PDF (4.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review Paper | Open Access

New progresses of fine-grained sediment gravity-flow deposits and their importance for unconventional shale oil and gas plays

Tian Yanga,b()Ying-Lin Liua
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology), Institute of Sedimentary Geology, Chengdu, 610059, Sichuan, China
Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu, 610059, Sichuan, China

Edited by Jie Hao and Meng-Jiao Zhou

Show Author Information

Abstract

Fine-grained sediments are widely distributed and constitute the most abundant component in sedimentary systems, thus the research on their genesis and distribution is of great significance. In recent years, fine-grained sediment gravity-flows (FGSGF) have been recognized as an important transportation and depositional mechanism for accumulating thick successions of fine-grained sediments. Through a comprehensive review and synthesis of global research on FGSGF deposition, the characteristics, depositional mechanisms, and distribution patterns of fine-grained sediment gravity-flow deposits (FGSGFD) are discussed, and future research prospects are clarified. In addition to the traditionally recognized low-density turbidity current and muddy debris flow, wave-enhanced gravity flow, lowdensity muddy hyperpycnal flow, and hypopycnal plumes can all form widely distributed FGSGFD. At the same time, the evolution of FGSGF during transportation can result in transitional and hybrid gravityflow deposits. The combination of multiple triggering mechanisms promotes the widespread development of FGSGFD, without temporal and spatial limitations. Different types and concentrations of clay minerals, organic matters, and organo-clay complexes are the keys to controlling the flow transformation of FGSGF from low-concentration turbidity currents to high-concentration muddy debris flows. Further study is needed on the interaction mechanism of FGSGF caused by different initiations, the evolution of FGSGF with the effect of organic-inorganic synergy, and the controlling factors of the distribution patterns of FGSGFD. The study of FGSGFD can shed some new light on the formation of widely developed thin-bedded siltstones within shales. At the same time, these insights may broaden the exploration scope of shale oil and gas, which have important geological significances for unconventional shale oil and gas.

References

 

Abouelresh, M.O., Slatt, R.M., 2011. Shale depositional processes: example from the paleozoic barnett shale, fort worth basin, Texas, USA. Cent. Eur. J. Geosci. 3 (4), 398-409. https://doi.org/10.2478/s13533-011-0037-z.

 

Aplin, A.C., Macquaker, J.H.S., 2011. Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG (Am. Assoc. Pet. Geol.) Bull. 95 (12), 2031-2059. https://doi.org/10.1306/03281110162.

 

Arthur, M.A., Sageman, B.B., 1994. Marine black shales: depositional mechanisms and environments of ancient deposits. Annu. Rev. Earth Planet Sci. 22, 499-551. https://doi.org/10.1146/annurev.ea.22.050194.002435.

 

Baas, J.H., Best, J.L., 2002. Turbulence modulation in clay-rich sediment-laden flows and some implications for sediment deposition. J. Sediment. Res. 72 (3), 336-340. https://doi.org/10.1306/120601720336.

 

Baas, J.H., Best, J.L., Peakall, J., et al., 2009. A phase diagram for turbulent, transitional, and laminar clay suspension flows. J. Sediment. Res. 79 (4), 162-183. https://doi.org/10.2110/jsr.2009.025.

 

Baas, J.H., Best, J.L., Peakall, J., 2011. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows. Sedimentology 58 (7), 1953-1987. https://doi.org/10.1111/j.1365-3091.2011.01247.x.

 

Baas, J.H., Best, J.L., Peakall, J., 2016a. Predicting bedforms and primary current stratification in cohesive mixtures of mud and sand. J. Geol. Soc. 173 (1), 12-45. https://doi.org/10.1144/jgs2015-024.

 

Baas, J.H., Best, J.L., Peakall, J., 2016b. Comparing the transitional behaviour of kaolinite and bentonite suspension flows. Earth Surf. Process. Landforms 41 (13), 1911-1921. https://doi.org/10.1002/esp.3959.

 

Baas, J.H., Baker, M.L., Malarkey, J., et al., 2019. Integrating field and laboratory approaches for ripple development in mixed sand–clay–EPS. Sedimentology 66 (7), 2749-2768. https://doi.org/10.1111/sed.12611.

 

Baas, J.H., Tracey, N.D., Peakall, J., 2021. Sole marks reveal deep-marine depositional process and environment: implications for flow transformation and hybrid-event-bed models. J. Sediment. Res. 91 (9), 986-1009. https://doi.org/10.2110/jsr.2020.104.

 

Baker, M., Baas, J.H., Malarkey, J., et al., 2017. The effect of clay type on the properties of cohesive sediment gravity flows and their deposits. J. Sediment. Res. 87 (11), 1176-1195. https://doi.org/10.2110/jsr.2017.63.

 

Baker, M.L., Baas, J.H., 2020. Mixed sand–mud bedforms produced by transient turbulent flows in the fringe of submarine fans: indicators of flow transformation. Sedimentology 67, 2645-2671. https://doi.org/10.1111/sed.12714.

 

Bates, C.C., 1953. Rational theory of delta formation.. AAPG Bull. 37, 2119-2162. https://doi.org/10.1306/5CEADD76-16BB-11D7-8645000102C1865D.

