AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Paper | Open Access

Molecular insights into oil detachment from hydrophobic quartz surfaces in clay-hosted nanopores during steam–surfactant co-injection

Ben-Jie-Ming Liua( )Xuan-Tong Leia( )Mohammadali AhmadiaZhangxin Chena,b( )
Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, T2N 1N4, Canada
Eastern Institute of Technology, Ningbo, 315200, Zhejiang, China

Edited by Yan-Hua Sun

Show Author Information

Abstract

Thermal recovery techniques for producing oil sands have substantial environmental impacts. Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam. Such a technique requires solid knowledge about the interaction mechanism between surfactants, bitumen, water, and rock at the nanoscale level. In particular, oil sands ores have extremely complex mineralogy as they contain many clay minerals (montmorillonite, illite, kaolinite). In this study, molecular dynamics simulation is carried out to elucidate the unclear mechanisms of clay minerals contributing to the bitumen recovery under a steam–anionic surfactant co-injection process. We found that the clay content significantly influenced an oil detachment process from hydrophobic quartz surfaces. Results reveal that the presence of montmorillonite, illite, and the siloxane surface of kaolinite in nanopores can enhance the oil detachment process from the hydrophobic surfaces because surfactant molecules have a stronger tendency to interact with bitumen and quartz. Conversely, the gibbsite surfaces of kaolinite curb the oil detachment process. Through interaction energy analysis, the siloxane surfaces of kaolinite result in the most straightforward oil detachment process. In addition, we found that the clay type presented in nanopores affected the wettability of the quartz surfaces. The quartz surfaces associated with the gibbsite surfaces of kaolinite show the strongest hydrophilicity. By comparing previous experimental findings with the results of molecular dynamics (MD) simulations, we observed consistent wetting characteristics. This alignment serves to validate the reliability of the simulation outcomes. The outcome of this paper makes up for the lack of knowledge of a surfactant-assisted bitumen recovery process and provides insights for further in-situ bitumen production engineering designs.

References

 

Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindah, E., 2015. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001.

 

Ahmadi, M., Chen, Z., 2020. Challenges and future of chemical assisted heavy oil recovery processes. Adv. Colloid Interface Sci. 275, 102081. https://doi.org/10.1016/j.cis.2019.102081.

 

Ahmadi, M., Chen, Z., 2021a. Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions. Fuel 288, 119729. https://doi.org/10.1016/j.fuel.2020.119729.

 

Ahmadi, M., Chen, Z., 2021b. Spotlight onto surfactant–steam–bitumen interfacial behavior via molecular dynamics simulation. Sci. Rep. 11 (1). https://doi.org/10.1038/s41598-021-98633-1.

 

Ahmadi, M., Chen, Z., 2022. Molecular dynamics simulation of oil detachment from hydrophobic quartz surfaces during steam-surfactant co-injection. Energy 254. https://doi.org/10.1016/j.energy.2022.124434.

 

Ahmadi, M., Hou, Q., Wang, Y., Lei, X., Liu, B., Chen, Z., 2023. Spotlight on reversible emulsification and demulsification of tetradecane-water mixtures using CO2/N2 switchable surfactants: molecular dynamics (MD) simulation. Energy 279, 128100. https://doi.org/10.1016/j.energy.2023.128100.

 
Alshaikh, M., 2019. Anionic Surfactant and heavy oil interaction during surfactantsteam process. In: SPE Western Regional Meeting. https://doi.org/10.2118/195254-MS.
 

Andrés, E., Dominguez, H., Pizio, O., 2015. Temperature dependence of the microscopic structure and density anomaly of the SPC/E and TIP4P-Ew water models. Molecular dynamics simulation results. Condens. Matter Phys. 18 (1). https://doi.org/10.5488/CMP.18.13603.

 

Badu, S., Pimienta, I.S.O., Orendt, A.M., Pugmire, R.J., Facelli, J.C., 2012. Modeling of asphaltenes: assessment of sensitivity of 13C solid state NMR to molecular structure. Energy Fuels. 26 (4), 2161–2167. https://doi.org/10.1021/ef201957q.

