PDF (1.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Original Paper | Open Access

Evolution and generation mechanism of retained oil in lacustrine shales: A combined ReaxFF-MD and pyrolysis simulation perspective

Biao Suna,bXiao-Ping Liua,b()Jie LiucTian Liua,bZu-Xian Huaa,bWen-Di Penga,b
National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing, 102249, China
College of Geosciences, China University of Petroleum (Beijing), Beijing, 102249, China
International Petroleum Exploration and Production Corporation, SINOPEC, Beijing, 100029, China

Edited by Jie Hao and Meng-Jiao Zhou

Show Author Information

Abstract

To accurately investigate the evolution characteristics and generation mechanism of retained oil, the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin. This analysis involves Rock-Eval pyrolysis, pyrolysis simulation experiments, Gas Chromatograph Mass Spectrometer (GC–MS), and reactive molecular dynamics simulations (ReaxFF). The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers ranging from C14 to C36. The generation of retained oil occurred through three stages. A slow growth stage of production rate was observed before reaching the peak of oil production in Stage I. Stage II involved a rapid increase in oil retention, with C12–C17 and C24–C32 serving as the primary components, increasing continuously during the pyrolysis process. The generation process involved the cleavage of weak bonds, including bridging bonds (hydroxyl, oxy, peroxy, imino, amino, and nitro), ether bonds, and acid amides in the first stage (Ro = 0.50%–0.75%). The carbon chains in aromatic ring structures with heteroatomic functional groups breaks in the second stage (Ro = 0.75%–1.20%). In the third stage (Ro = 1.20%–2.50%), the ring structures underwent ring-opening reactions to synthesize iso-short-chain olefins and radicals, while further breakdown of aliphatic chains occurred. By coupling pyrolysis simulation experiments and molecular simulation technology, the evolution characteristics and bond breaking mechanism of retained oil in three stages were revealed, providing a reference for the formation and evolution mechanism of retained oil.

References

 

Al, Areeqi S., Bahamon, D., Polychronopoulou, K., Vega, L.F., 2022. Insights into the thermal stability and conversion of carbon-based materials by using ReaxFF reactive force field: recent advances and future directions. Carbon 196 (5), 840-866. https://doi.org/10.1016/j.carbon.2022.05.035.

 

Amer, M.W., Aljariri Alhesan, J.S., Marshall, M., Fei, Y., Roy Jackson, W., Chaffee, A.L., 2022. Comparison between reaction products obtained from the pyrolysis of marine and lacustrine kerogens. Fuel 337, 126839. https://doi.org/10.1016/j.fuel.2022.126839.

 

Amine, Ifticene M., Yuan, C., Al-Muntaser, A.A., Onishchenko, Y.V., Emelianov, D.A., Varfolomeev, M.A., 2022. Behavior and kinetics of the conversion/combustion of oil shale and its components under air condition. Fuel 324, 124597. https://doi.org/10.1016/j.fuel.2022.124597.

 

Arvelos, S., Abrahão, O., Eponina Hori, C., 2019. ReaxFF molecular dynamics study on the pyrolysis process of cyclohexanone. J. Anal. Appl. Pyrol. 141, 104620. https://doi.org/10.1016/j.jaap.2019.05.009.

 

Barnie, S., Zhang, J., Duncan, A.E., Osei-Marfo, M., Adenutsi, C.D., Chen, H., 2022. The adsorption and reduction mechanism of Cr(VI) by kerogen with different degrees of geochemical alteration using a thermal simulation method. Appl. Geochem. 140, 105261. https://doi.org/10.1016/j.apgeochem.2022.105261.

 

Borrego, A.G., Prado, J.G., Fuente, E., Guillén, M.D., Blanco, C.G., 2000. Pyrolytic behaviour of Spanish oil shales and their kerogens. J. Anal. Appl. Pyrol. 56 (1), 1-21. https://doi.org/10.1016/S0165-2370(99)00092-3.

 

Castro-Marcano, F., Russo, M.F., Van Duin, A.C.T., Mathews, J.P., 2014. Pyrolysis of a large-scale molecular model for Illinois no. 6 coal using the ReaxFF reactive force field. J. Anal. Appl. Pyrol. 109 (6), 79-89. https://doi.org/10.1016/j.jaap.2014.07.011.

 

Deng, M., Zhai, C.B., Yang, Z.H., Duan, X.G., Zheng, L.J., Song, Z.X., 2021. Thermal simulation experiment on hydrocarbon generation characteristics of low-mature marine black shale. Sci. Technol. Eng. (1), 130-137 (in Chinese) http://jsygc/article/abstract/1913229.

