PDF (3.9 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Original Paper | Open Access

A multi-mechanism numerical simulation model for CO2-EOR and storage in fractured shale oil reservoirs

Yuan-Zheng WangaRen-Yi Caoa()Zhi-Hao JiaaBin-Yu WangaMing MabLin-Song Chenga
College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing, 102249, China
John & Willie Leone Department of Energy & Mineral Engineering, The Pennsylvania State University, University Park, 16802, PA, USA

Edited by Yan-Hua Sun

Show Author Information

Abstract

Under the policy background and advocacy of carbon capture, utilization, and storage (CCUS), CO2-EOR has become a promising direction in the shale oil reservoir industry. The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow, comprehensively considering multiple mechanisms is crucial for development and CO2 storage in fractured shale reservoirs. In this paper, a multi-mechanism coupled model is developed by MATLAB. Compared to the traditional Eclipse 300 and MATLAB Reservoir Simulation Toolbox (MRST), this model considers the impact of pore structure on fluid phase behavior by the modified Peng–Robinson equation of state (PR-EOS), and the effect simultaneously radiate to Maxwell–Stefan (M–S) diffusion, stress sensitivity, the nano-confinement (N-C) effect. Moreover, a modified embedded discrete fracture model (EDFM) is used to model the complex fractures, which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections (NNCs). The full implicit equation adopts the finite volume method (FVM) and Newton–Raphson iteration for discretization and solution. The model verification with the Eclipse 300 and MRST is satisfactory. The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics. The effect of molecular diffusion may be overestimated in oil-dominated (liquid-dominated) shale reservoirs. The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis. Moreover, the potential gas invasion risk is mentioned. This model provides a reliable theoretical basis for CO2-EOR and sequestration in shale oil reservoirs.

References

 
Adamson, A.W., 1990. Physical Chemistry of Surfaces, Fifth ed. John Wiley & Sons, New York City. https://doi.org/10.1149/1.2133374.
 

Bao, J., Tsau, J.S., Barati, R., 2018. Role of molecular diffusion in heterogeneous, naturally fractured shale reservoirs during CO2 huff-n-puff. J. Petrol. Sci. Eng. 164, 31–42. https://doi.org/10.1016/j.petrol.2018.01.032.

 

Bui, M., Adjiman, C.S., Bardow, A., et al., 2018. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11 (5), 1062–1176. https://doi.org/10.1039/c7ee02342a.

 

Cao, R.Y., Fang, S.D., Jia, P., et al., 2019. An efficient embedded discrete-fracture model for 2D anisotropic reservoir simulation. J. Petrol. Sci. Eng. 174, 115–130. https://doi.org/10.1016/j.petrol.2018.11.004.

 

Chi, J., Ju, B.S., Lyu, G.Z., et al., 2017. A computational method of critical well spacing of CO2 miscible and immiscible concurrent flooding. Petrol. Explor. Dev. 44 (5), 815–823. https://doi.org/10.1016/S1876-3804(17)30092-7.

 

Curtis, J.B., 2002. Fractured shale-gas systems. AAPG (Am. Assoc. Pet. Geol.) Bull. 86 (11), 1921–1938. https://doi.org/10.1306/61EEDDBE-173E-11D7-8645000102C1865D.

 

Eyinla, D.S., Leggett, S., Badrouchi, F., et al., 2023. A comprehensive review of the potential of rock properties alteration during CO2 injection for EOR and storage. Fuel 353, 129219. https://doi.org/10.1016/j.fuel.2023.129219.

 

Fayers, F.J., Matthews, J.D., 1984. Evaluation of normalized Stone's methods for estimating three-phase relative permeabilities. SPE J. 24 (2), 224–232. https://doi.org/10.2118/11277-PA.

 
Fragoso, A., Selvan, K., Aguilera, R., 2018. An investigation on the feasibility of combined refracturing of horizontal wells and huff and puff gas injection for improving oil recovery from shale petroleum reservoirs. In: The SPE Improved Oil Recovery Conference. https://doi.org/10.2118/190284-MS.
 

Fuller, E.N., Schettler, P.D., Giddings, J.C., 1966. A new method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem. 58 (10), 18–27. https://doi.org/10.1016/0042-207X(66)90400-3.

 

Fuller, E.N., Ensley, K., Giddings, J.C., 1969. Diffusion of halogenated hydrocarbons in helium. the effect of structure on collision cross sections. J. Phys. Chem. 73 (11), 3678–3685. https://doi.org/10.1021/j100845a020.

 

Gangi, A.F., 1978. Variation of whole and fractured porous rock permeability with confining pressure. Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 15 (5), 249–257. https://doi.org/10.1016/0148-9062(78)90957-9.

