Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A gel based on polyacrylamide, exhibiting delayed crosslinking characteristics, emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores. High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling. Taking into account both the cost and the potential damage to reservoirs, polymers with lower concentrations and molecular weights are generally preferred. In this work, the supramolecular action was integrated into the polymer, resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system. The double network gel, which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker, effectively resists temperature while minimizing permeability damage to the reservoir. The results indicate that the supramolecular polymer system with a molecular weight of (268–380) × 104 g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt% due to the supramolecular interaction between polymers, compared to the 0.6 wt% traditional polymer (hydrolyzed polyacrylamide, molecular weight of 1078 × 104 g/mol). The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%, whereas the 0.6 wt% traditional polymer had a rate of 0.57 cm/min. In comparison to the traditional gel with a Zr-crosslinker concentration of 0.6 wt% and an elastic modulus of 7.77 Pa, the double network gel with a higher elastic modulus (9.00 Pa) could be formed only at 0.1 wt% Zr-crosslinker, which greatly reduced the amount of residue of the fluid after gel-breaking. The viscosity of the double network gel was 66 mPa s after 2 h shearing, whereas the traditional gel only reached 27 mPa s.
Alarawi, A., Busaleh, A., Saleh, T.A., et al., 2023. High thermal stability of foams stabilized by graphene oxide and zwitterionic surfactant nanocomposites for fracturing applications. Fuel 332, 126156. https://doi.org/10.1016/j.fuel.2022.126156.
Almubarak, T., Alkhaldi, M., Ng, J.H., et al., 2019a. Design and application of high-temperature raw-seawater-based fracturing fluids. SPE J. 24 (4), 1929–1946. https://doi.org/10.2118/195597-PA.
Almubarak, T., Ng, J.H., Nasr-El-Din, H.A., et al., 2019b. Dual-polymer hydraulic-fracturing fluids: a synergy between polysaccharides and polyacrylamides. SPE J. 24 (6), 2635–2652. https://doi.org/10.2118/191580-PA.
Almuntasheri, G., Operations, 2014. A critical review of hydraulic-fracturing fluids for moderate- to ultralow-permeability formations over the last decade. SPE Prod. Oper. 29 (4), 243–260. https://doi.org/10.15530/urtec-2023-3871053.
Biheri, G., Imqam, A., 2022. Proppant transport using high-viscosity friction reducer fracture fluids at high-temperature environment. SPE J. 27 (1), 60–76. https://doi.org/10.2118/206750-PA.
Da, Q., Yao, C., Zhang, X., et al., 2022. Investigation on microscopic invasion characteristics and retention mechanism of fracturing fluid in fractured porous media. Petrol. Sci. 19 (4), 1745–1756. https://doi.org/10.1016/j.petsci.2022.03.009.
Das, A., Chauhan, G., Verma, A., et al., 2018. Rheological and breaking studies of a novel single-phase surfactant-polymeric gel system for hydraulic fracturing application. J. Petrol. Sci. Eng. 167, 559–567. https://doi.org/10.1016/j.petrol.2018.04.033.
Davoodi, S., Al-Shargabi, M., Wood, D., et al., 2023. A comprehensive review of beneficial applications of viscoelastic surfactants in wellbore hydraulic fracturing fluids. Fuel 338, 127228. https://doi.org/10.1016/j.fuel.2022.127228.
de Greef, T., Meijer, E., 2008. Materials science - supramolecular polymers. Nature 453 (7192), 171–173. https://doi.org/10.1038/453171a.
Deng, Z., He, Y., Wang, Y., et al., 2020. Chondroitin sulfate hydrogels based on electrostatic interactions with enhanced adhesive properties: exploring the bulk and interfacial contributions. Soft Matter 16 (26), 6128–6137. https://doi.org/10.1039/d0sm00547a.
Gao, M., Zhang, M., Du, H., et al., 2023. A novel triple responsive smart fluid for tight oil fracturing-oil expulsion integration. Petrol. Sci. 20 (2), 982–992. https://doi.org/10.1016/j.petsci.2023.01.008.
Gao, Z., Xie, L., Cui, X., et al., 2018. Probing anisotropic surface properties and surface forces of fluorite crystals. Langmuir 34 (7), 2511–2521. https://doi.org/10.1021/acs.langmuir.7b04165.