 

Dong, Q.-Y., Liu, X., Li, H.-X., Liu, Z.-C., Liu, Q.-X., Dong, Q., 2013. Formation conditions of shale oil reservoir in the second Member of Kongdian Formation in southern Kongdian area, Huanghua depression. Nat. Gas Geosci. 24 (1), 188-198. https://doi.org/10.11764/j.issn.1672-1926.2013.01.188.

 

Dunkel, C.A., Vázquez-Ortega, A., Evans, J.E., 2022. Black shale–gray shale transitions in a Late Devonian shale succession, Central Appalachian Basin (Northern Ohio): sedimentary and geochemical evidence for terrestrial organic matter input driving anoxia events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 608, 111271. https://doi.org/10.1016/j.palaeo.2022.111271.

 

Fu, J., Li, S., Niu, X., Deng, X., Zhou, X., 2020. Geological characteristics and exploration of shale oil in chang 7 member of triassic yanchang formation, Ordos Basin, NW China. Petrol. Explor. Dev. 47 (5), 931-945. https://doi.org/10.1016/S1876-3804(20)60107-0.

 

Goodarzi, F., 2020. Comparison of the geochemistry of lacustrine oil shales of mississippian age from nova scotia and new brunswick, Canada. Int. J. Coal Geol. 220, 103398. https://doi.org/10.1016/j.coal.2020.103398.

 

Hail, Hakimi M., Lotfy, N.M., El Nady, M.M., Makled, W.A., Ramadan, F.S., Rahim, A., 2023. Characterization of lower cretaceous organic-rich shales from the kom ombo basin, Egypt: implications for conventional oil generation. J. Asian Earth Sci. 241, 105459. https://doi.org/10.1016/j.jseaes.2022.105459.

 

Horsfield, B., Mahlstedt, N., Weniger, P., Misch, D., Vranjes-Wessely, S., Han, S., 2022. Molecular hydrogen from organic sources in the deep Songliao Basin, P.R. China. Int. J. Hydrogen Energy 47 (38), 16750-16774. https://doi.org/10.1016/j.ijhydene.2022.02.208.

 

Hou, L.H., Luo, X., Lin, S.H., Li, Y.X., Zhang, L.J., Ma, W.J., 2022. Assessment of recoverable oil and gas resources by in-situ conversion of shale—case study of extracting the Chang 73 shale in the Ordos Basin. Petrol. Sci. 19 (2), 441-458. https://doi.org/10.1016/j.petsci.2021.10.015.

 

Jin, Z., Liang, X., Bai, Z., 2022. Exploration breakthrough and its significance of Gulong lacustrine shale oil in the Songliao Basin, Northeastern China. Energy Geoscience 3 (2), 120-125 https://doi.org/10.1016/j.engeos.2022.01.005.

 

Jin, Z., Nie, H., Liu, Q., Zhao, J., Jiang, T., 2018. Source and seal coupling mechanism for shale gas enrichment in upper ordovician wufeng formation - lower silurian longmaxi Formation in sichuan Basin and its periphery. Mar. Petrol. Geol. 97 (5), 78-93. https://doi.org/10.1016/j.marpetgeo.2018.06.009.

 

Jin, Z., Zhu, R., Liang, X., Shen, Y., 2021. Several issues worthy of attention in current lacustrine shale oil exploration and development. Petrol. Explor. Dev. 48 (6), 1471-1484. https://doi.org/10.1016/S1876-3804(21)60303-8.

 

Li, M., Chen, Z., Ma, X., Cao, T., Qian, M., Jiang, Q., 2019. Shale oil resource potential and oil mobility characteristics of the eocene-oligocene Shahejie Formation, jiyang super-depression, Bohai Bay Basin of China. Int. J. Coal Geol. 204, 130-143. https://doi.org/10.1016/j.coal.2019.01.013.

 

Li, W., Stevens, L.A., Zhang, B., Zheng, D., Snape, C.E., 2022a. Combining molecular simulation and experiment to prove micropore distribution controls methane adsorption in kerogens. Int. J. Coal Geol. 261, 104092. https://doi.org/10.1016/j.coal.2022.104092.

 

Li, Y., Zhao, Q., Lyu, Q., Xue, Z., Cao, X., Liu, Z., 2022b. Evaluation technology and practice of continental shale oil development in China. Petrol. Explor. Dev. 49 (5), 1098-1109. https://doi.org/10.1016/S1876-3804(22)60335-5.

 

Li, M., Wang, M., Zhang, L., Wang, Q., Wang, X., Li, X., 2024. Understanding pore space and oil content of liquid-rich shale in the southern Bohai Sea, China. Geoenergy Science and Engineering 233, 212552. https://doi.org/10.1016/j.geoen.2023.212552.