 

Hashemi, S.M.H., Sedaee, B., 2022. Mechanistic simulation of fracture effects on miscible CO2 injection. Pet. Res. 7 (4), 437–447. https://doi.org/10.1016/j.ptlrs.2022.01.006.

 
Hui, M.H.R., Mallison, B., Fyrozjaee, H.M., et al., 2013. The upscaling of discrete fracture models for faster, coarse-scale simulations of IOR and EOR processes for fractured reservoirs. In: SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/166075-MS.
 

Huron, M.J., Vidal, J., 1979. New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equil. 3, 255–271. https://doi.org/10.1016/0378-3812(79)80001-1.

 
ICF International, 2010. Defining CCS Ready: an Approach to an International Definition.
 
IEA, 2017. Energy Technology Perspectives 2017-Catalysing Energy Technology Transformations.
 
IEA, 2020. CCUS in Clean Energy Transitions. International Energy Agency.
 
IEA, 2021. An Energy Sector Roadmap to Carbon Neutrality in China. International Energy Agency.
 

Jia, B., Tsau, J.S., Barati, R., 2019. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 236, 404–427. https://doi.org/10.1016/j.fuel.2018.08.103.

 

Jia, Z.H., Cheng, L.S., Feng, H.R., et al., 2023. Full composition numerical simulation of CO2 utilization process in shale reservoir using projection-based embedded discrete fracture model (pEDFM) considering N-C effect. Gas Sci. Eng. 111, 204932. https://doi.org/10.1016/j.jgsce.2023.204932.

 

Jiang, J., Younis, R.M., 2017. An improved projection-based embedded discrete fracture model (pEDFM) for multiphase flow in fractured reservoirs. Adv. Water Resour. 109, 267–289. https://doi.org/10.1016/j.advwatres.2017.09.017.

 
Khanal, A., Khoshghadam, M., Jha, H.S., et al., 2021. Understanding the effect of nanopores on flow behavior and production performance of Liquid-rich shale reservoirs. In: SPE/AAPG/SEG Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2021-5169.
 
Kulkarni, M.M., Rao, D.N., 2004. Experimental investigation of various methods of tertiary gas injection. In: The SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/90589-MS.
 

Leahy-Dios, A., Firoozabadi, A., 2007. Unified model for nonideal multi-component molecular diffusion coefficients. AIChE J. 53 (11), 2932–2939. https://doi.org/10.1002/aic.11279.

 

Li, L., Lee, S.H., 2008. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media. SPE Reservoir Eval. Eng. 11 (4), 750–758. https://doi.org/10.2118/103901-PA.

 

Lindeloff, N., Michelsen, L.M., 2003. Phase envelope calculations for Hydrocarbon-water mixtures. SPE J. 8 (3), 298–303. https://doi.org/10.2118/85971-PA.

 

Lohrenz, J., Bray, B.G., Clark, C.R., 1964. Calculating viscosities of reservoir fluids from their compositions. J. Petrol. Technol. 16 (10), 1171–1176. https://doi.org/10.2118/915-PA.

 

Luo, P., Luo, W.G., Li, S., 2017. Effectiveness of miscible and immiscible gas flooding in recovering tight oil from Bakken reservoirs in Saskatchewan, Canada. Fuel 208, 626–636. https://doi.org/10.1016/j.fuel.2017.07.044.

 

Ma, X.H., 2018. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin. Nat. Gas. Ind. B. 6 (3), 240–249. https://doi.org/10.1016/j.ngib.2018.10.005.

 

Moinfar, A., Varavei, A., Sepehrnoori, K., et al., 2014. Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs. SPE J. 19 (2), 289–303. https://doi.org/10.2118/154246-PA.

 

Moortgat, J., Firoozabadi, A., 2013. Fickian diffusion in Discrete-fractured media from chemical potential gradients and comparison to experiment. Energy Fuels 27, 5793–5805. https://doi.org/10.1021/ef401141q.

 

Morishige, K., Fujii, H., Uga, M., et al., 1997. Capillary critical point of argon, nitrogen, oxygen, ethylene, and carbon dioxide in MCM-41. Langmuir 13 (13), 3494–3498. https://doi.org/10.1021/la970079u.

 

Olorode, O., Wang, B., Rashid, H.U., 2020. Three-dimensional projection-based embedded discrete-fracture model for compositional simulation of fractured reservoirs. SPE J. 25 (4), 2143–2161. https://doi.org/10.2118/201243-PA.

 
Olorode, O., Amer, H., Rashid, H.U., 2021. The role of diffusion in primary and enhanced oil recovery from fractured unconventional reservoirs. In: SPE/AAPG/SEG Asia Pacific Unconventional Resources Technology Conference. https://doi.org/10.15530/AP-URTEC-2021-208387.
 