 

Bhattacharya, J.P., Maceachern, J.A., 2009. Hyperpycnal rivers and prodeltaic shelves in the cretaceous seaway of North America. J. Sediment. Res. 79 (4), 184-209. https://doi.org/10.2110/jsr.2009.026.

 

Blattmann, T.M., Liu, Z., Zhang, Y., et al., 2019. Mineralogical control on the fate of continentally derived organic matter in the ocean. Science 366 (6466), 742-745. https://doi.org/10.1126/science.aax5345.

 

Boulesteix, K., Poyatos-Moré, M., Flint, S.S., et al., 2019. Transport and deposition of mud in deep-water environments: processes and stratigraphic implications. Sedimentology 66 (7), 2894-2925. https://doi.org/10.1111/sed.12614.

 

Boulesteix, K., Poyatos-More, M., Hodgson, D.M., et al., 2020. Fringe or background: characterizing deep-water mudstones beyond the basin-floor fan sandstone pinchout. J. Sediment. Res. 90 (12), 1678-1705. https://doi.org/10.2110/jsr.2020.048.

 
Bouma, A.H., 2000. Fine-Grained, mud-rich turbidite systems: model and comparison with coarsegrained, sand-rich systems. In: Bouma, A.H., Stone, C.G. Stone, eds., Fine-grained Turbidite Systems, vol. 68. AAPG Memoir 72/SEPM Special Publication, pp. 9-20. https://doi.org/10.1306/M72703C2 .
 

Cai, J.G., Bao, Y.J., Yang, S.Y., et al., 2007. Occurrence and enrichment mechanism of organic matter in argillaceous sediments and mudstones. Sci. Sin. 37 (2), 244-253 doi: CNKI:SUN:JDXK.0.2007-02-010.

 

Cai, J.G., Zeng, X., Wei, H.L., et al., 2019. From water body to sediments: exploring the depositional processes of organic matter and their implications. J. Palaeogeogr. 21 (1), 49-66. https://doi.org/10.7605/gdlxb.201 9.01 .003.

 

Chen, X.D., Zhang, C.K., Paterson, D.M.C., et al., 2017a. Hindered erosion: the biological mediation of noncohesive sediment behavior. Water Resour. Res. 53, 4787-4801. https://doi.org/10.1002/2016WR020105.

 

Chen, X.D., Zhang, C.K., Zhou, Z., et al., 2017b. Stabilizing effects of bacterial biofilms: EPS penetration and redistribution of bed stability down the sediment profile. J. Geophys. Res.: Biogeosciences 122 (12), 3125-3133. https://doi.org/10.1002/2017JG004050.

 

Chen, X.D., Wang, J., Zhang, C.K., et al., 2018. Biological mediation of sediment erosion: can we account for tidal effects? J. Coast Res. 85, 421-425. https://doi.org/10.2112/SI85-085.1.

 

Chen, X.D., Zhang, C.K., Paterson, D.M.C., et al., 2019. The effect of cyclic variation of shear stress on non-cohesive sediment stabilisation by microbial biofilms: the role of "Biofilm Precursors. Earth Surf. Process. Landforms 44 (7), 1471-1481. https://doi.org/10.1002/esp.4573.

 

Clare, M.A., Clarke, J.H., Talling, P.J., et al., 2016. Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta. Earth Planet Sci. Lett. 450, 208-220. https://doi.org/10.1016/j.epsl.2016.06.021.

 

Craig, M.J., Baas, J.H., Amos, K.J., et al., 2020. Biomediation of submarine sediment gravity flow dynamics. Geology 48 (1), 72-76. https://doi.org/10.1130/G46837.1.

 

Davarpanah Jazi, S., Wells, M.G., 2020. Dynamics of settling-driven convection beneath a sediment-laden buoyant overflow: implications for the length-scale of deposition in lakes and the coastal ocean. Sedimentology 67 (1), 699-720. https://doi.org/10.1111/sed.12660.

 

Davis, C., Haughton, P., McCaffrey, W., et al., 2009. Character and distribution of hybrid sediment gravity flow deposits from the outer Forties Fan, Palaeocene Central North Sea, UKCS. Mar. Petrol. Geol. 26 (10), 1919-1939. https://doi.org/10.1016/j.marpetgeo.2009.02.015.

 

DeReuil., A., BIrgenheier, L., 2019. Sediment dispersal and organic carbon preservation in a dynamic mudstone-dominated system, Juana Lopez Member, Mancos Shale. Sedimentology 1002-1041. https://doi.org/10.1111/sed.12532.

 

Dong, H.L., Jaisi, D.P., Kim, J., et al., 2009. Microbe-clay mineral interactions. Am. Mineral. 94 (11–12), 1505-1519. https://doi.org/10.2138/am.2009.3246.

 

Dou, L., Best, J., Bao, Z., et al., 2021. The sedimentary architecture of hyperpycnites produced by transient turbulent flows in a shallow lacustrine environment. Sediment. Geol. 411, 105804. https://doi.org/10.1016/j.sedgeo.2020.105804.

 

Dodd, T.J.H., McCarthy, D.J., Richards, P.C., 2019. A depositional model for deeplacustrine, partially confined, turbidite fans: early Cretaceous, North Falkland Basin. Sedimentology 66 (1), 53-80. https://doi.org/10.1111/sed.12483.

