Tectonism is one of the dominant factors affecting the shale pore structure. However, the control of shale pore structure by tectonic movements is still controversial, which limits the research progress of shale gas accumulation mechanism in the complex tectonic region of southern China. In this study, 34 samples were collected from two exploratory wells located in different tectonic locations. Diverse experiments, e.g., organic geochemistry, XRD analysis, FE-SEM, low-pressure gas adsorption, and high-pressure mercury intrusion, were conducted to fully characterize the shale reservoir. The TOC, Ro, and mineral composition of the shale samples between the two wells are similar, which reflects that the shale samples of the two wells have proximate pores-generating capacity and pores-supporting capacity. However, the pore characteristics of shale samples from two wells are significantly different. Compared with the stabilized zone shale, the porosity, pore volume, and specific surface area of the deformed zone shale were reduced by 60.61%, 64.85%, and 27.81%, respectively. Moreover, the macroscopic and fine pores were reduced by 54.01% and 84.95%, respectively. Fault activity and uplift denudation are not conducive to pore preservation, and the rigid basement of Huangling uplift can promote pore preservation. These three factors are important reasons for controlling the difference in pore structure between two wells shales. We established a conceptual model of shale pores evolution under different tectonic preservation conditions. This study is significant to clarify the scale of shale gas formation and enrichment in complex tectonic regions, and helps in the selection of shale sweet spots.
Bao, S.J., Zhai, G.Y., Zhou, Z., Yu, S.F., Chen, K., Wang, Y.F., Wang, H., Liu, Y.M., 2018. The evolution of the Huangling uplift and its control on the accumulation and preservation of shale gas. China Geol 1 (3), 346–353. https://doi.org/10.31035/cg2018052.
Cai, Q.S., Chen, X.H., Zhang, G.T., Zhang, B.M., Han, J., Chen, L., Li, P.J., Li, Y.G., 2021. Shale gas reservoir development characteristics and exploration potential of Lower Paleozoic Wufeng Formation-Longmaxi Formation in Yichang area, western Hubei. Oil Gas Geol. 42 (1), 107–123. https://doi.org/10.11743/ogg20210110 (in Chinese).
Cai, Q.S., Hu, M.Y., Zhang, B.M., Ngia, N., Liu, A., Liao, R.Q., Kane, O., Li, H., Hu, Z.G., Deng, Q.J., Shen, J.J., 2022. Source of silica and its implications for organic matter enrichment in the Upper Ordovician-Lower Silurian black shale in western Hubei Province, China: Insights from geochemical and petrological analysis. Petrol. Sci. 19 (1), 74–90. https://doi.org/10.1016/j.petsci.2021.10.012.
Cao, T.T., Deng, M., Song, Z.G., Luo, H.Y., Hursthouse, A.S., 2018. Characteristics and controlling factors of pore structure of the Permian shale in southern Anhui province, East China. J. Nat. Gas Sci. Eng. 60, 228–245. https://doi.org/10.1016/j.jngse.2018.10.018.
Chalmers, G.R., Bustin, R.M., Power, I.M., 2012. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from theBarnett, Woodford, Haynesville, Marcellus, and Doig unit. AAPG Bull. 96 (6), 1099–1119. https://doi.org/10.1306/10171111052.
Chen, J., Xiao, X., 2014. Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel 129, 173–181. https://doi.org/10.1016/j.fuel.2014.03.058.
Chen, K., Zhai, G.Y., Bao, S.J., Song, T., Lin, T., Li, H.H., Jin, C.S., Meng, F.Y., Tang, X.C., Zhang, Y.L., 2020. Structural evolution of the Huangling uplift in South China and its control on shale gas preservation. China Geol 47 (1), 161–172. https://doi.org/10.12029/gc20200113 (in Chinese).
Dong, T., He, S., Chen, M.F., Hou, Y.G., Guo, X.W., Wei, C., Han, Y.J., Yang, R., 2019. Quartz types and origins in the paleozoic Wufeng-Longmaxi Formations, Eastern Sichuan Basin, China: implications for porosity preservation in shale reservoirs. Mar. Petrol. Geol. 106, 62–73. https://doi.org/10.1016/j.marpetgeo.2019.05.002.