 

Bai, S., Kubelka, J., Piri, M., 2020. A positively charged calcite surface model for molecular dynamics studies of wettability alteration. J. Colloid Interface Sci. 569, 128–139. https://doi.org/10.1016/j.jcis.2020.02.037.

 

Banerjee, D., 2012. Oil Sands, Heavy Oil, & Bitumen from Recovery to Refinery, 2012th ed. PennWell Books, Tulsa, OK.

 

Batmunkh, M., Shearer, C.J., Biggs, M.J., Shapter, J.G., 2016. Solution processed graphene structures for perovskite solar cells. J. Mater. Chem. A 4 (7), 2605–2616. https://doi.org/10.1039/c5ta08996d.

 

Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R., 1984. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81 (8), 3684–3690. https://doi.org/10.1063/1.448118.

 

Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P., 1987. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271. https://doi.org/10.1021/j100308a038.

 

Bickmore, B.R., Rosso, K.M., Nagy, K.L., Cygan, R.T., Tadanier, C.J., 2003. Ab initio determination of edge surface structures for dioctahedral 2:1 phyli-osilicates: implications for acid-base reactivity. Clay Clay Miner. 51 (4), 359–371. https://doi.org/10.1346/CCMN.2003.0510401.

 

Bish, D.L., Von Dreele, R.B., 1989. Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clay Clay Miner. 37 (4), 289–296. https://doi.org/10.1346/CCMN.1989.0370401.

 

Brockway, P.E., Owen, A., Brand-Correa, L.I., Hardt, L., 2019. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat. Energy 4 (7), 612–621. https://doi.org/10.1038/s41560-019-0425-z.

 

Bussi, G., Donadio, D., Parrinello, M., 2007. Canonical sampling through velocity rescaling. J. Chem. Phys. 126 (1), 014101. https://doi.org/10.1063/1.2408420.

 

Cao, Z., Jiang, H., Zeng, J., Saibi, H., Lu, T., Xie, X., Zhang, Y., Zhou, G., Wu, K., Guo, J., 2021. Nanoscale liquid hydrocarbon adsorption on clay minerals: a molecular dynamics simulation of shale oils. Chem. Eng. J. 420. https://doi.org/10.1016/j.cej.2020.127578.

 

Carrigy, M.A., 1966. Lithology of the Athabasca oil sands. RCA/AGS Bull. 18.

 

Chang, X., Xue, Q., Li, X., Zhang, J., Zhu, L., He, D., Zheng, H., Lu, S., Liu, Z., 2018. Inherent wettability of different rock surfaces at nanoscale: a theoretical study. Appl. Surf. Sci. 434, 73–81. https://doi.org/https://doi.org/10.1016/j.apsusc.2017.10.173.

 

Chen, M., Wang, Y., Chen, W., Ding, M., Zhang, Z., Zhang, C., Cui, S., 2023. Synthesis and evaluation of multi-aromatic ring copolymer as viscosity reducer for enhancing heavy oil recovery. Chem. Eng. J. 470, 144220. https://doi.org/10.1016/j.cej.2023.144220.

 

Cygan, R.T., Liang, J.J., Kalinichev, A.G., 2004. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 108 (4), 1255–1266. https://doi.org/10.1021/jp0363287.

 

Cygan, R.T., Greathouse, J.A., Kalinichev, A.G., 2021. Advances in Clayff molecular simulation of layered and nanoporous materials and their aqueous interfaces. J. Phys. Chem. C 125 (32), 17573–17589. https://doi.org/10.1021/acs.jpcc.1c04600.

 

Czarnecki, J., Radoev, B., Schramm, L.L., Slavchev, R., 2005. On the nature of athabasca oil sands. Adv. Colloid Interface Sci. 114-115, 53–60. https://doi.org/10.1016/j.cis.2004.09.009.

 

Darden, T., York, D., Pedersen, L., 1993. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98 (12), 10089–10092. https://doi.org/10.1063/1.464397.

 

Davenport, J., Wayth, N., 2023. Statistical Review of World Energy 2023. British Petroleum, London.