 

Dodd, T.J.H., McCarthy, D.J., Amy, L., et al., 2022. Hybrid event bed character and distribution in the context of ancient deep-lacustrine fan models. Sedimentology 69 (4), 1891-1926. https://doi.org/10.1111/sed.12979.

 

Emmings, J.F., Davies, S.J., Vane, C.H., et al., 2020. From marine bands to hybrid flows: sedimentology of a Mississippian black shale. Sedimentology 67 (1), 261-304. https://doi.org/10.1111/sed.12642.

 

Felix, M., Peakall, J., 2006. Transformation of debris flows into turbidity currents: mechanisms inferred from laboratory experiments. Sedimentology 53 (1), 107-123. https://doi.org/10.1111/j.1365-3091.2005.00757.x.

 

Fildani, A., Clark, J., Covault, J.A., et al., 2018. Muddy sand and sandy mud on the distal Mississippi fan: implications for lobe depositional processes. Geosphere 14 (3), 1051-1066. https://doi.org/10.1130/GES01580.1.

 

Fisher, R.V., 1983. Flow transformation in sediment gravity flows. Geology 11 (5), 273-274. https://doi.org/10.1130/0091-7613(1983)11<273:FTISGF>2.0.CO;2.

 

Galy, V., France-Lanord, C., Beyssac, O., et al., 2007. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450 (7168), 407-411. https://doi.org/10.1038/nature06273.

 
Gorsline, D.S., 1984. A review of fine-grained sediment origins, characteristics, transport and deposition. In: Stow, D.A.V., Piper, D.J.W. (Eds.), Fine-grained Sediments: Deep-Water Processes and Facies, vol. 15. Geological Society, London, Special Publications, pp. 17-34. https://doi.org/10.1144/gsl.sp.1984.015.01.02 .
 

Hage, S., Hubert-Ferrari, A., Lamair, L., et al., 2017. Flow dynamics at the origin of thin clayey sand lacustrine turbidites: examples from Lake Hazar, Turkey. Sedimentology 64 (7), 1929-1956. https://doi.org/10.1111/sed.12380.

 

Hage, S., Cartigny, M.J., Sumner, E.J., et al., 2019. Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes. Geophys. Res. Lett. 46 (20), 11310-11320. https://doi.org/10.1029/2019GL084526.

 

Hage, S., Galy, V.V., Cartigny, M.J.B., et al., 2020. Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits. Geology 48 (9), 882-887. https://doi.org/10.1130/G47320.1.

 

Hansen, L., Callow, R., Kane, I., et al., 2015. Genesis and character of thin-bedded turbidites associated with submarine channels. Mar. Petrol. Geol. 67, 852-879. https://doi.org/10.1016/j.marpetgeo.2015.06.007.

 

Hansen, L., Callow, R., Kane, I., et al., 2017. Differentiating submarine channel-related thin-bedded turbidite facies: outcrop examples from the Rosario Formation, Mexico. Sediment. Geol. 358, 19-34. https://doi.org/10.1016/j.sedgeo.2017.06.009.

 

Haughton, P.D.W., Barker, S.P., Mccaffrey, W.D., 2003. 'Linked' debrites in sand-rich turbidite systems - origin and significance. Sedimentology 50 (3), 459-482. https://doi.org/10.1046/j.1365-3091.2003.00560.x.

 

Haughton, P., Davis, C., McCaffrey, W., et al., 2009. Hybrid Sediment gravity flow deposits-Classification, origin and significance. Mar. Petrol. Geol. 26 (10), 1900-1918. https://doi.org/10.1016/j.marpetgeo.2009.02.012.

 

Hizzett, J.L., Hughes Clarke, J.E., Sumner, E.J., et al., 2018. Which triggers produce the most erosive, frequent, and longest runout turbidity currents on deltas? Geophys. Res. Lett. 45 (2), 855-863. https://doi.org/10.1002/2017GL075751.

 

Hovikoski, J., Therkelsen, J., Nielsen, L.H., et al., 2016. Density-flow deposition in a fresh-water lacustrine rift basin, paleogene bach long vi graben, Vietnam. J. Sediment. Res. 86 (8), 982-1007. https://doi.org/10.2110/jsr.2016.53.

 

Hussain, A., Haughton, P.D., Shannon, P.M., et al., 2020. High-resolution X-ray fluorescence profiling of hybrid event beds: implications for sediment gravity flow behaviour and deposit structure. Sedimentology 67 (6), 2850-2882. https://doi.org/10.1111/sed.12722.

 

Hussain, A., Haughton, P.D.W., Shannon, P.M., et al., 2021. Mud-forced turbulence dampening facilitates rapid burial and enhanced preservation of terrestrial organic matter in deep-sea environments. Mar. Petrol. Geol. 130, 105101. https://doi.org/10.1016/j.marpetgeo.2021.105101.

 

Hussain, A., Al-Ramadan, K., 2022. Organic matter burial in deep-sea fans: a depositional process-based perspective. J. Mar. Sci. Eng. 10 (5), 682. https://doi.org/10.3390/jmse10050682.

 

Jiang, Z.X., Liang, C., Wu, J., et al., 2013. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks. Acta Pet. Sin. 34 (6), 1031-1039. https://doi.org/10.7623/syxb201306001.