Feng, Q.Q., Qiu, N.S., Borjigin, T., Wu, H., Zhang, J.T., Shen, B.J., Wang, J.S., 2022. Tectonic evolution revealed by thermo-kinematic and its effect on shale gas preservation. Energy 240, 122781. https://doi.org/10.1016/j.energy.2021.122781.
Furmann, A., Mastalerz, M., Schimmelmann, A., Pedersen, P.K., Bish, D., 2014. Relationships between porosity, organic matter, and mineral matter in mature organic-rich marine mudstones of the Belle Fourche and Second White Specks formations in Alberta, Canada. Mar. Petrol. Geol. 54, 65–81. https://doi.org/10.1016/j.marpetgeo.2014.02.020.
Gao, Z.Y., Fan, Y.P., Xuan, Q.X., Zheng, G.W., 2020. A review of shale pore structure evolution characteristics with increasing thermal maturities. Adv. Geo-Energy Res. 4 (3), 247–259. https://doi.org/10.46690/ager.2020.03.03.
Ge, X., Shen, C.B., Yang, Z., Mei, L.F., Xu, S.H., Peng, L., Liu, Z.Q., 2013. Low-temperature thermochronology constraints on the mesozoic-cenozoic exhumation of the Huangling massif in the Middle Yangtze Block, Central China. J. Earth Sci. 24, 541–552. https://doi.org/10.1007/s12583-013-0348-8.
Gou, Q.Y., Xu, S., Hao, F., Yang, F., Zhang, B.Q., Shu, Z.G., Zhang, A.H., Wang, Y.X., Lu, Y.B., Cheng, X., Qing, J.W., Gao, M.T., 2019. Full-scale pores and micro-fractures characterization using FE-SEM, gas adsorption, nano-CT and micro-CT: a case study of the Silurian Longmaxi Formation shale in the Fuling area, Sichuan Basin, China. Fuel 253, 167–179. https://doi.org/10.1016/j.fuel.2019.04.116.
Gou, Q.Y., Xu, S., Hao, F., Yang, F., Shu, Z.G., Liu, R., 2021a. The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation. Energy 219, 119579. https://doi.org/10.1016/j.energy.2020.119579.
Gou, Q.Y., Xu, S., Hao, F., Shu, Z.G., Zhang, Z.Y., 2021b. Making sense of micro-fractures to the Longmaxi shale reservoir quality in the Jiaoshiba area, Sichuan Basin, China: implications for the accumulation of shale gas. J. Nat. Gas Sci. Eng. 94, 104107. https://doi.org/10.1016/j.jngse.2021.104107.
Gou, Q.Y., Xu, S., Hao, F., Lu, Y.B., Shu, Z.G., Lu, Y.C., Wang, Z.K., Wang, Y.F., 2021c. Evaluation of the exploration prospect and risk of marine gas shale, southern China: a case study of Wufeng-Longmaxi shales in the Jiaoshiba area and Niutitang shales in the Cen’gong area. GSA Bull. 134 (5–6), 1585–1602. https://doi.org/10.1130/b36063.1.
Guo, X.C., Liu, R., Xu, S., Feng, B., Wen, T., Zhang, T.S., 2022. Structural deformation of shale pores in the fold-thrust belt: the Wufeng-Longmaxi shale in the Anchang syncline of Central Yangtze Block. Adv. Geo-Energy Res. 6 (6), 515–530. https://doi.org/10.46690/ager.2022.06.08.
He, Z.L., Nie, H.K., Zhang, Y.Y., 2016. Analysis on main controlling factors of shale gas enrichment in Ordovician Wufeng Formation and Silurian Longmaxi Formation, Sichuan Basin and its periphery. Geosci. Front. 23 (2), 817. https://doi.org/10.13745/j.esf.2016.02.002 (in Chinese).
Hu, D.F., Zhang, H.R., Ni, K., Yu, G.C., 2014. Preservation conditions for marine shale gas at the southeastern margin of the Sichuan Basin and their controlling factors. Nat. Gas Industry. B. 1 (2), 178–184. https://doi.org/10.1016/j.ngib.2014.11.009.
Hu, G., Pang, Q., Jiao, K., Hu, C.W., Liao, Z.W., 2020. Development of organic pores in the Longmaxi Formation overmature shales: combined effects of thermal maturity and organic matter composition. Mar. Petrol. Geol. 116, 104314. https://doi.org/10.1016/j.marpetgeo.2020.104314.