 

Deng, Y., Wu, Q., Li, Z., Huang, X., Rao, S., Liang, Y., Lu, H., 2022. Crystal face dependent wettability of α-quartz: elucidation by time-of-flight secondary ion mass spectrometry techniques combined with molecular dynamics. J. Colloid Interface Sci. 607, 1699–1708. https://doi.org/10.1016/j.jcis.2021.09.047.

 

Deng, Y., Li, Z., Rao, S., Zheng, H., Huang, X., Liu, Q., Wang, D., Lu, H., 2023. Mechanism for the effects of surface chemical composition and crystal face on the wettability of α-quartz surface. Appl. Surf. Sci. 633. https://doi.org/10.1016/j.apsusc.2023.157559.

 

Ding, B., Nie, Z., Li, Z., Dong, M., 2021. Emulsion-assisted thermal recovery method in heterogeneous oilsands reservoir. J. Petrol. Sci. Eng. 197. https://doi.org/10.1016/j.petrol.2020.108113.

 

Ding, F., Gao, M., 2021. Pore wettability for enhanced oil recovery, contaminant adsorption and oil/water separation: a review. Adv. Colloid Interface Sci. 289. https://doi.org/10.1016/j.cis.2021.102377.

 

Dodda, L.S., Cabeza de Vaca, I., Tirado-Rives, J., Jorgensen, W.L., 2017. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 45 (W1), W331–W336. https://doi.org/10.1093/nar/gkx312.

 

Drits, V.A., Zviagina, B.B., McCarty, D.K., Salyn, A.L., 2010. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite. Am. Mineral. 95 (2–3), 348–361. https://doi.org/10.2138/am.2010.3300.

 

Duffy, T.S., Li, J., Johns, R.T., Lvov, S.N., 2021. Capillary contact angle for the quartz-distilled water-normal decane interface at temperatures up to 200 ℃. Colloids Surf. A Physicochem. Eng. Asp. 609, 125608. https://doi.org/https://doi.org/10.1016/j.colsurfa.2020.125608.

 

Dusseault, M.B., Scafe, D., 1979. Mineralogical and engineering index properties of the basal McMurray Formation clay shales. Can. Geotech. J. 16, 285–294.

 

Entezari, I., Rivard, B., Geramian, M., Lipsett, M.G., 2017. Predicting the abundance of clays and quartz in oil sands using hyperspectral measurements. Int. J. Appl. Earth Obs. Geoinf. 59, 1–8. https://doi.org/10.1016/j.jag.2017.02.018.

 

Evans, D.J., Holian, B.L., 1985. The nose-hoover thermostat. J. Chem. Phys. 83 (8), 4069–4074. https://doi.org/10.1063/1.449071.

 

Ghaleh, P.S., Khodapanah, E., Tabatabaei-Nezhad, S.A., 2020. Comprehensive monolayer two-parameter isotherm and kinetic studies of thiamine adsorption on clay minerals: experimental and modeling approaches. J. Mol. Liq. 306. https://doi.org/10.1016/j.molliq.2020.112942.

 

Gunsteren, W.F., Berendsen, H.J.C., 1988. A leap-frog algorithm for stochastic dynamics. Mol. Simulat. 1 (3), 173–185. https://doi.org/10.1080/08927028808080941.

 

Han, X., Feng, F., Zhang, J., 2023. Study on the whole life cycle integrity of cement interface in heavy oil thermal recovery well under circulating high temperature condition. Energy 278. https://doi.org/10.1016/j.energy.2023.127873.

 

He, M., Nagel, S.R., 2019. Characteristic interfacial structure behind a rapidly moving contact line. Phys. Rev. Lett. 122 (1), 18001. https://doi.org/10.1103/PhysRevLett.122.018001.

 

He, Z., Linga, P., Jiang, J., 2017. CH4 hydrate formation between silica and graphite surfaces: insights from microsecond molecular dynamics simulations. Langmuir 33 (43), 11956–11967. https://doi.org/10.1021/acs.langmuir.7b02711.

