Due to limited data on the geochemical properties of natural gas, estimations are needed for the effective gas source rock in evaluating gas potential. However, the pronounced heterogeneity of mudstones in lacustrine successions complicates the prediction of the presence and geochemical characteristics of gas source rocks. In this paper, the Liaohe Subbasin of Northeast China is used as an example to construct a practical methodology for locating effective gas source rocks in typical lacustrine basins. Three types of gas source rocks, microbial, oil-type, and coal-type, were distinguished according to the different genetic types of their natural gas. A practical three-dimensional geological model was developed, refined, and applied to determine the spatial distribution of the mudstones in the Western Depression of the Liaohe Subbasin and to describe the geochemical characteristics (the abundance, type, and maturation levels of the organic matter). Application of the model in the subbasin indicates that the sedimentary facies have led to heterogeneity in the mudstones, particularly with respect to organic matter types. The effective gas source rock model constructed for the Western Depression shows that the upper sequence (SQ2) of the Fourth member (Mbr 4) of the Eocene Shahejie Formation (Fm) and the lower and middle sequences (SQ3 and SQ4) of the Third member (Mbr 3) form the principal gas-generating interval. The total volume of effective gas source rocks is estimated to be 586 km3. The effective microbial, oil-type, and coal-type gas source rocks are primarily found in the shallow western slope, the central sags, and the eastern slope of the Western Depression, respectively. This study provides a practical approach for more accurately identifying the occurrence and geochemical characteristics of effective natural gas source rocks, enabling a precise quantitative estimation of natural gas reserves.
Ali, A.M., Radwan, A.E., Abd El-Gawad, E.A., Abdel-Latief, A.A., 2022. 3D integrated structural, facies and petrophysical static modeling approach for complex sandstone reservoirs: a case study from the coniacian–santonian matulla formation, july Oilfield, gulf of suez, Egypt. Nat. Resour. Res. 31, 385–413. https://doi.org/10.1007/s11053-021-09980-9.
Al-Mudhafar, W.J., 2017. Multiple-Point Geostatistical Lithofacies Simulation of Fluvial Sand-Rich Depositional Environment: A Case Study from Zubair Formation/South Rumaila Oil Field. SPE Reservoir Evaluation & Engineering. https://doi.org/10.2118/187949-PA.
Anas, M.M., Scott, K.A., Wissel, B., 2015. Carbon budgets of boreal lakes: state of knowledge, challenges, and implications. Environ. Rev. 23, 275–287. https://doi.org/10.1139/er-2014-0074.
Anees, A., Zhang, H.C., Ashraf, U., Wang, R., Liu, K., Abbas, A., Ullah, Z., Zhang, X.N., Duan, L.Z., Liu, F.W., 2022. Sedimentary facies controls for reservoir quality prediction of lower shihezi member-1 of the Hangjinqi area, Ordos Basin. Minerals 12, 126. https://doi.org/10.3390/min12020126.
Behar, F., Beaumont, V., Penteado, H.D.B., 2001. Rock-Eval 6 technology: performances and developments. Oil Gas Sci. Technol. 56, 111–134. https://doi.org/10.2516/ogst:2001013.
Dai, J.X., 1992. Identification of various alkane gases. Sci. Sin. 185–193 (in Chinese).
Damsleth, E., Tjolsen, C.B., Omre, H., Haldorsen, H.H., 1992. A two-stage stochastic model applied to a North Sea reservoir. J. Petrol. Technol. 44, 402–486. https://doi.org/10.2118/20605-PA.
Dembicki, H.J., 2009. Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG (Am. Assoc. Pet. Geol.) Bull. 93, 341–356. http://10.1306/10230808076.
Faramawy, S., Zaki, T., Sakr, A.A.E., 2016. Natural gas origin, composition, and processing: a review. J. Nat. Gas Sci. Eng. 34, 34–54. https://doi.org/10.1016/j.jngse.2016.06.030.
Feng, Y.L., Jiang, S., Hu, S.Y., Li, S.T., Lin, C.S., Xie, X., 2016. Sequence stratigraphy and importance of syndepositional structural slope-break for architecture of Paleogene syn-rift lacustrine strata, Bohai Bay Basin, E. China. Mar. Petrol. Geol. 69, 183–204. https://doi.org/10.1016/j.marpetgeo.2015.10.013.