 

Jin, L.N., Shan, X., Shi, X.F., et al., 2021. Hybrid event beds generated by erosional bulking of modern hyperpycnal flows on the Choshui River delta front, Taiwan Strait. Sedimentology 68 (6), 2500-2522. https://doi.org/10.1111/sed.12862.

 

Kennedy, M.J., Pevear, D.R., Hill, R.J., 2002. Mineral surface control of organic carbon in black shale. Science 295 (5555), 657-660. https://doi.org/10.1126/science.1066611.

 

Kennedy, M.J., Löhr, S.C., Fraser, S.A., et al., 2014. Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale; from deposition to diagenesis. Earth Planet Sci. Lett. 388, 59-70. https://doi.org/10.1016/j.epsl.2013.11.044.

 

Kneller, B., Nasr-Azadani, M.M., Radhakrishnan, S., et al., 2016. Long-Range sediment transport in the world's oceans by stably stratified turbidity currents. J. Geophys. Res.: Oceans 121 (12), 8608-8620. https://doi.org/10.1002/2016JC011978.

 

Koo, W.M., Mohrig, D., Buttles, J., et al., 2020. Sand-mud couplets deposited by spontaneous remobilization of subaqueous transitional flows. Sedimentology 67 (1), 78-95. https://doi.org/10.1111/sed.12625.

 

Könitzer, S.F., Davies, S.J., Stephenson, M.H., et al., 2014. Depositional controls on mudstone lithofacies in a basinal setting: implications for the delivery of sedimentary organic matter. J. Sediment. Res. 84 (3), 198-214. https://doi.org/10.2110/jsr.2014.18.

 

Kvale, E.P., Bowie, C.M., Flenthrope, C., et al., 2020. Facies variability within a mixed carbonate–siliciclastic sea-floor fan (upper Wolfcamp Formation, Permian, Delaware Basin, New Mexico). AAPG (Am. Assoc. Pet. Geol.) Bull. 104 (3), 525-563. https://doi.org/10.1306/06121917225.

 

La Croix, A.D., Gingras, M.K., Taylor, K., 2021. Facies characteristics and stratigraphy of an upper cretaceous mud-dominated subaqueous delta: medicine hat member (niobrara formation), alberta, Canada. Sedimentology 68 (6), 2820-2853. https://doi.org/10.1111/sed.12875.

 

Liu, B., Shi, J.X., Fu, X.F., et al., 2018a. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: a case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China. Petrol. Explor. Dev. 45 (5), 828-838. https://doi.org/10.1016/S1876-3804(18)30091-0.

 

Liu, F., Zhu, X.M., Li, Y., et al., 2015. Sedimentary characteristics and facies model of gravity flow deposits of Late Triassic Yanchang Formation in southwestern Ordos Basin, NW China. Petrol. Explor. Dev. 42 (5), 577-588. https://doi.org/10.1016/S1876-3804(15)30058-6.

 

Liu, Q., Yuan, X.J., Lin, S.H., et al., 2018b. Depositional environment and characteristic comparison between lacustrine mudstone and shale: a case study from the Chang 7 member of the Yanchang Formation, Ordos Basin. Oil Gas Geol. 39 (3), 531-540. https://doi.org/10.11743/ogg20180310.

 

Lowe, D.R., 1982. Sediment gravity flows: depositional models with special reference to the deposits of high-density turbidity currents. J. Sediment. Petrol. 52, 279-297. https://doi.org/10.1306/212F7F31-2B24-11D7-8648000102C1865D.

 

Lowe, D.R., Guy, M., 2000. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem. Sedimentology 47 (1), 31-70. https://doi.org/10.1046/j.1365-3091.2000.00276.x.

 

Lu, G., Wells, M., Strygen, I.V., et al., 2022. Intrusions of sediment laden rivers into density stratified water columns could be an unrecognized source of mixing in many lakes and coastal oceans. Sedimentology 69 (5), 2228-2245. https://doi.org/10.1111/sed.12990.

 

Lv, Q.Q., Luo, S.S., Fu, J.H., et al., 2017. Outcrop-based analysis of a deep-water gravity flow sediments in lake: a case study from the Chang 7 of Yaoqu section, Ordos Basin. Acta Geol. Sin. 91 (3), 617-628 (in Chinese).

 

Lv, Q.Q., Luo, S.S., Fu, J.H., et al., 2018. Detailed study of lake fine grained deposition characteristics: a case study from Chang 7 of Yanhe section, Ordos Basin. Geoscience 32 (2), 364-373. https://doi.org/10.19657/j.geoscience.1000-8527.2018.02.15.

 

Macquaker, J.H.S., Bentley, S.J., Bohacs, K.M., 2010. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in ancient mudstone successions. Geology 38 (10), 947-950. https://doi.org/10.1130/G31093.1.

 

Malarkey, J., Baas, J.H., Hope, J.A., et al., 2015. The pervasive role of biological cohesion in bedform development. Nat. Commun. 6 (6257), 1-6. https://doi.org/10.1038/ncomms7257.

 
Moore, D.G., 1969. Reflection Profiling Studies of the California Continental Borderland: Structure and Quaternary Turbidite Basins, vol. 107. Geological Society of America, p. 142. https://doi.org/10.1130/SPE107-p1 . Special paper.
 