 

He, Z., Mi, F., Ning, F., 2021. Molecular insights into CO2 hydrate formation in the presence of hydrophilic and hydrophobic solid surfaces. Energy 234, 121260. https://doi.org/10.1016/j.energy.2021.121260.

 

Hooshiar, A., Uhlik, P., Ivey, D.G., Liu, Q., Etsell, T.H., 2012. Clay minerals in nonaqueous extraction of bitumen from Alberta oil sands: Part 2. Characterization of clay minerals. Fuel Process. Technol. 96, 183–194. https://doi.org/10.1016/j.fuproc.2011.10.010.

 

Jia, H., Lian, P., Yan, H., Yuan, J., Tang, H., Wei, X., Song, J., He, J., Lv, K., Liu, D., 2021. Novel molecular insight into the discrepant distributions for ionic surfactants in light oil/water and heavy oil/water systems. Fuel 304. https://doi.org/10.1016/j.fuel.2021.121460.

 
Jonasson, R.G., Imran, M., Knorr, K.D., 2018. Screening surfactants for application in SAGD-including a steam-phase coreflood test. In: SPE Canada Heavy Oil Technical Conference. https://doi.org/10.2118/189760-MS.
 

Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J., 1996. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118 (45), 11225–11236. https://doi.org/10.1021/ja9621760.

 

Kaminsky, H.A.W., Etsell, T.H., Ivey, D.G., Omotoso, O., 2009. Distribution of clay minerals in the process streams produced by the extraction of bitumen from athabasca oil sands. Can. J. Chem. Eng. 87 (1), 85–93. https://doi.org/10.1002/cjce.20133.

 

Koleini, M.M., Badizad, M.H., Ayatollahi, S., 2019. An atomistic insight into interfacial properties of brine nanofilm confined between calcite substrate and hydrocarbon layer. Appl. Surf. Sci. 490, 89–101. https://doi.org/10.1016/j.apsusc.2019.05.337.

 

Kong, L., Yang, M., Wang, H., Peng, Y., Zhu, S., Shao, Q., 2023. Study on the effect of sulfonic acid root position on the stability of SDBS emulsified asphalt. Construct. Build. Mater. 396. https://doi.org/10.1016/j.conbuildmat.2023.132303.

 

Li, A., Li, R., Yan, C., Wang, H., Liu, Q., Masliyah, J.H., Zeng, H., Xu, Z., 2023. The effect of clay type and solid wettability on bitumen extraction from Canadian oil sands. Fuel 337. https://doi.org/10.1016/j.fuel.2022.126887.

 

Li, P., Chan, M., Froehlich, W., 2009. Steam injection pressure and the SAGD ramp-up process. J. Can. Petrol. Technol. 48 (1), 36–41. https://doi.org/10.2118/09-01-36.

 

Li, Xiaofang, Wang, P., Yan, Z., Yu, S., Wei, K., Zhu, X., Sun, Y., Xue, Q., 2022. The miscible behaviors of C3H8/C8H18(C7H17N) system in nanoslits: effects of pore size and rock surface wettability. Chem. Eng. J. 431. https://doi.org/10.1016/j.cej.2021.133988.

 

Li, X., He, L., Wu, G., Sun, W., Li, H., Sui, H., 2012. Operational parameters, evaluation methods, and fundamental mechanisms: aspects of nonaqueous extraction of bitumen from oil sands. Energy Fuels. 26 (6), 3553–3563. https://doi.org/10.1021/ef300337q.

 

Li, Y., Chen, M., Song, H., Yuan, P., Zhang, B., Liu, D., Zhou, H., Bu, H., 2020. Effect of cations (Na+, K+, and Ca2+) on methane hydrate formation on the external surface of montmorillonite: insights from molecular dynamics simulation. ACS Earth Space Chem. 4 (4), 572–582. https://doi.org/10.1021/acsearthspacechem.9b00323.

 

Liu, J., Xu, Z., Masliyah, J., 2004. Role of fine clays in bitumen extraction from oil sands. AIChE J. 50 (8), 1917–1927. https://doi.org/10.1002/aic.10174.