Jiao, L., Andersen, P.Ø., Ping, Z.J., Cai, J., 2020. Applications of mercury intrusion capillary pressure for pore structures: a review. Capillarity 3 (4), 62–74. https://doi.org/10.46690/capi.2020.04.02.
Liang, M.L., Wang, Z.X., Gao, L., Li, C.L., Li, H.J., 2017. Evolution of pore structure in gas shale related to structural deformation. Fuel 197, 310–319. https://doi.org/10.1016/j.fuel.2017.02.035.
Liu, S.G., Ye, Y.H., Ran, B., Jiang, L., LI, Z.W., Li, J.X., Song, J.M., Jiao, K., Li, Z.Q., Li, Y.W., 2020. Evolution of shale pore structure characteristics under different preservation conditions and significance. Journal of Reservoir Evaluation and Development 10 (5), 1–11 (in chinese) doi: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.05.001.
Liu, Y.S., Jin, J.N., Pan, R.F., Li, X.T., Zhu, Z.P., 2023. Evaluation of atmospheric shale gas preservation conditions of Wufeng-Longmaxi Formation in the basin margin transition zone of southeast Chongqing. Bulletin of Geological Science and Technology 42 (1), 253–263. https://doi.org/10.19509/j.cnki.dzkq.tb20210768 (in Chinese).
Milliken, K.L., Esch, W., Reed, R., Zhang, T.W., 2012. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett shale (Mississippian), Fort Worth basin, Texas. AAPG Bull. 96 (8), 1553–1578. https://doi.org/10.1306/12011111129.
Milliken, K.L., Rudnicki, M., Awwiller, D.N., Zhang, T.W., 2013. Organic matter–hosted pore system, Marcellus formation (Devonian), Pennsylvania. AAPG Bull. 97, 177–200. https://doi.org/10.1306/07231212048.
Mastalerz, M., Schimmelmann, A., Drobniak, A., Chen, Y.Y., 2013. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 97 (10), 1621–1643. https://doi.org/10.1306/04011312194.
Ma, Y., Ardakani, O.H., Zhong, N.N., Liu, H.L., Huang, H.P., Larter, S., Zhang, C., 2020. Possible pore structure deformation effects on the shale gas enrichment: an example from the Lower Cambrian shales of the Eastern Upper Yangtze Platform, South China. Int. J. Coal Geol. 217, 103349. https://doi.org/10.1016/j.coal.2019.103349.
Ross, D.J.K., Bustin, R.M., 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Petrol. Geol. 26 (6), 916–927. https://doi.org/10.1016/j.marpetgeo.2008.06.004.
Slatt, R.M., O'Brien, N.M., 2009. Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 95 (12), 2017–2030. https://doi.org/10.1306/03301110145.
Shi, Y.G., Tang, X.L., Wu, W., Jiang, Z.X., Xiang, S.Q., Wang, M., Zhou, Y.R., Xiao, Y.P., 2022. Control of complex structural deformation and fractures on shale gas enrichment in southern Sichuan Basin, China. Energy & Fuels 36 (12), 6229–6242. https://doi.org/10.1021/acs.energyfuels.2c00993.
Si, C.Y., Tan, J.Q., Wang, Z.H., Ma, X., 2022. Characteristics and influencing factors of shale pore development in Niutitang Formation of Cambrian, western Hunan. J. Cent. S. Univ. 53 (9), 3738–3755. https://doi.org/10.11817/j.issn.1672-7207.2022.09.034 (in Chinese).
Sun, W.J.B., Zuo, Y.J., Lin, Z., Wu, Z.H., Liu, H., Lin, J.Y., Chen, B., Chen, Q.G., Pan, C., Lan, B.F., Liu, S., 2023. Impact of tectonic deformation on shale pore structure using adsorption experiments and 3D digital core observation: a case study of the Niutitang Formation in Northern Guizhou. Energy 278, 127724. https://doi.org/10.1016/j.energy.2023.127724.
Sun, W.J.B., Zuo, Y.J., Wang, S.Y., Wu, Z.H., Liu, H., Zheng, L.J., Lou, Y.L., 2020. Pore structures of shale cores in different tectonic locations in the complex tectonic region: a case study of the Niutitang Formation in Northern Guizhou, Southwest China. J. Nat. Gas Sci. Eng. 80, 103398. https://doi.org/10.1016/j.jngse.2020.103398.