Mueller, P., Patacci, M., Di Ciulio, A., 2021. Hybrid event bed distribution in a mixed siliciclastic-calcareous turbidite succession: a cross-current perspective from the Bordighera Sandstone, Ligurian Alps, NW Ital. Italian Journal of Geosciences 140 (2), 255-274. https://doi.org/10.3301/IJG.2020.32.

 

Mulder, T., Syvitski, J.P.M., Migeon, S., et al., 2003. Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Mar. Petrol. Geol. 20 (6–8), 861-882. https://doi.org/10.1016/j.marpetgeo.2003.01.003.

 
Mutti, E., 1992. Turbidite Sandstones. Agip Spec. Publ., Istituto de Geologia, Universita di Parma, Agip S.P.A.
 

Mutti, E., 2019. Thin-bedded plumites: an overlooked deep-water deposit. Journal of Mediterranean Earth Sciences 11, 1-20. https://doi.org/10.3304/JMES.2019.005.

 

Niu, X.B., Cao, Y.C., Yang, T., 2023. Sedimentary character of gravity-flow deposits in a lacustrine depression basin: examples from the late triassic Chang 7 member of Yanchang Formation, Ordos Basin, central China. Mar. Petrol. Geol. 148, 106048. https://doi.org/10.2139/ssrn.3975144.

 

Otharán, G., Zavala, C., Schieber, J., et al., 2022. Unravelling the fabrics preserved inside early diagenetic concretions: insights for the distribution, accumulation and preservation of organic-rich mud in the interior of epicontinental basins. Sediment. Geol. 440. https://doi.org/10.1016/j.sedgeo.2022.106254.

 

Parsons, J.D., Bush, J.W., Syvitski, J.P., 2001. Hyperpycnal plume formation from riverine outflows with small sediment concentrations. Sedimentology 48 (2), 465-478. https://doi.org/10.1046/j.1365-3091.2001.00384.x.

 

Parsons, D.R., Schindler, R.J., Hope, J.A., et al., 2016. The role of bio-physical cohesion on subaqueous bedform size. Geophys. Res. Lett. 43 (4), 1566-1573. https://doi.org/10.1002/2016GL067667.

 

Patacci, M., Marini, M., Felletti, F., et al., 2020. Origin of mud in turbidites and hybrid event beds: insight from ponded mudstone caps of the Castagnola turbidite system (north-west Italy). Sedimentology 67 (5), 2625-2644. https://doi.org/10.1111/sed.12713.

 

Peng, J., 2021. Sedimentology of the upper pennsylvanian organic-rich cline shale, midland basin: from gravity flows to pelagic suspension fallout. Sedimentology 68 (2), 805-833. https://doi.org/10.1111/sed.12811.

 

Peng, J., Fu, Q., Larson, T.E., et al., 2021. Trace-elemental and petrographic constraints on the severity of hydrographic restriction in the silled Midland Basin during the late Paleozoic ice age. GSA Bulletin 133 (1–2), 57-73. https://doi.org/10.1130/B35336.1.

 

Peng, J.W., Hu, Z.Q., Feng, D.J., et al., 2022. Sedimentology and sequence stratigraphy of lacustrine deep-water fine-grained sedimentary rocks: the lower jurassic dongyuemiao Formation in the sichuan basin, western China. Mar. Petrol. Geol. 146, 105933. https://doi.org/10.1016/j.marpetgeo.2022.105933.

 

Peng, J., Hu, Z., Feng, D., et al., 2023. Variations of organic matter content and type within the sequence stratigraphic framework of the lacustrine deep-water Dongyuemiao formation, Sichuan Basin, Western China. Mar. Petrol. Geol. 149, 106104. https://doi.org/10.1016/j.marpetgeo.2023.106104.

 

Pierce, C.S., Haughton, P.D.W., Shannon, P.M., et al., 2018. Variable character and diverse origin of hybrid event beds in a sandy submarine fan system, Pennsylvanian Ross Sandstone Formation, western Ireland. Sedimentology 65 (3), 952-992. https://doi.org/10.1111/sed.12412.

 

Piper, D.J.W., 1972. Turbidite origin of some laminated mudstones. Geol. Mag. 109 (2), 115-126. https://doi.org/10.1017/S0016756800039509.

 

Piper, D.J.W., Normark, W.R., 2009. Processes that initiate turbidity currents and their influence on turbidites: a marine geology perspective. J. Sediment. Res. 79 (5–6), 347-362. https://doi.org/10.2110/jsr.2009.046.

 

Saller, A., Lin, R., Dunham, J., et al., 2006. Leaves in turbidite sands: the main source of oil and gas in the deep-water Kutei Basin, Indonesia. AAPG (Am. Assoc. Pet. Geol.) Bull. 90 (10), 1585-1608. https://doi.org/10.1306/04110605127.

 

Schieber, J., Southard, J., Thaisen, K., 2007. Accretion of mudstone beds from migrating floccule ripples. Science 318 (5857), 1760-1763. https://doi.org/10.1126/science.1147001.