 

Liu, X., Zhan, J.H., Lai, D., Liu, X., Zhang, Z., Xu, G., 2015. Initial pyrolysis mechanism of oil shale kerogen with reactive molecular dynamics simulation. Energy Fuel. 29 (5), 2987-2997.

 

Liu, X., Lai, J., Fan, X., Shu, H., Wang, G., Ma, X., 2020. Insights in the pore structure, fluid mobility and oiliness in oil shales of Paleogene Funing Formation in Subei Basin, China. Mar. Petrol. Geol. 114, 104228. https://doi.org/10.1016/j.marpetgeo.2020.104228.

 

Liu, J., Yang, Y., Sun, S., Yao, J., Kou, J., 2022a. Flow behaviors of shale oil in kerogen slit by molecular dynamics simulation. Chem. Eng. J. 434, 134682. https://doi.org/10.1016/j.cej.2022.134682.

 

Liu, X.P., Guan, M., Jin, Z.J., Cao, Z., Lai, J., Zheng, L.J., 2022b. Pore structure evolution of lacustrine organic-rich shale from the second member of the Kongdian formation in the Cangdong Sag, Bohai Bay Basin, China. Petrol. Sci. 19 (2), 459-471. https://doi.org/10.1016/j.petsci.2021.12.010.

 

Liu, X.Y., Wu, K., Kong, Q.F., Liu, D.Y., Shi, J.F., Peng, P.G., 2022c. Semi-closed heat simulation experiment of a chang 7 member shale in the Ordos Basin. Geochimica 51 (4), 434-440. https://doi.org/10.19700/j.0379-1726.2022.04.006.

 

Liu, S., Wei, L., Zhou, Q., Yang, T., Li, S., Zhou, Q., 2023. Simulation strategies for ReaxFF molecular dynamics in coal pyrolysis applications: a review. J. Anal. Appl. Pyrol. 170, 105882. https://doi.org/10.1016/j.jaap.2023.105882.

 

Loron, C.C., Sforna, M.C., Borondics, F., Sandt, C., Javaux, E.J., 2022. Synchrotron FTIR investigations of kerogen from Proterozoic organic-walled eukaryotic microfossils. Vib. Spectrosc. 123, 103476. https://doi.org/10.1016/j.vibspec.2022.103476.

 

Ma, Z., Tan, J., Zheng, L., Ni, C., Hu, R., Ma, J., 2022. Simulation experiment of fluid-feldspar sandstone interactions and their implications for tight oil and gas exploration of the Yanchang Formation, Ordos Basin, China. Mar. Petrol. Geol. 142, 1-33. https://doi.org/10.1016/j.marpetgeo.2022.105737.

 

Meuwly, M., Becker, O.M., Stote, R., Karplus, M., 2002. NO rebinding to myoglobin: a reactive molecular dynamics study. Biophys. Chem. 98 (1–2), 183-207. https://doi.org/10.1016/S0301-4622(02)00093-5.

 

Olariu, C., Zhang, Z., Zhou, C., Yuan, X., Steel, R., Chen, S., 2022. Conglomerate to mudstone lacustrine cycles revealed in Junggar Basin, northwest China: middle permian lucaogou and jingjingzigou formations. Mar. Petrol. Geol. 136, 105473. https://doi.org/10.1016/j.marpetgeo.2021.105473.

 

Omari, A., Wang, C., Li, Y., Xu, X., 2022. The progress of enhanced gas recovery (EGR) in shale gas reservoirs: a review of theory, experiments, and simulations. J. Petrol. Sci. Eng. 213, 110461. https://doi.org/10.1016/j.petrol.2022.110461.

 

Pu, X., Zhou, L., Han, W., Zhou, J., Wang, W., Zhang, W., 2016. Geologic features of fine-grained facies sedimentation and tight oil exploration: a case from the second Member of Paleogene Kongdian Formation of Cangdong sag, Bohai Bay Basin. Petrol. Explor. Dev. 43 (1), 26-35. https://doi.org/10.1016/S1876-3804(16)30003-9.

 

Saif, T., Lin, Q., Butcher, AR., Bijeljic, B., Blunt, MJ., 2017. Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM. Applied Energy 202 628–47.

 

Salmon, E., van Duin, A.C.T., Lorant, F., Marquaire, P.M., Goddard, Wa, 2009a. Early maturation processes in coal. Part 2: reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures. Org. Geochem. 40 (12), 1195-1209. https://doi.org/10.1016/j.orggeochem.2009.09.001.

 

Salmon, E., van Duin, A.C.T., Lorant, F., Marquaire, P.M., Goddard, W.A., 2009b. Thermal decomposition process in algaenan of Botryococcus braunii race L. Part 2: molecular dynamics simulations using the ReaxFF reactive force field. Org. Geochem. 40 (3), 416-427. https://doi.org/10.1016/j.orggeochem.2008.08.012.