Hanafy, A., Najem, F., Nasr-El-Din, H., 2021. Effect of nanoparticle shape on viscoelastic surfactant performance at high temperatures. SPE J. 26 (3), 1436–1454. https://doi.org/10.2118/203836-PA.
Holtsclaw, J., Galindo, G., Chopade, P., 2017. Next-generation boron-crosslinked fracturing fluids: breaking the lower limits on polymer loadings. SPE Prod. Oper. 32 (4), 440–448. https://doi.org/10.2118/174988-PA.
Hu, R., Zhao, J., Wang, Y., et al., 2019. A highly stretchable, self-healing, recyclable and interfacial adhesion gel: preparation, characterization and applications. Chem. Eng. J. 360, 334–341. https://doi.org/10.1016/j.cej.2018.12.001.
Huang, Q., Liu, S., Wang, G., et al., 2019. Coalbed methane reservoir stimulation using guar-based fracturing fluid: a review. J. Nat. Gas Sci. Eng. 66, 107–125. https://doi.org/10.1016/j.jngse.2019.03.027.
Huang, Q., Liu, S., Cheng, W., et al., 2020. Fracture permeability damage and recovery behaviors with fracturing fluid treatment of coal: an experimental study. Fuel 282, 118809. https://doi.org/10.1016/j.fuel.2020.118809.
Ji, X., Shi, B., Wang, H., et al., 2015. Supramolecular construction of multifluorescent gels: interfacial assembly of discrete fluorescent gels through multiple hydrogen bonding. Adv. Mater. 27 (48), 8062–8066. https://doi.org/10.1002/adma.201504355.
Kamiyama, Y., Tamate, R., Hiroi, T., et al., 2022. Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh-molecular weight polymers. Sci. Adv. 8 (42). https://doi.org/10.1126/sciadv.add0226.
Le, X., Rioux, L., Turgeon, S., 2017. Formation and functional properties of protein-polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Adv. Colloid Interface Sci. 239, 127–135. https://doi.org/10.1016/j.cis.2016.04.006.
Li, X., Yin, H., Zhang, R., et al., 2019. A salt-induced viscosifying smart polymer for fracturing inter-salt shale oil reservoirs. Petrol. Sci. 16 (4), 816–829. https://doi.org/10.1007/s12182-019-0329-3.
Liang, F., Al-Muntasheri, G., Ow, H., et al., 2017. Reduced-polymer-loading, high-temperature fracturing fluids by use of nanocrosslinkers. SPE J. 22 (2), 622–631. https://doi.org/10.2118/177469-pa.
Lu, Y., Yang, F., Ge, Z., et al., 2017. Influence of viscoelastic surfactant fracturing fluid on permeability of coal seams. Fuel 194, 1–6. https://doi.org/10.1016/j.fuel.2016.12.078.
Luo, J., Cao, H., Chiarella, D., et al., 2023. Ultra-deep carbonate basement reservoirs formed by polyphase fracture-related karstification in the Offshore Bohai Bay Basin, China. Petrol. Sci. 20 (4), 2009–2025. https://doi.org/10.1016/j.petsci.2023.03.021.
Ma, C., Wang, C., Acevedo-Velez, C., et al., 2015. Modulation of hydrophobic interactions by proximally immobilized ions. Nature 517 (7534), 347-U443. https://doi.org/10.1038/nature14018.
Manz, K., Carter, K., 2017. Investigating the effects of heat activated persulfate on the degradation of furfural, a component of hydraulic fracturing fluid chemical additives. Chem. Eng. J. 327, 1021–1032. https://doi.org/10.1016/j.cej.2017.06.168.
Minami, S., Suzuki, D., Urayama, K., 2019. Rheological aspects of colloidal gels in thermoresponsive microgel suspensions: formation, structure, and linear and nonlinear viscoelasticity. Curr. Opin. Colloid Interface Sci. 43, 113–124. https://doi.org/10.1016/j.cocis.2019.04.004.
Panchagnula, V., Jeon, J., Dobrynin, A., 2004. Molecular dynamics simulations of electrostatic layer-by-layer self-assembly. Phys. Rev. Lett. 93 (3), 037801. https://doi.org/10.1103/PhysRevLett.93.037801.