 

Schieber, J., Southard, J.B., 2009. Bedload transport of mud by floccule ripples-Direct observation of ripple migration processes and their implications. Geology 37 (6), 483-486. https://doi.org/10.1130/G25319A.1.

 

Schieber, J., Southard, J.B., Schimmelmann, A., 2010. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds-interpreting the rock record in the light of recent flume experiments. J. Sediment. Res. 80 (1), 119-128. https://doi.org/10.2110/jsr.2010.005.

 

Schieber, J., 2016. Mud re-distribution in epicontinental basins-Exploring likely processes. Mar. Petrol. Geol. 71, 119-133. https://doi.org/10.1016/j.marpetgeo.2015.12.014.

 

Schieber, J., Miclaus, C., Seserman, et al., 2019. When a mudstone was actually a “sand”: results of a sedimentological investigation of the bituminous marl formation (Oligocene), Eastern Carpathians of Romania. Sediment. Geol. 384, 12-28. https://doi.org/10.1016/j.sedgeo.2019.02.009.

 

Shanmugam, G., 2013. New perspectives on deep-water sandstones: implications. Petrol. Explor. Dev. 40 (3), 316-324. https://doi.org/10.1016/S1876-3804(13)60038-5.

 

Song, M.S., Xiang, K., Zhang, Y., et al., 2017. Research progress of argillaceous gravity flow deposition and its geological significance for shale oil and gas: a case Study of the third member of paleogene Shahejie Formation in Dongying Sag. Acta Sedimentol. Sin. 35 (4), 740-751. https://doi.org/10.14027/j.cnki.cjxb.2017.04.008.

 

Southern, S.J., Kane, I.A., Warchoł, M.J., et al., 2017. Hybrid event beds dominated by transitional-flow facies: character, distribution and significance in the Maastrichtian Springar Formation, north-west Vøring Basin, Norwegian Sea. Sedimentology 64 (3), 747-776. https://doi.org/10.1111/sed.12323.

 

Soyinka, O.A., Slatt, R.M., 2008. Identification and micro-stratigraphy of hyperpycnites and turbidites in cretaceous lewis shale, Wyoming. Sedimentology 55 (5), 1117-1133. https://doi.org/10.1111/j.1365-3091.2007.00938.x.

 

Steel, E., Buttles, J., Simms, A.R., et al., 2016. The role of buoyancy reversal in turbidite deposition and submarine fan geometry. Geology 45 (1), 35-38. https://doi.org/10.1130/G38446.1.

 

Steel, E., Simms, A.R., Steel, R., et al., 2018. Hyperpycnal delivery of sand to the continental shelf: insights from the jurassic lajas formation, neuquen basin, Argentina. Sedimentology 65 (6), 2149-2170 https://doi.org/10.1111/sed.12460.

 
Stelting, C.E., Bouma, A.H., Stone, C.G., 2000. Fine-grained turbidite systems: overview. In: Bouma, A.H., Stone, C.G. (Eds.), Fine-grained Turbidite Systems AAPG Memoir 72/SEPM Special Publication, vol. 68, pp. 1e8. https://doi.org/10.1306/M72703C1 .
 

Stevenson, C.J., Peakall, J., Hodgson, D.M., et al., 2020. TB or not TB: banding in turbidite sandstones. J. Sediment. Res. 90 (8), 821-842. https://doi.org/10.2110/jsr.2020.43.

 

Stow, D.A.V., Bowen, A.J., 1978. Origin of lamination in deep sea, fine-grained sediments. Nature 274 (5669), 324-328. https://doi.org/10.1038/274324A0.

 

Stow, D.A.V., Bowen, A.J., 1980. A physical model for the transport and sorting of fine-grained sediment by turbidity currents. Sedimentary 27 (1), 31-46. https://doi.org/10.1111/j.1365-3091.1980.tb01156.x.

 

Stow, D.A.V., Shanmugam, G., 1980. Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient flysch sediments. Sediment. Geol. 25 (1), 23-42. https://doi.org/10.1016/0037-0738(80)90052-4.

 
Stow, D.A.V., Piper, D.J.W., 1984a. Deep-water fine-grained sediments; history, methodology and terminology. In: Stow, D.A.V., Piper, D.J.W. (Eds.), Fine-grained Sediments: Deep-Water Processes and Facies, vol. 15. Geological Society London Special Publications, pp. 3-14. https://doi.org/10.1144/GSL.SP.1984.015.01.01 .
 
Stow, D.A.V., Piper, D.J.W., 1984b. Deep-water fine-grained sediments: facies models. In: Stow, D.A.V., Piper, D.J.W. (Eds.), Fine-grained Sediments: DeepWater Processes and Facies, vol. 15. Geological Society London Special Publications, pp. 611-646. https://doi.org/10.1144/GSL.SP.1984.015.01.38.
 
Stow, D.A.V., Alam, M., Piper, D.J.W., 1984. Sedimentology of the halifax formation, nova scotia: lower palaeozoic fine-grained turbidites. In: Stow, D.A.V., Piper, D.J.W. (Eds.), Fine-grained Sediments: Deep-Water Processes and Facies, vol. 15. Geological Society London Special Publications, pp. 127-144. https://doi.org/10.1144/GSL.SP.1984.015.01.08 .
 