Gao, Y., Jiang, X.L., Liu, F., Wang, X.Y., Liu, R.H., 2017. Sedimentary characteristics and formation mechanisms of lacustrine beach-bars in the fourth member of the Shahejie Formation in the Shubei area, western depression of the Liaohe Oilfield, China. J. Earth Sci. 28, 1178–1190. https://doi.org/10.1007/s12583-016-0928-0.
Gao, Y., Jin, Q., Shuai, Y.H., Wang, H., 2011. Genetic types and accumulation conditions of biogas in Bohaiwan Basin. Nat. Gas Geosci. 22, 407–414. https://10.1002/9781444350302.wbhe1011 (in Chinese).
Hou, L.H., Huang, H.P., Yang, C., Ma, W.J., 2021. Experimental simulation of hydrocarbon expulsion in semi-open systems from variable organic richness source rocks. ACS Omega 6, 14664–14676. https://doi.org/10.1021/acsomega.1c01800.
Hu, L.G., Fuhrmann, A., Poelchau, H.S., Horsfield, B., Zhang, Z.W., Wu, T.S., Chen, Y.X., Li, J.Y., 2005. Numerical simulation of petroleum generation and migration in the Qingshui sag, western depression of the Liaohe basin, northeast China. AAPG (Am. Assoc. Pet. Geol.) Bull. 89, 1629–1649. https://doi.org/10.1306/07280504069.
Hu, S.B., O'Sullivan, P.B., Raza, A., Kohn, B.P., 2001. Thermal history and tectonic subsidence of the Bohai Basin, northern China: a Cenozoic rifted and local pull-apart basin. Phys. Earth Planet. In. 126, 221–235. https://doi.org/10.1016/S0031-9201(01)00257-6.
Huang, S.P., Feng, Z.Q., Gu, T., Gong, D.Y., Peng, W.L., Yuan, M., 2017. Multiple origins of the Paleogene natural gases and effects of secondary alteration in Liaohe Basin, northeast China: insights from the molecular and stable isotopic compositions. Int. J. Coal Geol. 172, 134–148. https://doi.org/10.1016/j.coal.2017.01.009.
Khattab, M.A., Radwan, A.E., El-Anbaawy, M.I., Mansour, M.H., El-Tehiwy, A.A., 2023. Three-dimensional structural modelling of structurally complex hydrocarbon reservoir in October Oil Field, Gulf of Suez, Egypt. Geol. J. https://doi.org/10.1002/gj.4748.
Kotarba, M.J., Lewan, M.D., 2004. Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis. Org. Geochem. 35, 615–646. https://doi.org/10.1016/j.orggeochem.2003.12.001.
Lai, H.F., Li, M.J., Jian, X.L., Wang, L., Liu, J., Wang, G.Y., Liu, P., Dai, J.H., 2020a. An integrated sequence stratigraphic–geochemical investigation of the Jurassic source rocks in the North Yellow Sea Basin, eastern China. AAPG (Am. Assoc. Pet. Geol.) Bull. 104, 2145–2171. https://doi.org/10.1306/05212019072.
Lai, H.F., Li, M.J., Mao, F.J., Liu, J.G., Xiao, H., Tang, Y.J., Shi, S.B., 2020b. Source rock types, distribution and their hydrocarbon generative potential within the Paleogene Sokor-1 and LV formations in Termit Basin, Niger. Energy Explor. Exploit. 38, 2143–2168. http://10.1177/0144598720915534.
Lai, W.Z., 2000. Gas Exploration Potential in Bohai Sea. China Offshore Oil Gas 25–30 (in Chinese).
Li, D.S., 1981. Geological structure and Hydrocarbon occurrence of Bohai gulf oil and gas basin. Marine Geol. Res. 3–20 (in Chinese). https://10.16562/j.cnki.0256-1492.1981.01.002.
