/j.petrol.2021.109288.
Kingma, D., Ba, J., 2014. Adam: a method for stochastic optimization. Computer Science. https://doi.org/10.48550/arXiv.1412.6980.
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86 (11), 2278-2324. https://doi.org/10.1109/5.726791.
Li, K., Yin, X., Zong, Z., 2017. Pre-stack Bayesian cascade AVA inversion in complex-Laplace domain and its application to the broadband data acquired at East China. J. Petrol. Sci. Eng. 158, 751-765. https://doi.org/10.1016/j.petrol.2017.09.005.
Li, K., Yin, X., Zong, Z., 2020. Facies-constrained prestack seismic probabilistic inversion driven by rock physics. Science China (Earth Sciences) 63 (6), 822-840. https://doi.org/10.1007/s11430-019-9578-1.
Maiti, S., Tiwari, R.K., 2010. Automatic discriminations among geophysical signals via the Bayesian neural networks approach. Geophysics 75 (1), E67-E78. https://doi.org/10.1190/1.3298501.
Martin, G.S., Wiley, R., Marfurt, K.J., 2006. Marmousi2: an elastic upgrade for Marmousi. Lead. Edge 25 (2), 156-166. https://doi.org/10.1190/1.2172306.
Röth, G., Tarantola, A., 1994. Neural networks and inversion of seismic data. J. Geophys. Res. Solid Earth 99 (B4), 6753-6768. https://doi.org/10.1029/93JB01563.
Shahraeeni, M.S., Curtis, A., 2011. Fast probabilistic nonlinear petrophysical inversion. Geophysics 76 (2), E45-E58. https://doi.org/10.1190/1.3540628.
Shahraeeni, M.S., Curtis, A., Chao, G., 2012. Fast probabilistic petrophysical mapping of reservoirs from 3D seismic data. Geophysics 77 (3), O1-O19. https://doi.org/10.1190/GEO2011-0340.1.
Song, L., Yin, X., Zong, Z., Jiang, M., 2022. Semi-supervised learning seismic inversion based on Spatio-temporal sequence residual modeling neural network. J. Petrol. Sci. Eng. 208, 109549. https://doi.org/10.1016/j.petrol.2021.109549.
Spikes, K., Mukerji, T., Dvorkin, J., Mavko, G., 2007. Probabilistic seismic inversion based on rock-physics models. Geophysics 72 (5), R87-R97. https://doi.org/10.1190/1.2760162.
Sun, H., Demanet, L., 2020. Extrapolated full-waveform inversion with deep learning. Geophysics 85 (3), R275-R288. https://doi.org/10.1190/geo2019-0195.1.
Sun, J., Innanen, K.A., Huang, C., 2021. Physics-guided deep learning for seismic inversion with hybrid training and uncertainty analysis. Geophysics 86 (3), R303-R317. https://doi.org/10.1190/geo2020-0312.1.
Sun, Q.H., Zong, Z., 2019. Amplitude variation with incident angle inversion for fluid factor in the depth domain. Ann. Geophys. 62 (5), SE562. https://doi.org/10.4401/ag-7882.
Wang, Y., Niu, L., Zhao, L., Wang, B., He, Z., Zhang, H., Chen, D., Geng, J., 2021. Gaussian mixture model deep neural network and its application in porosity prediction of deep carbonate reservoir. Geophysics 87 (2), M59-M72. https://doi.org/10.1190/geo2020-0740.1.
Werbos, P.J., 1990. Backpropagation through time: what it does and how to do it. Proc. IEEE 78 (10), 1550-1560. https://doi.org/10.1109/5.58337.
Wu, B., Meng, D., Zhao, H., 2021. Semi-supervised learning for seismic impedance inversion using generative adversarial networks. Rem. Sens. 13 (5), 909. https://doi.org/10.3390/rs13050909.
Yuan, S., Jiao, X., Luo, Y., Sang, W., Wang, S., 2021. Double-scale supervised inversion with a data-driven forward model for low-frequency impedance recovery. Geophysics 87 (2), R165-R181. https://doi.org/10.1190/geo2020-0421.1.
Zhang, X., Curtis, A., 2020. Seismic tomography using variational inference methods. J. Geophys. Res. Solid Earth 125 (4), e2019JB018589. https://doi.org/10.1029/2019JB018589.
Zhang, X., Curtis, A., 2021. Bayesian full-waveform inversion with realistic priors. Geophysics 86 (5), A45-A49. https://doi.org/10.1190/geo2021-0118.1.
Zhao, X., Curtis, A., Zhang, X., 2022. Bayesian seismic tomography using normalizing flows. Geophys. J. Int. 228 (1), 213-239. https://doi.org/10.1093/gji/ggab298.
Zong, Z., Yin, X., Wu, G., 2012. AVO inversion and poroelasticity with P- and S-wave moduli. Geophysics 77 (6), N17-N24. https://doi.org/10.1190/geo2011-0214.1.
Zong, Z., Wang, Y., Li, K., Yin, X., 2018. Broadband seismic inversion for low-frequency component of the model parameter. IEEE Trans. Geosci. Rem. Sens. 56 (9), 5177-5184. https://doi.org/10.1109/TGRS.2018.2810845.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).