Stow, D.A.V., 1985. Fine-grained sediments in deep water: an overview of processes and facies models. Geo Mar. Lett. 5, 17-23. https://doi.org/10.1007/BF02629792.

 

Stow, D.A.V., Mayall, M., 2000. Deep-water sedimentary systems: new models for the 21st century. Mar. Petrol. Geol. 17 (2), 125-135. https://doi.org/10.1016/S0264-8172(99)00064-1.

 

Stow, D.A.V., Huc, A.Y., Bertrand, P., 2001. Depositional processes of black shales in deep water. Mar. Petrol. Geol. 18 (4), 491-498. https://doi.org/10.1016/S0264-8172(01)00012-5.

 

Sumner, E.J., Talling, P.J., Amy, L.A., 2009. Deposits of flows transitional between turbidity current and debris flow. Geology 37 (11), 991-994. https://doi.org/10.1130/G30059A.1.

 

Talling, P.J., Allin, J., Armitage, D.A., Arnott, R.W.C., Cartigny, M.J.B., Clare, M.A., Felletti, F., Covault, J.A., Girardclos, S., Hansen, E., Hill, P.R., Hiscott, R.N., Hogg, A.J., Clarke, J.H., Jobe, Z.R., Malgesini, G., Mozzato, A., Naruse, H., Parkinson, S., Peel, F.J., Piper, D.J.W., Pope, E., Postma, G., Rowley, P., Sguazzini, A., Stevenson, C.J., Sumner, E.J., Sylvester, Z., Watts, C., Xu, J., 2015. Key future directions for research on turbidity currents and their deposits. J. Sediment. Res. 85, 153-169. https://doi.org/10.2110/jsr.2015.03.

 

Talling, P.J., Amy, L.A., Wynn, R.B., et al., 2004. Beds comprising debrite sandwiched within co-genetic turbidite: origin and widespread occurrence in distal depositional environments. Sedimentology 51 (1), 163-194. https://doi.org/10.1111/j.1365-3091.2004.00617.x.

 

Talling, P.J., Wynn, R.B., Masson, D.G., et al., 2007. Onset of submarine debris flow deposition far from original giant landslide. Nature 450 (7169), 541-544. https://doi.org/10.1038/nature06313.

 

Talling, P.J., Masson, D.G., Sumner, E.J., et al., 2012. Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology 59 (7), 1937-2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x.

 

Talling, P.J., 2013. Hybrid submarine flows comprising turbidity current and cohesive debris flow: deposits, theoretical and experimental analyses, and generalized models. Geosphere 9 (3), 460-488. https://doi.org/10.1130/GES00793.1.

 

Talling, P.J., Hage, S., Baker, M.L., et al., 2024. The global turbidity current pump and its implications for organic carbon cycling. Ann. Rev. Mar. Sci 16, 105-133. https://doi.org/10.1146/annurev-marine-032223-103626.

 

Tian, X., Gao, Y., Tyler, K., et al., 2021. Early Cretaceous solar cycles recorded in lacustrine laminations in North China. Am. J. Sci. 321 (9), 1285-1307. https://doi.org/10.2475/09.2021.01.

 

Waltham, D., 2004. Flow transformations in particulate gravity currents. J. Sediment. Res. 74 (1), 129-134. https://doi.org/10.1306/062303740129.

 

Wang, X.X., Wan, Y.L., 1993. Significance of the organic clay polymer on oil and gas generation. China Offshore Oil Gas 7 (2), 28-33 (in Chinese).

 

Wells, M.G., Dorrell, R.M., 2021. Turbulence processes within turbidity currents. Annu. Rev. Fluid Mech. 53 (1), 59-83. https://doi.org/10.1146/annurev-fluid-010719-060309.

 

Wilson, R.D., Schieber, J., 2014. Muddy Prodeltaic hyperpycnites in the lower Genesee Group of central New York, USA: implications for mud transport in epicontinental seas. J. Sediment. Res. 84 (10), 866-874. https://doi.org/10.2110/jsr.2014.70.

 

Wilson, R.D., Schieber, J., 2015. Sedimentary facies and depositional environment of the middle Devonian Geneseo Formation of New York. U.S.A. Journal of Sedimentary Research 85 (11), 1383-1415. https://doi.org/10.2110/jsr.2015.88.

 

Wilson, R.D., Schieber, J., 2017. Association between wave- and current-aided hyperpycnites and flooding surfaces in shelfal mudstones: an Integrated sedimentologic, sequence stratigraphic, and geochemical approach. J. Sediment. Res. 87 (11), 1143-1155. https://doi.org/10.2110/jsr.2017.62.

 

Xi, K.L., Li, K., Cao, Y.C., et al., 2020. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China. Petrol. Explor. Dev. 47 (6), 1244-1255. https://doi.org/10.1016/S1876-3804(20)60142-8.

 

Xian, B.Z., Wang, L., Liu, J.P., et al., 2016. Sedimentary characteristics and model of delta-fed turbidites in Eocene eastern Dongying Depression. Journal of China University of Petroleum (Edition of Natural Science) 40 (5), 10-21. https://doi.org/10.3969/j.issn.1673-5005.2016.05.002.

 

Yang, R.C., He, Z.L., Qiu, G.Q., et al., 2014. A Late Triassic gravity flow depositional systems in the southern Ordos Basin. Petrol. Explor. Dev. 41 (6), 661-670. https://doi.org/10.1016/S1876-3804(14)60086-0.