Teng, J., Liu, B., Mastalerz, M., Schieber, J., 2022. Origin of organic matter and organic pores in the overmature Ordovician-Silurian Wufeng-Longmaxi shale of the Sichuan Basin, China. Int. J. Coal Geol. 253, 103970. https://doi.org/10.1016/j.coal.2022.103970.
Wang, G.C., 2020. Deformation of organic matter and its effect on pores in mudrocks. AAPG Bull. 104 (1), 21–36. https://doi.org/10.1306/04241918098.
Wang, J.Y., Guo, S.B., 2021. Study on the relationship between hydrocarbon generation and pore evolution in continental shale from the Ordos Basin, China. Petrol. Sci. 18 (5), 18. https://doi.org/10.1016/j.petsci.2021.01.002.
Wang, R.Y., Hu, Z.Q., Zhou, T., Bao, H.Y., Wu, J., Du, W., He, J.H., 2021a. Shale fracture development characteristics and reservoir control significance of Wufeng-Longmaxi Formation in Sichuan Basin and its periphery. Oil Gas Geol. 42 (6), 1295–1306 (in Chinese).
Wang, Y., Dong, D., Cheng, X., Huang, J.L., Wang, S.F., Wang, S.Q., 2014. Electric property evidences of carbonification of organic matters in marine shales and its geologic significance: a case study of the Lower Cambrian Qiongzhusi shale in the southern Sichuan Basin. Nat. Gas Industry. B. 1 (2), 129–136. https://doi.org/10.1016/j.ngib.2014.11.002.
Wang, Y., Liu, L.F., Cheng, H.F., 2021b. Gas adsorption characterization of pore structure of organic-rich shale: Insights into contribution of organic matter to shale pore network. Nat. Resour Res. 30, 2377–2395. https://doi.org/10.1007/s11053-021-09817-5.
Wei, S., He, S., Pan, Z.J., Guo, X.W., Yang, R., Dong, T., Yang, W., Gao, J., 2019. Models of shale gas storage capacity during burial and uplift: Application to Wufeng-Longmaxi shales in the Fuling shale gas field. Mar. Petrol. Geol. 109, 233–244. https://doi.org/10.1016/j.marpetgeo.2019.06.012.
Wu, L.Y., Hu, D.F., Lu, Y.C., Liu, R.B., Liu, X.F., 2016. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in fuling gas field of Sichuan Basin, SW China. Petrol. Explor. Dev. 43 (2), 208–217. https://doi.org/10.1016/s1876-3804(16)30024-6.
Xi, Z.D., Tang, S.H., Li, J., Zhang, Z.Y., Xiao, H.Q., 2019. Pore characterization and the controls of organic matter and quartz on pore structure: case study of the Niutitang Formation of northern Guizhou Province, South China. J. Nat. Gas Sci. Eng. 61, 18–31. https://doi.org/10.1016/j.jngse.2018.11.001.
Xu, L.L., Wen, Y.R., Zhang, Y.L., Ren, Z.J., Yang, J., Wen, J.H., Chen, W., Luo, F., Duan, K., 2021. Gas-bearing characteristics and preservation conditions of upper Ordovician Wufeng FormationFormation-Lower Silurian Longmaxi Formation shale in western Hubei. Petroleum Geology. & Experiment 43 (3), 395–405. https://doi.org/10.11781/sysydz202103395 (in Chinese).
Xu, S., Hao, F., Shu, Z.G., Zhang, A.H., Yang, F., 2020a. Pore structures of different types of shales and shale gas exploration of the Ordovician Wufeng and Silurian Longmaxi successions in the eastern Sichuan Basin, South China. J. Asian Earth Sci. 193, 104271. https://doi.org/10.1016/j.jseaes.2020.104271.
Xu, S., Gou, Q.Y., Hao, F., Zhang, B.Q., Shu, Z.G., Lu, Y.B., Wang, Y.X., 2020b. Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba shale gas field, Sichuan Basin, China: dominated by lithofacies or preservation condition? Mar. Petrol. Geol. 114, 104211. https://doi.org/10.1016/j.marpetgeo.2019.104211.