 

Liu, Z., Wang, H., Blackbourn, G., Feng, M.A., Zhengjun, H.E., Wen, Z., Wang, Z., Yang, Z., Luan, T., Zhenzhen, W.U., 2019. Heavy oils and oil sands: global distribution and resource assessment. Acta Geol. Sin. 93 (1), 199–212. https://doi.org/10.1111/1755-6724.13778.

 

Loewenstein, M., 1954. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. 39, 92–96.

 

Lu, Y., Li, R., Manica, R., Zhang, Z., Liu, Q., Xu, Z., 2022. CO2-responsive surfactants for greener extraction of heavy oil: a bench-scale demonstration. J. Clean. Prod. 338. https://doi.org/10.1016/j.jclepro.2022.130554.

 

Lv, Q., Li, Z., Li, B., Li, S., Sun, Q., 2015. Study of nanoparticle-surfactant-stabilized foam as a fracturing fluid. Ind. Eng. Chem. Res. 54 (38), 9456–9477. https://doi.org/10.1021/acs.iecr.5b02197.

 

Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M., 2009. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30 (13), 2157–2164. https://doi.org/https://doi.org/10.1002/jcc.21224.

 

Mi, F., He, Z., Zhao, Y., Jiang, G., Ning, F., 2022. Effects of surface property of mixed clays on methane hydrate formation in nanopores: a molecular dynamics study. J. Colloid Interface Sci. 627, 681–691. https://doi.org/10.1016/j.jcis.2022.07.101.

 
Nguyen, H.X., Wisup, B., Tran, X.V., Ta, D.Q., Nguyen, D.H., 2012. Effects of reservoir parameters and operational design on the prediction of SAGD performance in Athabasca Oilsands. In: SPE Europec/EAGE Annual Conference. https://doi.org/10.2118/154778-MS.
 

Parra, J.G., Iza, P., Dominguez, H., Schott, E., Zarate, X., 2020. Effect of Triton X-100 surfactant on the interfacial activity of ionic surfactants SDS, CTAB and SDBS at the air/water interface: a study using molecular dynamic simulations. Colloids Surf. A Physicochem. Eng. Asp. 603, 125284. https://doi.org/10.1016/j.colsurfa.2020.125284.

 

Parrinello, M., Rahman, A., 1981. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52 (12), 7182–7190. https://doi.org/10.1063/1.328693.

 

Refson, K., Park, S.H., Sposito, G., 2003. Ab initio computational crystallography of 2:1 clay minerals: 1. Pyrophyllite-1Tc. J. Phys. Chem. B 107 (48), 13376–13383. https://doi.org/10.1021/jp0347670.

 

Rui, Z., Wang, X., Zhang, Z., Lu, J., Chen, G., Zhou, X., Patil, S., 2018. A realistic and integrated model for evaluating oil sands development with Steam Assisted Gravity Drainage technology in Canada. Appl. Energy 213, 76–91. https://doi.org/10.1016/j.apenergy.2018.01.015.

 

Sposito, G., Skipper, N.T., Sutton, R., Park, S.-H., Soper, A.K., Greathouse, J.A., 1999. Surface geochemistry of the clay minerals. Proc. Natl. Acad. Sci. USA 96, 3358–3364. https://doi.org/10.1073/pnas.96.7.3358.

 
Srivastava, P., Castro, L., 2011. Successful field application of surfactant additives to enhance thermal recovery of heavy oil. In: SPE/CIM International Conference on Horizontal Well Technology. https://doi.org/10.2118/65482-MS.
 

Su, G., Zhang, H., Geng, T., Yuan, S., 2019. Effect of SDS on reducing the viscosity of heavy oil: a molecular dynamics study. Energy Fuels. 33 (6), 4921–4930. https://doi.org/10.1021/acs.energyfuels.9b00006.

 

Tackie-Otoo, B.N., Ayoub Mohammed, M.A., Yekeen, N., Negash, B.M., 2020. Alternative chemical agents for alkalis, surfactants and polymers for enhanced oil recovery: research trend and prospects. J. Petrol. Sci. Eng. 187. https://doi.org/10.1016/j.petrol.2019.106828.