Rachford, H.H., Rice, J.D., 1952. Procedure for use of electrical digital computers in calculating flash vaporization hydrocarbon equilibrium. JPT 4 (10), 19. https://doi.org/10.2118/952327-G.

 

Rao, X., Cheng, L.S., Cao, R.Y., et al., 2020. A modified projection-based embedded discrete fracture model (pEDFM) for practical and accurate numerical simulation of fractured reservoir. J. Petrol. Sci. Eng. 187, 106852. https://doi.org/10.1016/j.petrol.2019.106852.

 

Rao, X., Xin, L.Y., He, Y.X., et al., 2022. Numerical simulation of two-phase heat and mass transfer in fractured reservoirs based on projection-based embedded discrete fracture model (pEDFM). J. Petrol. Sci. Eng. 208, 109323. https://doi.org/10.1016/j.petrol.2021.109323.

 
Sanaei, A., Jamili, A., Callard, J., 2014. Effect of pore size distribution and connectivity on phase behavior and gas condensate production from unconventional resources. In: SPE Unconventional Resources Conference. https://doi.org/10.2118/168970-MS.
 

Sanchez-Rivera, D., Mohanty, K., Balhoff, M., 2015. Reservoir simulation and optimization of Huff-and-Puff operations in the Bakken shale. Fuel 147, 82–94. https://doi.org/10.1016/j.fuel.2014.12.062.

 

Sandve, T.H., Berre, I., Nordbotten, J.M., 2012. An efficient multi-point flux approximation method for discrete fracture–matrix simulations. J. Comput. Phys. 231 (9), 3784–3800. https://doi.org/10.1016/j.jcp.2012.01.023.

 

Singh, S.K., Singh, J.K., 2011. Effect of pore morphology on vapor–liquid phase transition and crossover behavior of critical properties from 3D to 2D. Fluid Phase Equil. 300 (1–2), 182–187. https://doi.org/10.1016/j.fluid.2010.10.014.

 

Singh, S.K., Sinha, A., Deo, G., et al., 2009. Vapor-liquid phase coexistence, critical properties, and surface tension of confined alkanes. J. Phys. Chem. 113 (17), 7170–7180 https://doi:10.1021/jp8073915.

 

Song, Y.L., Gu, S.H., Song, Z.J., 2020a. Effect of confinement on the three-phase equilibrium of water-oil-CO2 mixtures in nanopores. Petrol. Sci. 19 (1), 203–210. https://doi.org/10.2118/191547-MS.

 

Song, Y.L., Song, Z., Feng, D., et al., 2020b. Phase behavior of hydrocarbon mixture in shale nanopores considering the effect of adsorption and its induced critical shifts. Ind. Eng. Chem. Res. 59 (17). https://doi.org/10.1021/acs.iecr.0c00490.

 

Song, Z.J., Song, Y.L., Guo, Y.L., et al., 2020. Adsorption induced critical shifts of confined fluids in shale nanopores. Chem. Eng. J. 385, 123837. https://doi.org/10.1016/j.cej.2019.123837.

 
Steven, B.H., Charles, D.G., James, A.S., et al., 2013. Hydrocarbon mobilization mechanisms from upper, middle, and lower Bakken reservoir rocks exposed to CO2. In: SPE Unconventional Resources Conference. https://doi.org/10.2118/167200-MS.
 

Sun, L.D., Liu, H., He, W.Y., et al., 2021. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China. Petrol. Explor. Dev. 48 (3). https://doi.org/10.11698/PED.2021.03.02.

 

Sun, L.D., Cui, B.W., Zhu, R.K., et al., 2023. Shale oil enrichment evaluation and production law in Gulong Sag, Songliao Basin, NE China. Petrol. Explor. Dev. 50 (3). https://doi.org/10.11698/PED.20230178.

 

Ţene, M., Bosma, S.B.M., Kobaisi, M.S.A., et al., 2017. Projection-based embedded discrete fracture model (pEDFM). Adv. Water Resour. 105, 205–216. https://doi.org/10.1016/j.advwatres.2017.05.009.

 

Tian, Y., Zhang, C., Lei, Z.D., et al., 2021. An improved multicomponent diffusion model for compositional simulation of fractured unconventional reservoirs. SPE J. 26 (5), 3316–3341. https://doi.org/10.2118/204010-PA.

 

Vignes, A., 1966. Diffusion in binary mixtures. Ind. Eng. Chem. Fund. 5 (2), 189–199. https://doi.org/10.1021/i160018a007.

 

Wan, T., Zhang, J., Dong, Y., 2023. The impact of fracture network on CO2 storage in shale oil reservoirs. Geoenergy Sci. Eng. 231, 212322. https://doi.org/10.1016/j.geoen.2023.212322.

