In-situ upgrading by heating is feasible for low-maturity shale oil, where the pore space dynamically evolves. We characterize this response for a heated substrate concurrently imaged by SEM. We systematically follow the evolution of pore quantity, size (length, width and cross-sectional area), orientation, shape (aspect ratio, roundness and solidity) and their anisotropy—interpreted by machine learning. Results indicate that heating generates new pores in both organic matter and inorganic minerals. However, the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system. Conversely, the average pore lengths and widths are increased in the bedding-perpendicular direction. Besides, heating increases the cross-sectional area of pores in low-maturity oil shales, where this growth tendency fluctuates at < 300 ℃ but becomes steady at > 300 ℃. In addition, the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape. Herein, limited anisotropy is detected in pore direction and shape, indicating similar modes of evolution both bedding-parallel and bedding-normal. We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating.
Alfarge, D., Wei, M.Z., Bai, B.J., 2017. Factors affecting CO2-EOR in shale-oil reservoirs: numerical simulation study and pilot tests. Energy Fuels 31, 8462-8480. https://doi.org/10.1021/acs.energyfuels.7b01623.
Altawati, F., Emadi, H., Pathak, S., 2021. Improving oil recovery of Eagle Ford shale samples using cryogenic and cyclic gas injection methods-An experimental study. Fuel 302, 121170. https://doi.org/10.1016/j.fuel.2021.121170.
Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K.W., Schindelin, J., Cardona, A., Sebastian Seung, H., 2017. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioimage informatics 33, 2424-2426. https://doi.org/10.1093/bioinformatics/btx180.
Bolotov, A.V., Yuan, C.D., Varfolomeev, M.A., Taura, U.H., Al-Wahaibi, Y.M., Minkhanov, I.F., Derevyanko, V.K., Al-Bahry, S., Joshi, S., Tazeev, A.R., Kadyrov, R.I., Emelianov, D.A., Pu, W.F., Naabi, A., Hasani, M., Al Busaidi, R.S., 2023. In-situ combustion technique for developing fractured low permeable oil shale: experimental evidence for synthetic oil generation and successful propagation of combustion front. Fuel 344, 127995. https://doi.org/10.1016/j.fuel.2023.127995.
Comincioli, N., Hagspiel, V., Kort, P.M., Menoncin, F., Miniaci, R., Vergalli, S., 2021. Mothballing in a duopoly: evidence from a (shale) oil market. Energy Economics 104. https://doi.org/10.1016/j.eneco.2021.105583.
Feng, Q.H., Xu, S.Q., Xing, X.D., Zhang, W., Wang, S., 2020. Advances and challenges in shale oil development: a critical review. Advances in Geo-Energy Research 4, 406-418. https://doi.org/10.46690/ager.2020.04.06.
Geng, Y.D., Liang, W.G., Liu, J., Cao, M.T., Kang, Z.Q., 2017. Evolution of pore and fracture structure of oil shale under high temperature and high pressure. Energy Fuels 31, 10404-10413. https://doi.org/10.1021/acs.energyfuels.7b01071.
He, W.Y., Meng, Q.A., Lin, T.F., Wang, R., Liu, X., Ma, S.M., Li, X., Yang, F., Sun, G.X., 2022. Evolution features of in-situ permeability of low-maturity shale with the increasing temperature, Cretaceous Nenjiang Formation, northern Songliao Basin, NE China. Petrol. Explor. Dev. 49, 516-529. https://doi.org/10.1016/S1876-3804(22)60043-0.
Jin, Z.J., Zhu, R.K., Liang, X.P., Shen, Y.Q., 2021. Several issues worthy of attention in current lacustrine shale oil exploration and development. Petrol. Explor. Dev. 48, 1471-1484. https://doi.org/10.1016/S1876-3804(21)60303-8.
Kang, Z.Q., Zhao, Y.S., Yang, D., 2020. Review of oil shale in-situ conversion technology. Appl. Energy 269, 115121. https://doi.org/10.1016/j.apenergy.2020.115121.
Li, L., Hao, Y.M., Lv, Y.T., Wang, C.W., Yao, C.J., Zhao, Q.M., Xiao, P.F., 2020. Experimental investigation on low-velocity seepage characteristics and influencing factors in a shale oil reservoir. J. Petrol. Sci. Eng. 195, 107732. https://doi.org/10.1016/j.petrol.2020.107732.