 

Tajik, A., Farhadian, A., Khelkhal, M.A., Rezaeisadat, M., Petrov, S.M., Eskin, A.A., Vakhin, A.V., Babapour Golafshani, M., Lapuk, S.E., Buzurov, A.E., Kiiamov, A., Ancheyta, J., 2023. Sunflower oil as renewable biomass source to develop highly effective oil-soluble catalysts for in-situ combustion of heavy oil. Chem. Eng. J. 453. https://doi.org/10.1016/j.cej.2022.139813.

 

Tang, W., Wu, P., Da, C., Alzobaidi, S., Harris, J., Hallaman, B., Hu, D., Johnston, K.P., 2023. Synergy of surface modified nanoparticles and surfactant in wettability alteration of calcite at high salinity and temperature. Fuel 331. https://doi.org/10.1016/j.fuel.2022.125752.

 

Taubin, G., 1991. Estimation of planar curves, surfaces,and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13 (11), 1115–1138. https://doi.org/10.1109/34.103273.

 

Tetteh, J., Bai, S., Kubelka, J., Piri, M., 2022. Wettability reversal on oil-wet calcite surfaces: experimental and computational investigations of the effect of the hydrophobic chain length of cationic surfactants. J. Colloid Interface Sci. 619, 168–178. https://doi.org/10.1016/j.jcis.2022.03.114.

 

Tian, H., Liu, F., Jin, X., Wang, M., 2019a. Competitive effects of interfacial interactions on ion-tuned wettability by atomic simulations. J. Colloid Interface Sci. 540, 495–500. https://doi.org/10.1016/j.jcis.2018.12.108.

 

Tian, S., Erastova, V., Lu, S., Greenwell, H.C., Underwood, T.R., Xue, H., Zeng, F., Chen, G., Wu, C., Zhao, R., 2018. Understanding model crude oil component interactions on kaolinite silicate and aluminol surfaces: toward improved understanding of shale oil recovery. Energy Fuels. 32 (2), 1155–1165. https://doi.org/10.1021/acs.energyfuels.7b02763.

 

Tian, S., Wang, T., Li, G., Sheng, M., Zhang, P., 2019b. Nanoscale surface properties of organic matter and clay minerals in shale. Langmuir 35 (17), 5711–5718. https://doi.org/10.1021/acs.langmuir.9b00157.

 

Toledano, J.-C., Blake, T.D., De Coninck, J., 2020. Moving contact lines and Langevin formalism. J. Colloid Interface Sci. 562, 287–292. https://doi.org/https://doi.org/10.1016/j.jcis.2019.11.123.

 

Tosuai, T., Thanasaksukthawee, V., Lu, Y., Akamine, T., Somprasong, K., Tangparitkul, S., 2023. Enhanced bitumen extraction from oil sands using CO2-responsive surfactant combined with low-salinity brine: toward cleaner production via CO2 utilization. Colloids Surf. A Physicochem. Eng. Asp. 670. https://doi.org/10.1016/j.colsurfa.2023.131617.

 

Underwood, T., Erastova, V., Cubillas, P., Greenwell, H.C., 2015. Molecular dynamic simulations of montmorillonite organic interactions under varying salinity: an insight into enhanced oil recovery. J. Phys. Chem. C 119 (13), 7282–7294. https://doi.org/10.1021/acs.jpcc.5b00555.

 

Verstraete, J.J., Schnongs, P., Dulot, H., Hudebine, D., 2010. Molecular reconstruction of heavy petroleum residue fractions. Chem. Eng. Sci. 65 (1), 304–312. https://doi.org/10.1016/j.ces.2009.08.033.

 

Wang, D., Li, C., Seright, R.S., 2020. Laboratory evaluation of polymer retention in a heavy oil sand for a polymer flooding application on Alaska's north slope. SPE J. 25 (4), 1842–1856. https://doi.org/10.2118/200428-PA.