Phelps, E., Enemchukwu, N., Fiore, V., et al., 2012. Maleimide cross-linked bioactive peg hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 24 (1), 64–70. https://doi.org/10.1002/adma.201103574.
Pu, W., Du, D., Liu, R., 2018. Preparation and evaluation of supramolecular fracturing fluid of hydrophobically associative polymer and viscoelastic surfactant. J. Petrol. Sci. Eng. 167, 568–576. https://doi.org/10.1016/j.petrol.2018.04.032.
Qin, Y., Wang, Y., Tang, M., et al., 2010. Layer-by-layer electrostatic self-assembly of anionic and cationic carbon nanotubes. Chin. Chem. Lett. 21 (7), 876–879. https://doi.org/10.1016/j.cclet.2010.02.003.
Roullet, M., Clegg, P., Frith, W., 2020. Rheology of protein-stabilised emulsion gels envisioned as composite networks 1-Comparison of pure droplet gels and protein gels. J. Colloid Interface Sci. 579, 878–887. https://doi.org/10.1016/j.jcis.2020.05.004.
Salunkhe, B., Schuman, T., Al, Brahim, A., et al., 2021. Ultra-high temperature resistant preformed particle gels for enhanced oil recovery. Chem. Eng. J. 426, 130712. https://doi.org/10.1016/j.cej.2021.130712.
Schulze, K., Kirstein, S., 2005. Layer-by-layer deposition of TiO2 nanoparticles. Appl. Surf. Sci. 246 (4), 415–419. https://doi.org/10.1016/j.apsusc.2004.11.064.
Shu, Y., Yan, J., 2008. Characterization and prevention of formation damage for fractured carbonate reservoir formations with low permeability. Petrol. Sci. 5 (4), 326–333. https://doi.org/10.1007/s12182-008-0055-8.
Sokhanvarian, K., Nasr-El-Din, H., Harper, T., 2019. Effect of ligand type attached to zirconium-based crosslinkers and the effect of a new dual crosslinker on the properties of crosslinked carboxymethylhydroxypropylguar. SPE J. 24 (4), 1741–1756. https://doi.org/10.2118/194204-pa.
Somoza, A., Garcia-Mayoral, M., Soto, A., 2023. A formulation based on a cationic surface-active ionic liquid and an anionic surfactant for enhanced oil recovery at a carbonate reservoir. Fuel 346, 128363. https://doi.org/10.1016/j.fuel.2023.128363.
Sun, Z., Lv, F., Cao, L., et al., 2015. Multistimuli-responsive, moldable supramolecular hydrogels cross-linked by ultrafast complexation of metal ions and biopolymers. Angew. Chem. Int. Ed. 54 (27), 7944–7948. https://doi.org/10.1002/anie.201502228.
Tong, S., Mohanty, K., 2016. Proppant transport study in fractures with intersections. Fuel 181, 463–477. https://doi.org/10.1016/j.fuel.2016.04.144.
Wang, D., Sun, Y., Tsang, D., et al., 2020. The roles of suspended solids in persulfate/Fe2+ treatment of hydraulic fracturing wastewater: synergistic interplay of inherent wastewater components. Chem. Eng. J. 388, 124243. https://doi.org/10.1016/j.cej.2020.124243.
Wang, J., Huang, Y., Zhang, Y., et al., 2020. Study of fracturing fluid on gel breaking performance and damage to fracture conductivity. J. Petrol. Sci. Eng. 193, 107443. https://doi.org/10.1016/j.petrol.2020.107443.
Wang, L., Long, Y., Ding, H., et al., 2017. Mechanically robust re-crosslinkable polymeric hydrogels for water management of void space conduits containing reservoirs. Chem. Eng. J. 317, 952–960. https://doi.org/10.1016/j.cej.2017.02.140.
Wang, R., Bi, S., Guo, Z., et al., 2022. Molecular insight into replacement dynamics of CO2 enhanced oil recovery in nanopores. Chem. Eng. J. 440, 135796. https://doi.org/10.1016/j.cej.2022.135796.