Li, M.J., Simoneit, B.R.T., Zhong, N.N., Fang, R.H., 2013. The distribution and origin of dimethyldibenzothiophenes in sediment extracts from the Liaohe Basin, East China. Org. Geochem. 65, 63–73. https://10.1016/j.orggeochem.2013.10.007.
Li, X.G., 2020. Accumulation conditions and key exploration & development technologies of heavy oil in Huanxiling oilfield in Liaohe depression, Bohai Bay Basin. Petroleum Res. 5, 18–38. https://doi.org/10.1016/j.ptlrs.2020.01.004.
Liu, Q.Y., Wu, X.Q., Wang, X.F., Jin, Z.J., Zhu, D.Y., Meng, Q.Q., Huang, S.P., Liu, J.Y., Fu, Q., 2019. Carbon and hydrogen isotopes of methane, ethane, and propane: a review of genetic identification of natural gas. Earth Sci. Rev. 190, 247–272. https://doi.org/10.1016/j.earscirev.2018.11.017.
Mu, G.Y., Zhong, N.N., Liu, B., Yu, T.C., Liu, Y., 2010. The quantitative evaluation method of lacustrine mudstone source rock and its application. Acta Pet. Sin. 31, 218–224+230. https://10.7623/syxb201002007 (in Chinese).
Pei, L.X., Wang, X.F., Gao, G., Liu, W.H., 2022. Geochemical heterogeneity, origin and secondary alteration of natural gas inside and outside buried hills of Xinglongtai area, West Sag, Liaohe Depression, Bohai Bay Basin. J. Petrol. Sci. Eng. 208, 109456. https://doi.org/10.1016/j.petrol.2021.109456.
Peters, K.E., 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG (Am. Assoc. Pet. Geol.) Bull. 70, 318–329. https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D.
Qi, J.F., Yang, Q., 2010. Cenozoic structural deformation and dynamic processes of the Bohai Bay basin province, China. Mar. Petrol. Geol. 27, 757–771. https://doi.org/10.1016/j.marpetgeo.2009.08.012.
Sahoo, T.R., Funnell, R.H., Brennan, S.W., Sykes, R., Thrasher, G.P., Adam, L., Lawrence, M.J.F., Kellett, R.L., Ma, X., 2021. Delineation of coaly source rock distribution and prediction of organic richness from integrated analysis of seismic and well data. Mar. Petrol. Geol. 125, 104873. https://doi.org/10.1016/j.marpetgeo.2020.104873.
Wang, J.Y., Wang, J.A., Xiong, L.P., Zhang, J.M., 1985. Analysis of factors affecting heat flow density determination in the Liaohe Basin, North China. Tectonophysics 121, 63–78. https://doi.org/10.1016/0040-1951(85)90268-9.
Wang, Q.C., Bao, Z.D., He, P., 2010. Sequence stratigraphic responses to the lacustrine basin deep-faulted period in the north area of the western sag Liaohe Depression. Petrol. Explor. Dev. 37, 11–20. https://JournalArticle/5af5b9abc095d718d8287b27 (in Chinese).
Wang, Q., Hao, F., Niu, C.M., Zou, H.Y., Miao, Q.Y., Yin, J., Cao, Y.J., Liu, M.X., 2021. Origins and deep petroleum dynamic accumulation in the southwest part of the Bozhong depression, Bohai Bay Basin: insights from geochemical and geological evidences. Mar. Petrol. Geol. 134, 105347. https://doi.org/10.1016/j.marpetgeo.2021.105347.
Wang, W.Y., Pang, X.Q., Chen, Z.X., Chen, D.X., Ma, X.H., Zhu, W.P., Zheng, T.Y., Wu, K.L., Zhang, K., Ma, K.Y., 2020. Improved methods for determining effective sandstone reservoirs and evaluating hydrocarbon enrichment in petroliferous basins. Appl. Energy 261, 114457. https://doi.org/10.1016/j.petrol.2020.107843.
Wang, W.Y., Pang, X.Q., Wang, Y.P., Chen, Z.X., Li, C.R., Ma, X.H., 2022. Hydrocarbon expulsion model and resource potential evaluation of high-maturity marine source rocks in deep basins: example from the Ediacaran microbial dolomite in the Sichuan Basin, China. Petrol. Sci. 19, 2618–2630. https://doi.org/10.1016/j.petsci.2022.11.018.