Li, X., Cai, J.G., Liu, H.M., Zhu, X.J., Li, Z., Liu, J., 2020. Characterization of shale pore structure by successive pretreatments and its significance. Fuel 269, 117412. https://doi.org/10.1016/j.fuel.2020.117412.
Lin, T., Liu, X., Zhang, J., Bai, Y., Liu, J., Zhang, Y., Zhao, Y., Cheng, X., Lv, J., Yang, H., 2021. Characterization of multi-component and multi-phase fluids in the Upper Cretaceous oil shale from the Songliao basin (NE China) using T1–T2 NMR correlation maps. Petrol. Sci. Technol. 39, 1060-1070. https://doi.org/10.1080/10916466.2021.1990318.
Liu, C., Shi, B., Zhou, J., Tang, C.S., 2011. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: application on SEM images of clay materials. Appl. Clay Sci. 54, 97-106. https://doi.org/10.1016/j.clay.2011.07.022.
Liu, J., Xie, L.Z., He, B., Gan, Q., Zhao, P., 2021. Influence of anisotropic and heterogeneous permeability coupled with in-situ stress on CO2sequestration with simultaneous enhanced gas recovery in shale: quantitative modeling and case study. Int. J. Greenh. Gas Control 104, 103208. https://doi.org/10.1016/j.ijggc.2020.103208.
Liu, X., Zhang, J., Bai, Y., Zhang, Y., Zhao, Y., Cheng, X., Lv, J., Yang, H., Liu, J., 2020. Pore structure petrophysical characterization of the Upper Cretaceous oil shale from the Songliao Basin (NE China) using low-field NMR. Journal of Spectroscopy. https://doi.org/10.1155/2020/9067684.
Lormand, C., Zellmer, G.F., Németh, K., Kilgour, G., Mead, S., Palmer, A.S., Sakamoto, N., Yurimoto, H., Moebis, A., 2018. Weka trainable segmentation plugin in ImageJ: a semi-automatic tool applied to crystal size distributions of microlites in volcanic rocks. Microsc. Microanal. 24, 667-675. https://doi.org/10.1017/S1431927618015428.
Luo, Z.K., Lin, T.F., Liu, X., Ma, S.M., Li, X., Yang, F., He, B., Liu, J., Zhang, Y., Xie, L.Z., 2023. High-temperature-induced pore system evolution of immature shale with different total organic carbon contents. ACS Omega 8, 12773-12786. https://doi.org/10.1021/acsomega.2c07990.
Pavicic, I., Brisevac, Z., Vrbaski, A., Grgasovic, T., Duic, Z., Sijak, D., Dragicevic, I., 2021. Geometric and fractal characterization of pore systems in the Upper Triassic dolomites based on image processing techniques (example from Zumberak Mts, NW Croatia). Sustainability 13, 7668. https://doi.org/10.3390/su13147668.
Sadiki, A., Kaminsky, W., Halim, H., Bekricet, O., 2003. Fluidised bed pyrolysis of Moroccan oil shales using the hamburg pyrolysis process. J. Anal. Appl. Pyrol. 70, 427-435. https://doi.org/10.1016/S0165-2370(03)00002-0.
Sezer, G.I., Kambiz, R., Bekir, K., Goktepe, A.B., Sezer, A., 2008. Image analysis of sulfate attack on hardened cement paste. Mater. Des. 29, 224-231. https://doi.org/10.1016/j.matdes.2006.12.006.
Shi, J., Ma, Y., Li, S.Y., Zhang, L., 2017. Characteristics of thermal bitumen structure as the pyrolysis intermediate of Longkou oil shale. Energy Fuels 31, 10535-10544. https://doi.org/10.1021/acs.energyfuels.7b01542.
Song, R., Yao, W., Liu, J.J., 2018. Microscopic pore structure characterization and fluids transport visualization of reservoir rock. J. Southwest Pet. Inst. 40, 85-105. https://doi.org/10.11885/j.issn.16745086.2018.07.18.03.
Soroushian, P., Elzafraney, M., 2005. Morphological operations, planar mathematical formulations, and stereological interpretations for automated image analysis of concrete microstructure. Cement Concr. Compos. 27, 823-833. https://doi.org/10.1016/j.cemconcomp.2004.07.008.
Sweeney, J., Burnham, A., 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG (Am. Assoc. Pet. Geol.) Bull. 74, 1559-1570. https://doi.org/10.1306/0C9B251F-1710-11D7-8645000102C1865D.