 

Wang, Q., Pfeiffer, H., Amal, R., et al., 2022. Introduction to CO2 capture, utilization and storage (CCUS). React. Chem. Eng. 7 (3), 487–489. https://doi.org/10.1039/D2RE90007F.

 

Wang, R., 2023. Status and perspectives on CCUS clusters and hubs. Unconv. Res., 100065. https://doi.org/10.1016/j.uncres.2023.100065.

 

Wang, Y.Z., Cao, R.Y., Jia, Z.H., et al., 2023. Phase behavior and hydrocarbons distribution in shale oil during EOR with nano-confinement effect. Front. Energy Res. 11, 1237254. https://doi.org/10.3389/fenrg.2023.1237254.

 

Wasaki, A., Akkutlu, Y.I., 2015. Permeability of organic-rich shale. SPE J. 20 (6), 1384–1396. https://doi.org/10.2118/170830-PA.

 

Xu, Y., Cavalcante, J.S.A., Yu, W., et al., 2017. Discrete-fracture modeling of complex hydraulic-fracture geometries in reservoir simulators. SPE Reservoir Eval. Eng. 20 (2), 403–422. https://doi.org/10.2118/183647-PA.

 

Xu, Y.F., Yu, W., Sepehrnoori, K., 2019. Modeling dynamic behaviors of complex fractures in conventional reservoir simulators. SPE Reservoir Eval. Eng. 22 (3), 1110–1130. https://doi.org/10.2118/194498-PA.

 
Yang, T., Fevang, Ø., Christoffersen, K., et al., 2007. LBC viscosity modeling of gas condensate to heavy oil. In: The SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/109892-MS.
 

Yanze, Y., Clemens, T., 2012. The role of diffusion for nonequilibrium gas injection into a fractured reservoir. SPE Reservoir Eval. Eng. 15 (1), 60–71. https://doi.org/10.2118/142724-PA.

 

Yu, W., Xu, Y.F., Weijermars, R., et al., 2018. A numerical model for simulating pressure response of well interference and well performance in tight oil reservoirs with complex-fracture geometries using the fast embedded-discrete-fracture-model method. SPE Reservoir Eval. Eng. 21 (2), 489–502. https://doi.org/10.2118/184825-PA.

 

Zarragoicoechea, G.J., Kuz, V.A., 2004. Critical shift of confined fluid in a nanopores. Fluid Phase Equil. 220, 7–9. https://doi.org/10.1016/j.fluid.2004.02.014.

 

Zhang, N., Yin, M.F., Wei, M.Z., et al., 2019. Identification of CO2 sequestration opportunities: CO2 miscible flooding guidelines. Fuel 241, 459–467. https://doi.org/10.1016/j.fuel.2018.12.072.

 

Zhang, Y., Yu, W., Sepehrnoori, K., et al., 2017. A comprehensive numerical model for simulating fluid transport in nanopores. Sci. Rep. 7, 40507. https://doi.org/10.1038/srep40507.

 

Zhang, Z.E., Wang, T., Blunt, M.J., et al., 2020. Advances in carbon capture, utilization and storage. Appl. Energy 278, 115627. https://doi.org/10.1016/j.apenergy.2020.115627.

 

Zhao, F.L., Hao, H.D., Lv, G.Z., et al., 2018. Performance improvement of CO2 flooding using production controls in 3D areal heterogeneous models: experimental and numerical simulations. J. Petrol. Sci. Eng. 164, 12–23. https://doi.org/10.1016/j.petrol.2018.01.036.

 

Zhao, J.Y., Fan, J.M., He, Y.H., et al., 2015. Optimization of horizontal well injection-production parameters for ultra-low permeable–tight oil production: a case from Changqing Oilfield, Ordos Basin, NW China. Petrol. Explor. Dev. 42 (1), 74–82. https://doi.org/10.1016/S1876-3804(15)60008-8.

 

Zhao, W.Z., Bian, C.S., Li, Y.X., et al., 2023. Enrichment factors of movable hydrocarbons in lacustrine shale oil and exploration potential of shale oil in Gulong Sag, Songliao Basin, NE China. Petrol. Explor. Dev. 50 (3), 520–533. https://doi.org/10.11698/PED.20230058.

 

Zhao, X.R., Chen, Z.M., Wang, B., et al., 2023. A multi-medium and multi-mechanism model for CO2 injection and storage in fractured shale gas reservoirs. Fuel 345, 128167. https://doi.org/10.1016/j.fuel.2023.128167.

Petroleum Science
Pages 1814-1828
Cite this article:
Wang Y-Z, Cao R-Y, Jia Z-H, et al. A multi-mechanism numerical simulation model for CO2-EOR and storage in fractured shale oil reservoirs. Petroleum Science, 2024, 21(3): 1814-1828. https://doi.org/10.1016/j.petsci.2024.02.006
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return