 

Wang, R., Liao, B., Wang, J., Sun, J., Wang, Y., Wang, J., Wang, Q., Qu, Y., Cheng, R., 2023. Microscopic molecular insights into methane hydrate growth on the surfaces of clay minerals: experiments and molecular dynamics simulations. Chem. Eng. J. 451. https://doi.org/10.1016/j.cej.2022.138757.

 

Wang, Z., Wang, Q., Jia, C., Bai, J., 2022. Thermal evolution of chemical structure and mechanism of oil sands bitumen. Energy 244. https://doi.org/10.1016/j.energy.2022.123190.

 

Welsby, D., Price, J., Pye, S., Ekins, P., 2021. Unextractable fossil fuels in a 1.5 ℃ world. Nature 597 (7875), 230–234. https://doi.org/10.1038/s41586-021-03821-8.

 

Wu, G., Zhu, X., Ji, H., Chen, D., 2015. Molecular modeling of interactions between heavy crude oil and the soil organic matter coated quartz surface. Chemosphere 119, 242–249. https://doi.org/10.1016/j.chemosphere.2014.06.030.

 

Xie, Y., Khishvand, M., Piri, M., 2020. Wettability of calcite surfaces: impacts of brine ionic composition and oil phase polarity at elevated temperature and pressure conditions. Langmuir 36 (22), 6079–6088. https://doi.org/10.1021/acs.langmuir.0c00367.

 

Xiong, H., Devegowda, D., 2022. Fluid behavior in clay-hosted nanopores with varying salinity: insights into molecular dynamics. SPE J. 27 (3), 1396–1410. https://doi.org/10.2118/209212-PA.

 

Yang, Y., Liang, X., Li, X., 2023. Investigation of clay-oil interfacial interactions in petroleum-contaminated soil: effect of crude oil composition. J. Mol. Liq. 380. https://doi.org/10.1016/j.molliq.2023.121702.

 

Zaabi, A., Arif, M., Ali, M., Adila, A., Abbas, Y., Kumar, R.S., Keshavarz, A., Iglauer, S., 2023. Impact of carbonate mineral heterogeneity on wettability alteration potential of surfactants. Fuel 342, 127819. https://doi.org/https://doi.org/10.1016/j.fuel.2023.127819.

 

Zhan, S., Su, Y., Jin, Z., Wang, W., Cai, M., Li, L., Hao, Y., 2020. Molecular insight into the boundary conditions of water flow in clay nanopores. J. Mol. Liq. 311, 113292. https://doi.org/10.1016/j.molliq.2020.113292.

 

Zhang, H., Cao, J., Duan, H., Luo, H., Liu, X., 2022. Molecular dynamics insight into the adsorption and distribution of bitumen subfractions on Na-montmorillonite surface. Fuel 310. https://doi.org/10.1016/j.fuel.2021.122380.

 

Zhang, L., Lu, X., Liu, X., Yang, K., Zhou, H., 2016. Surface wettability of basal surfaces of clay minerals: insights from molecular dynamics simulation. Energy Fuels. 30 (1), 149–160. https://doi.org/10.1021/acs.energyfuels.5b02142.

 

Zhang, M., Nan, Y., Lu, Y., You, Q., Jin, Z., 2023. CO2-responsive surfactant for oil-in-water emulsification and demulsification from molecular perspectives. Fuel 331. https://doi.org/10.1016/j.fuel.2022.125773.

 

Zhong, J., Wang, P., Zhang, Y., Yan, Y., Hu, S., Zhang, J., 2013. Adsorption mechanism of oil components on water-wet mineral surface: a molecular dynamics simulation study. Energy 59, 295–300. https://doi.org/10.1016/j.energy.2013.07.016.

Petroleum Science
Pages 2457-2468
Cite this article:
Liu B-J-M, Lei X-T, Ahmadi M, et al. Molecular insights into oil detachment from hydrophobic quartz surfaces in clay-hosted nanopores during steam–surfactant co-injection. Petroleum Science, 2024, 21(4): 2457-2468. https://doi.org/10.1016/j.petsci.2024.04.004

59

Views

0

Downloads

1

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 27 December 2023
Revised: 07 April 2024
Accepted: 08 April 2024
Published: 14 April 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return