Tan, J.Q., Hu, R.N., Luo, W.B., Ma, Z.L., He, G.M., 2021. Pore evolution of lacustrine organic-rich shales: insights from thermal simulation experiments. Energy Fuels 35, 3079-3094. https://doi.org/10.1021/acs.energyfuels.0c03828.
Vatter, M.H., Van Vactor, S.A., Coburn, T.C., 2022. Price responsiveness of shale oil: a Bakken case study. Nat. Resour. Res. 31, 713-734. https://doi.org/10.1007/s11053-021-09972-9.
Wang, Q., Jiao, G.J., Liu, H.P., Bai, J.R., Li, S.H., 2010. Variation of the pore structure during microwave pyrolysis of oil shale. Oil Shale 27, 135-146. https://doi.org/10.3176/oil.2010.2.04.
Wang, Z.D., Lu, X.S., Li, Q., Sun, Y.H., Wang, Y., Deng, S.H., Guo, W., 2020. Downhole electric heater with high heating efficiency for oil shale exploitation based on a double-shell structure. Energy 211, 118539. https://doi.org/10.1016/j.energy.2020.118539.
Wu, T., Pan, Z.J., Liu, B., Connell, L.D., Sander, R., Fu, X.F., 2021. Laboratory characterization of shale oil storage behavior: a comprehensive review. Energy Fuels 35, 7305-7318. https://doi.org/10.1021/acs.energyfuels.0c04082.
Xu, J.J., Liu, Z.J., Bechtel, A., Meng, Q.T., Sun, P.C., Jia, J.L., Cheng, L.J., Song, Y., 2015. Basin evolution and oil shale deposition during Upper Cretaceous in the Songliao Basin (NE China): implications from sequence stratigraphy and geochemistry. Int. J. Coal Geol. 149, 9-23. https://doi.org/10.1016/j.coal.2015.07.005.
Xu, Y., Lun, Z.M., Pan, Z.J., Wang, H.T., Zhou, X., Zhao, C.P., Zhang, D.F., 2022. Occurrence space and state of shale oil: a review. J. Petrol. Sci. Eng. 211, 110183. https://doi.org/10.1016/j.petrol.2022.110183.
Yang, D., Wang, L., Zhao, Y.S., Kang, Z.Q., 2021. Investigating pilot test of oil shale pyrolysis and oil and gas upgrading by water vapor injection. J. Petrol. Sci. Eng. 196, 108101. https://doi.org/10.1016/j.petrol.2020.108101.
Yu, F.N., Sun, P.C., Zhao, K.A., Ma, L., Tian, X.M., 2020. Experimental constraints on the evolution of organic matter in oil shales during heating: implications for enhanced in situ oil recovery from oil shales. Fuel 261, 116412. https://doi.org/10.1016/j.fuel.2019.116412.
Zhao, J., Yang, D., Kang, Z.Q., Feng, Z.C., 2012. A micro-CT study of changes in the internal structure of Daqing and Yan'an oil shales at high temperatures. Oil Shale 29, 357-367. https://doi.org/10.3176/oil.2012.4.06.
Zhao, P., He, B., Zhang, B., Liu, J., 2022. Porosity of gas shale: is the NMR-based measurement reliable? Petrol. Sci. 19, 509-517. https://doi.org/10.1016/j.petsci.2021.12.013.
Zhou, H., Zeng, S., Zhan, L., Xu, G., Qian, Y., 2018. Modelling and analysis of oil shale refinery process with the indirectly heated moving bed. Carbon Resources Conversion 1, 260-265. https://doi.org/10.1016/B978-0-444-64241-7.50240-8.
Zhou, J.P., Yang, K., Zhou, L., Jiang, Y.D., Xian, X.F., Zhang, C.P., Tian, S.F., Fan, M.L., Lu, Z.H., 2021. Microstructure and mechanical properties alterations in shale treated via CO2/CO2-water exposure. J. Petrol. Sci. Eng. 196, 108088. https://doi.org/10.1016/j.petrol.2020.108088.
Zhu, J.Y., Yang, Z.Z., Li, X.G., Wang, N.L., Jia, M., 2018. Evaluation of different microwave heating parameters on the pore structure of oil shale samples. Energy Sci. Eng. 6, 797-809. https://doi.org/10.1002/ese3.253.