Wang, S., Zhang, Y., Guo, J., et al., 2014. A study of relation between suspension behavior and microstructure and viscoelastic property of guar gum fracturing fluid. J. Petrol. Sci. Eng. 124, 432–435. https://doi.org/10.1016/j.petrol.2014.09.016.
Wang, X., Zhao, M., Wang, X., et al., 2023. Synergistic effect of dual hydrogen-donor deep eutectic solvent for performance improvement of fracturing-oil expulsion fluids. Chem. Eng. J. 468, 143728. https://doi.org/10.1016/j.cej.2023.143728.
Wu, A., Gao, Y., Zheng, L., 2019. Zwitterionic amphiphiles: their aggregation behavior and applications. Green Chem. 21 (16), 4290–4312. https://doi.org/10.1039/c9gc01808e.
Wu, Y., Tang, L., Li, Y., et al., 2023. Probing the influence of secondary fracture connectivity on fracturing fluid flowback efficiency. Petrol. Sci. 20 (2), 973–981. https://doi.org/10.1016/j.petsci.2022.10.014.
Xu, H., Li, Y., Yu, G., et al., 2023. The enhancement of performance and imbibition effect of slickwater-based fracturing fluid by using MoS2 nanosheets. Petrol. Sci. 20 (4), 2187–2201. https://doi.org/10.1016/j.petsci.2022.12.008.
Xu, K., Yang, H., Zhang, H., et al., 2022. Fracture effectiveness evaluation in ultra-deep reservoirs based on geomechanical method, Kuqa Depression, Tarim Basin, NW China. J. Petrol. Sci. Eng. 215, 110604. https://doi.org/10.1016/j.petrol.2022.110604.
Yang, B., Wang, H., Li, G., et al., 2022. Fundamental study and utilization on supercritical CO2 fracturing developing unconventional resources: current status, challenge and future perspectives. Petrol. Sci. 19 (6), 2757–2780. https://doi.org/10.1016/j.petsci.2022.08.029.
Yang, X., Mao, J., Zhang, W., et al., 2020. Tertiary cross-linked and weighted fracturing fluid enables fracture stimulations in ultra high pressure and temperature reservoir. Fuel 268, 117222. https://doi.org/10.1016/j.fuel.2020.117222.
Yu, J., Wang, K., Fan, C., et al., 2021. An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion. Adv. Mater. 33 (16), 2008395. https://doi.org/10.1002/adma.202008395.
Yu, M., Ivanisevic, A., 2004. Encapsulated cells: an atomic force microscopy study. Biomaterials 25 (17), 3655–3662. https://doi.org/10.1016/j.biomaterials.2003.10.061.
Zhang, H., Liu, S., Xiao, H., 2018. Frictional behavior of sliding shale rock-silica contacts under guar gum aqueous solution lubrication in hydraulic fracturing. Tribol. Int. 120, 159–165. https://doi.org/10.1016/j.triboint.2017.12.044.
Zhang, Q., Mao, J., Yang, X., et al., 2022. Synthesis of a hydrophobic association polymer with an inner salt structurefor fracture fluid with ultra-high-salinity water. Colloids Surf., A 636, 128062. https://doi.org/10.1016/j.colsurfa.2021.128062.
Zhang, Y., Mao, J., Zhao, J., et al., 2018. Preparation of a novel ultra-high temperature low-damage fracturing fluid system using dynamic crosslinking strategy. Chem. Eng. J. 354, 913–921. https://doi.org/10.1016/j.cej.2018.08.021.
Zhao, G., Chu, Z., Wang, F., et al., 2022. Probing the interaction mechanism between alkanes and hydrophobic substrate using atomic force microscopy and molecular dynamics simulation. SPE J. 27 (3), 1436–1446. https://doi.org/10.2118/209230-pa.
Zhao, T., Zhang, Y., Peng, G., et al., 2019. A branched hydrophobicity associated with polyacrylamide based on silica: synthesis and solution properties. J. Polym. Res. 26 (11). https://doi.org/10.1007/s10965-019-1883-5.
Zhou, H., Huang, X., Liang, Y., et al., 2020. Enhanced bioremediation of hydraulic fracturing flowback and produced water using an indigenous biosurfactant-producing bacteria acinetobacter sp. Y2. Chem. Eng. J. 397, 125348. https://doi.org/10.1016/j.cej.2020.125348.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).