Yang, W., Wang, Y.H., Du, W., Song, Y., Jiang, Z.X., Wang, Q.Y., Xu, L., Zhao, F.P., Chen, Y., Shi, F.L., Yao, S.H., Hou, H.D., Xiong, S.L., 2022. Behavior of organic matter-hosted pores within shale gas reservoirs in response to differential tectonic deformation: potential mechanisms and innovative conceptual models. J. Nat. Gas Sci. Eng. 102, 104571. https://doi.org/10.1016/j.jngse.2022.104571.
Yasin, Q., Sohail, G.M., Liu, K.Y., Du, Q.Z., Boateng, C.D., 2021. Study on brittleness templates for shale gas reservoirs-A case study of Longmaxi shale in Sichuan Basin, southern China. Petrol. Sci. 18 (5), 20. https://doi.org/10.1016/j.petsci.2021.09.030.
Yuan, Y.S., Jin, Z.J., Zhou, Y., Liu, J.X., Li, S.J., Liu, Q.Y., 2017. Burial depth interval of the shale brittle-ductile transition zone and its implications in shale gas exploration and production. Petrol. Sci. 14 (4), 11. https://doi.org/10.1007/s12182-017-0189-7.
Zhai, G.Y., Bao, S.J., Pang, F., Ren, S.M., Chen, K., Wang, Y.F., Zhou, Z., Wang, S.J., 2017. Study on hydrocarbon accumulation model of four-story shale in Anchang syncline, Zunyi area, Guizhou. China Geol 44 (1), 1–12. https://doi.org/10.12029/gc20170101.
Zhai, G.Y., Wang, Y.F., Liu, G.H., Zhou, Z., Bao, S.J., Chen, K., Kang, H., Zhang, J.Z., Wang, S.J., Zhang, Y.X., 2019. The Sinian-Cambrian formation shale gas exploration and practice in southern margin of Huangling paleo-uplift. Mar. Petrol. Geol. 109, 419–433. https://doi.org/10.1016/j.marpetgeo.2019.06.036.
Zhang, J.F., Xu, H., Zhou, Z., Ren, P.F., Guo, J.Z., Wang, Q., 2019. Geological characteristics of shale gas accumulation in Yichang area of western Hubei. Acta Petrol. Sin. 40 (8), 887–899. https://doi.org/10.7623/syxb201908001 (in Chinese).
Zhang, Y.F., Yu, B.S., Pan, Z.J., Hou, C.H., Zuo, Q.W., Sun, M.D., 2020. Effect of thermal maturity on shale pore structure: a combined study using extracted organic matter and bulk shale from Sichuan Basin, China. J. Nat. Gas Sci. Eng. 74, 103089. https://doi.org/10.1016/j.jngse.2019.103089.
Zhang, B.M., Cai, Q.S., Chen, X.H., Wang, C.S., Zhang, G.T., Chen, L., LI, P.J., Li, Y.G., 2021. Shale gas reservoir characteristics and gas bearing capacity of Wufeng-Longmaxi Formation in Well Eyiye 2, eastern margin of Huangling Uplift, western Hubei. China Geol. 48(05), 1485-1498 (in chinese) doi: https://doi.org/10.12029/gc20210513.
Zhao, J.H., Jin, Z.J., Hu, Q.H., Hu, Q.H., Liu, K.Y., Jin, Z.K., Hu, Z.Q., Nie, H.K., Du, W., Yan, C.N., Wang, R.Y., 2018. Mineral composition and seal condition implicated in pore structure development of organic-rich Longmaxi shales, Sichuan Basin, China. Mar. Petrol. Geol. 98, 507–522. https://doi.org/10.1016/j.marpetgeo.2018.09.009.
Zhou, Z., Jiang, Z.X., Li, S.Z., Xu, G.H., Wang, S.J., Gou, T.X., Tong, C.C., 2021. Biostratigraphic characteristics of black shale in Wufeng-Longmaxi Formation, Jianshi area, western Hubei. Earth Sci. 46 (2), 432–443. https://doi.org/10.3799/dqkx.2020.059 (in Chinese).
Zhu, H.J., Ju, Y.W., Qi, Y., Huang, C., Zhang, L., 2018. Impact of tectonism on pore type and pore structure evolution in organic-rich shale: implications for gas storage and migration pathways in naturally deformed rocks. Fuel 228, 272–289. https://doi.org/10.1016/j.fuel.2018.04.137.