 

Ungerer, P., Collell, J., Yiannourakou, M., 2015. Molecular modeling of the volumetric and thermodynamic properties of kerogen: influence of organic type and maturity. Energy Fuel. 29 (1), 91-105. https://doi.org/10.1021/ef502154k.

 

Van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A., 2001. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105 (41), 9396-9409. https://doi.org/10.1021/jp004368u.

 

Wang, Z., Tang, Y., Wang, Y.L., Zheng, Y., Chen, F., Wu, S., 2020. Kinetics of shale oil generation from kerogen in saline basin and its exploration significance: an example from the Eocene Qianjiang Formation, Jianghan Basin, China. J. Anal. Appl. Pyrol. 150, 104885. https://doi.org/10.1016/j.jaap.2020.104885.

 

Wang, J., Liu, Y., Yang, C., Jiang, W., Li, Y., Xiong, Y., 2022. Evolution of mechanical properties of kerogen with thermal maturity. Mar. Petrol. Geol. 145, 105906. https://doi.org/10.1016/j.marpetgeo.2022.105906.

 

Xi, K., Li, K., Cao, Y., Lin, M., Niu, X., Zhu, R., 2020. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China. Petrol. Explor. Dev. 47 (6), 1342-1353. https://doi.org/10.1016/S1876-3804(20)60142-8.

 

You, Y., Han, X., Wang, X., Jiang, X., 2019. Evolution of gas and shale oil during oil shale kerogen pyrolysis based on structural characteristics. J. Anal. Appl. Pyrol. 138, 203-210. https://doi.org/10.1016/j.jaap.2018.12.025.

 

Zhang, C., Jiang, F., Hu, T., Chen, D., Huang, L., Jiang, Z., 2023. Oil occurrence state and quantity in alkaline lacustrine shale using a high-frequency NMR technique. Mar. Petrol. Geol. 154, 106302. https://doi.org/10.1016/j.marpetgeo.2023.106302.

 

Zhao, X., Zhou, L., Pu, X., Jin, F., Jiang, W., Xiao, D., 2018. Development and exploration practice of the concept of hydrocarbon accumulation in rifted-basin troughs: a case study of Paleogene Kongdian Formation in Cangdong sag, Bohai Bay Basin. Petrol. Explor. Dev. 45 (6), 1166-1176. https://doi.org/10.1016/S1876-3804(18)30120-4.

 

Zhao, X.Z., Pu, X.G., Zhou, L.H., Jin, F.M., Shi, Z.N., Han, W.Z., Jiang, W.Y., Zhang, W., 2019a. Typical geological characteristics and exploration practices of lacustrine shale oil: a case study of the Kong-2 member strata of the Cangdong Sag in the Bohai Bay Basin. Mar. Petrol. Geol. 113, 103999. https://doi.org/10.1016/j.marpetgeo.2019.08.027.

 

Zhao, X., Zhou, L., Pu, X., Han, W., Jin, F., Xiao, D., 2019b. Exploration breakthroughs and geological characteristics of continental shale oil: a case study of the Kongdian Formation in the Cangdong Sag, China. Mar. Petrol. Geol. 102, 544-556. https://doi.org/10.1016/j.marpetgeo.2018.12.020.

 

Zhao, X., Zhou, L., Pu, X., Jin, F., Han, W., Shi, Z., 2022. Theories, technologies and practices of lacustrine shale oil exploration and development: a case study of Paleogene Kongdian Formation in Cangdong sag, Bohai Bay Basin, China. Petrol. Explor. Dev. 49 (3), 707-718. https://doi.org/10.1016/S1876-3804(22)60059-4.

 

Zheng, M., Li, X., Nie, F., Li, G., 2017. Investigation of model scale effects on coal pyrolysis using ReaxFF MD simulation. Mol. Simulat. 43 (13–16), 1081-1088. http://doi.org/10.1080/08927022.2017.1356456.

 

Zhou, L., Zhao, X., Chai, G., Jiang, W., Pu, X., Wang, X., 2020. Key exploration & development technologies and engineering practice of continental shale oil: a case study of member 2 of Paleogene Kongdian Formation in Cangdong sag, Bohai Bay Basin, east China. Petrol. Explor. Dev. 47 (5), 1138-1146. https://doi.org/10.1016/S1876-3804(20)60124-0.

Petroleum Science
Pages 29-41
Cite this article:
Sun B, Liu X-P, Liu J, et al. Evolution and generation mechanism of retained oil in lacustrine shales: A combined ReaxFF-MD and pyrolysis simulation perspective. Petroleum Science, 2025, 22(1): 29-41. https://doi.org/10.1016/j.petsci.2024.07.020
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return