 

Yang, R.C., Jin, Z.J., Van Loon, A.J., et al., 2017a. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: implications for unconventional petroleum development. AAPG (Am. Assoc. Pet. Geol.) Bull. 101 (1), 95-117. https://doi.org/10.1306/06101615095.

 

Yang, R.C., Fan, A., Han, Z., et al., 2017b. Lithofacies and origin of the late triassic muddy gravity-flow deposits in the Ordos Basin, central China. Mar. Petrol. Geol. 85, 194e219. https://doi.org/10.1016/j.marpetgeo.2017.05.005.

 

Yang, T., Cao, Y.C., Friis, H., et al., 2018. Origin and evolution processes of hybrid event beds in the lower cretaceous of the lingshan Island, eastern China. Aust. J. Earth Sci. 64 (4), 517-534. https://doi.org/10.1080/08120099.2018.1433236.

 

Yang, T., Cao, Y.C., Liu, K.Y., et al., 2019. Origin of deep-water fine-grained sediments as revealed from the lower cretaceous rifting basin sequence in the lingshan Island, yellow sea, eastern China. J. Asian Earth Sci. 186, 104065. https://doi.org/10.1016/j.jseaes.2019.104065.

 

Yang, T., Cao, Y.C., Tian, J.C., 2020a. Discussion on research of deep-water gravityflow deposition in lacustrine basin. Acta Sedimentol. Sin. 39 (1), 88-111. https://doi.org/10.14027/j.issn.1000-0550.2020.037.

 

Yang, T., Cao, Y., Liu, K., et al., 2020b. Gravity flow deposits caused by different initiation processes in a deep-lake system. AAPG 104 (7), 1643. https://doi.org/10.1306/03172017081.

 

Yang, T., Cao, Y.C., Tian, J.C., et al., 2021. Deposition of deep-water gravity-flow hybrid event beds in lacustrine basins and their sedimentological significance. Acta Geol. Sin. 95 (12), 3842-3857. https://doi.org/10.19762/j.cnki.dizhixuebao.2021066.

 

Yang, T., Cao, Y., Liu, H., 2023a. Highstand sublacustrine fans: the role of a sudden increase in sediment supply. Basin Res. 35 (4), 1486-1508. https://doi.org/10.1111/bre.12762.

 

Yang, T., Cao, Y., Wang, Y., et al., 2023b. Sedimentary characteristics and depositional model of hyperpycnites in the gentle slope of a lacustrine rift basin: a case study from the third member of the Eocene Shahejie Formation, Bonan Sag, Bohai Bay Basin, Eastern China. Basin Res. 35 (4), 1590-1618. https://doi.org/10.1111/bre.12766.

 

Yuan, X.J., Lin, S.H., Liu, Q., et al., 2015. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: a case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petrol. Explor. Dev. 42 (1), 37-47. https://doi.org/10.1016/S1876-3804(15)60004-0.

 

Zavala, C., Arcuri, M., Valiente, L.B., 2012. The Importance of plant remains as diagnostic criteria for the recognition of ancient hyperpycnites. Revue De Paléobiologie 11 (6), 457-469. https://doi.org/10.1161/01.CIR.25.6.991.

 

Zavala, C., Arcuri, M., 2016. Intrabasinal and extrabasinal turbidites: origin and distinctive characteristics. Sediment. Geol. 337, 36-54. https://doi.org/10.1016/j.sedgeo.2016.03.008.

 

Zeichner, S.S., Nghiem, J., Lamb, M.P., et al., 2021. Early plant organics increased global terrestrial mud deposition through enhanced flocculation. Science 371 (6528), 526-529. https://doi.org/10.1126/science.abd0379.

 

Zhang, H.F., Wu, X.S., Wang, B., et al., 2016. Research progress of the enrichment mechanism of sedimentary organics in lacustrine basin. Acta Sedimentol. Sin. 34 (3), 463-477. https://doi.org/10.14027/j.cnki.cjxb.2016.03.004.

 

Zhang, Q.Z., Ten, G.E., Qin, J.Z., et al., 2017. The important role of microorganism in the process of sedimentation and burial of organic matterancient record from sedimentary rocks. Acta Micropalaeontol. Sin. 34 (1), 33-48. https://doi.org/10.16087/j.cnki.1000-0674.2017.01.003.

 

Zou, C., Zhu, R., Chen, Z.Q., et al., 2019a. Organic-matter-rich shales of China. Earth Sci. Rev. 189, 51-78. https://doi.org/10.1016/j.earscirev.2018.12.002.

 

Zou, C., Yang, Z., Zhang, G.S., et al., 2019b. Establishment and practice of unconventional oil and gas geology. Acta Geol. Sin. 93 (1), 12-23. https://doi.org/10.19762/j.cnki.dizhixuebao.2019002.

Petroleum Science
Pages 1-15
Cite this article:
Yang T, Liu Y-L. New progresses of fine-grained sediment gravity-flow deposits and their importance for unconventional shale oil and gas plays. Petroleum Science, 2025, 22(1): 1-15. https://doi.org/10.1016/j.petsci.2024.05.022
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return