Wang, X.B., Jiang, Z.X., Hu, G.Y., Fan, E.T., Wang, J.H., Lu, H., 2019. Sendimentary facies and evolusion of upper fourth member of paleogene shahejie formation in western sag of Liaohe Basin. J. Jilin Univ. (Earth Sci. Ed.) 49, 1222–1234 (in Chinese). http://10.13278/j.cnki.jjuese.20180054.
Wang, X.N., Li, J.R., Jiang W, Q., Zhang, H., Feng, Y.L., Yang, Z., 2022. Characteristics, current exploration practices, and prospects of continental shale oil in China. Adv. Geo-Energy Res. 6, 454–459. https://doi.org/10.1016/j.apenergy.2019.114457.
Wang, Y.S., Hu, Y.J., Huang, S.Q., Kang, W.J., Chen, Y.C., 2018. Geological conditions, petential and exploration direction of nature gas in Liaohe Depression, Bohai by Basin. Nutrual Gas Geosci. 29, 1422–1432 (in Chinese).
Xie, Y.H., Zhu, X.M., Zhao, K., 2010. Sequence-stratigraphic framework on paleogene of the Liaohe western depression. Sci. Technol. Rev. 28, 58–64 (in Chinese).
Xu, C.G., Yu, H.B., Wang, J., Liu, X.J., 2019. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin. Petrol. Explor. Dev. 46, 27–40. https://doi.org/10.1016/S1876-3804(19)30003-5.
Xu, Z.J., Wang, Y., Jiang, S., Fang, C., Liu, L.F., Wu, K.J., Luo, Q., Li, X., Chen, Y.Y., 2022. Impact of input, preservation and dilution on organic matter enrichment in lacustrine rift basin: a case study of lacustrine shale in Dehui Depression of Songliao Basin, NE China. Mar. Petrol. Geol. 135, 105386. https://doi.org/10.1016/j.marpetgeo.2021.105386.
Yang, S.B., Li, M., Liu, J., X, Q., Han, Q.Y., Wu, J., Zhong, N.N., 2019. Thermodynamic stability of methyldibenzothiophenes in sedimentary rock extracts: based on molecular simulation and geochemical data. Org. Geochem. 129, 24–41. https://doi.org/10.1016/j.orggeochem.2018.10.012.
Yang, Z., Zou, C.N., 2019. “Exploring petroleum inside source kitchen”: connotation and prospects of source rock oil and gas. Petrol. Explor. Dev. 46, 181–193. https://doi.org/10.1016/S1876-3804(19)30018-7.
Zeng, B., Li, M.J., Wang, X., Wang, F.Z., Gong, C.L., Lai, J., Shi, Y., 2022. Source rock evaluation within a sequence stratigraphic framework of the palaeogene liushagang Formation in the fushan depression, south China sea. Geol. J. https://doi.org/10.1002/gj.4419.
Zeng, B., Li, M.J., Zhu, J.Q., Wang, X., Shi, Y., Zhu, Z.L., Guo, H., Wang, F.Z., 2021. Selective methods of TOC content estimation for organic-rich interbedded mudstone source rocks. J. Nat. Gas Sci. Eng. 93, 104064. https://doi.org/10.1016/j.jngse.2021.104064.
Zhang, S.J., Shao, L.Y., Jie, S., Liu, D.T., Chen, G.S., Ren, C.L., 2008. Application of facies-controlled modeling technology to the fault-block A11 in A'nan Oilfield. Petrol. Explor. Dev. 35, 355–361. https://doi.org/10.1016/S1876-3804(08)60083-X.
Zhu, C.Z., Gang, W.Z., Li, X.F., Wang, N., Guo, Y., Zhao, X.Z., Wang, Y.F., Pu, X.G., 2022. The sorting effect of hydrodynamics on the geochemical compositions of sedimentary organic matter in a lacustrine rift basin: significance for hydrocarbon exploration on the Qibei slope, Bohai Bay Basin, China. Mar. Petrol. Geol. 141, 105705. https://doi.org/10.1016/j.marpetgeo.2022.105705.