PDF (3.5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Original Paper | Open Access

Machine learning-based grayscale analyses for lithofacies identification of the Shahejie formation, Bohai Bay Basin, China

Yu-Fan WangaShang Xua()Fang HaoaHui-Min LiubQin-Hong HuaKe-Lai XiaDong Yanga
National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
Shengli Oilfield Branch Company, SINOPEC, Dongying, 257015, Shandong, China

Edited by Jie Hao and Meng-Jiao Zhou

Show Author Information

Abstract

It is of great significance to accurately and rapidly identify shale lithofacies in relation to the evaluation and prediction of sweet spots for shale oil and gas reservoirs. To address the problem of low resolution in logging curves, this study establishes a grayscale-phase model based on high-resolution grayscale curves using clustering analysis algorithms for shale lithofacies identification, working with the Shahejie Formation, Bohai Bay Basin, China. The grayscale phase is defined as the sum of absolute grayscale and relative amplitude as well as their features. The absolute grayscale is the absolute magnitude of the gray values and is utilized for evaluating the material composition (mineral composition + total organic carbon) of shale, while the relative amplitude is the difference between adjacent gray values and is used to identify the shale structure type. The research results show that the grayscale phase model can identify shale lithofacies well, and the accuracy and applicability of this model were verified by the fitting relationship between absolute grayscale and shale mineral composition, as well as corresponding relationships between relative amplitudes and laminae development in shales. Four lithofacies are identified in the target layer of the study area: massive mixed shale, laminated mixed shale, massive calcareous shale and laminated calcareous shale. This method can not only effectively characterize the material composition of shale, but also numerically characterize the development degree of shale laminae, and solve the problem that difficult to identify millimeter-scale laminae based on logging curves, which can provide technical support for shale lithofacies identification, sweet spot evaluation and prediction of complex continental lacustrine basins.

References

 
AlMudhafar, W.J., Al Lawe, E.M., Noshi, C.I., 2019. Clustering analysis for improved characterization of carbonate reservoirs in a Southern Iraqi Oil Field. In: Offshore Technology Conference. Society of Petroleum Engineers, Houston, Texas.
 

Bhattacharya, S., Carr, T.R., Pal, M., 2016. Comparison of supervised and unsupervised approaches for mudstone lithofacies classification: case studies from the Bakken and Mahantango-Marcellus Shale, USA. J. Nat. Gas Sci. Eng. 33, 1119-1133. https://doi.org/10.1016/j.jngse.2016.04.055.

 

Blattmann, T.M., Liu, Z., Zhang, Y., et al., 2019. Mineralogical control on the fate of continentally derived organic matter in the ocean. Science 366 (6466), 742-745. https://doi.org/10.1126/science.aax5345.

 

Breckenridge, A., Lowell, T.V., Stroup, J.S., et al., 2012. A review and analysis of varve thickness records from glacial Lake Ojibway (Ontario and Quebec, Canada). Quat. Int. 260, 43-54. https://doi.org/10.1016/j.quaint.2011.09.031.

 

Cai, Q.S., Hu, M.Y., Zhang, B.M., et al., 2022. Source of silica and its implications for organic matter enrichment in the Upper Ordovician-Lower Silurian black shale in western Hubei Province, China: Insights from geochemical and petrological analysis. Pet. Sci. 19 (1), 74-90. https://doi.org/10.1016/j.petsci.2021.10.012.

 

Campbell, C.V., 1967. Lamina, laminaset, bed and bedset. Sedimentology 8 (1), 7-26. https://doi.org/10.1111/j.1365-3091.1967.tb01301.x.

 

Chen, L., Jenkyns, H.C., Xu, G.W., et al., 2016. Preliminary nannofossil and geochemical data from Jurassic black shales from the Qiangtang Basin, northern Tibet. J. Asian Earth Sci. 115, 257-267. https://doi.org/10.1016/j.jseaes.2015.10.004.

 

Chen, S.B., Zhu, Y.M., Wang, H., et al., 2011. Shale gas reservoir characterisation: a typical case in the southern Sichuan Basin of China. Energy 36 (11), 6609-6616. https://doi.org/10.1016/j.energy.2011.09.001.

 

Cui, Q.Y., Yang, H.F., Li, X.Q., et al., 2022. Identification of lithofacies and prediction of mineral composition in shales–A case study of the Shahejie Formation in the Bozhong Sag. Unconventional Resources 2, 72-84. https://doi.org/10.1016/j.uncres.2022.09.002.

 

Davies, R.J., Almond, S., Ward, R.S., et al., 2014. Oil and gas wells and their integrity: implications for shale and unconventional resource exploitation. Mar. Petrol. Geol. 59, 674-675. https://doi.org/10.1016/j.marpetgeo.2014.03.001.

 

De Geer, G., 1908. On Late Quaternary time and climate. GFF 30 (7), 459-464. https://doi.org/10.1080/11035890809445600.

 

Gao, P., Xiao, X., Hu, D., et al., 2022. Effect of silica diagenesis on porosity evolution of deep gas shale reservoir of the Lower Paleozoic Wufeng-Longmaxi formations, Sichuan Basin. Mar. Petrol. Geol. 145, 105873. https://doi.org/10.1016/j.marpetgeo.2022.105873.

 

Gifford, C.M., Agah, A., 2010. Collaborative multi-agent rock facies classification from wireline well log data. Eng. Appl. Artif. Intell. 23 (7), 1158-1172. https://doi.org/10.1016/j.engappai.2010.02.004.

 

Gou, Q.Y., Xu, S., Hao, F., et al., 2023. Petrography and mineralogy control the nm-μm-scale pore structure of saline lacustrine carbonate-rich shales from the Jianghan Basin. China. Mar. Petrol. Geol. 155, 106399. https://doi.org/10.1016/j.marpetgeo.2023.106399.

 

Gou, Q.Y., Xu, S., Hao, F., et al., 2021. The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation. Energy 219, 119579. https://doi.org/10.1016/j.energy.2020.119579.

 

Hou, L.H., Luo, X., Lin, S.H., et al., 2022. Assessment of recoverable oil and gas resources by in-situ conversion of shale—case study of extracting the Chang 73 shale in the Ordos Basin. Pet. Sci. 19 (2), 441-458. https://doi.org/10.1016/j.petsci.2021.10.015.

 

Ibad, S.M., Padmanabhan, E., 2022. Lithofacies, mineralogy, and pore types in Paleozoic gas shales from Western Peninsular Malaysia. J. Pet. Sci. Eng. 212, 110239. https://doi.org/10.1016/j.petrol.2022.110239.

 

Iqbal, M.A., Rezaee, R., Smith, G., et al., 2021. Shale lithofacies controls on porosity and pore structure: an example from ordovician goldwyer formation, canning basin, western Australia. Gas Sci. Eng. 89, 103888. https://doi.org/10.1016/j.jngse.2021.103888.

 

Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E., et al., 2022. FaciesViT: vision transformer for an improved core lithofacies prediction. Front. Earth Sci. 10, 992442. https://doi.org/10.3389/feart.2022.992442.

 

Lazar, O.R., Bohacs, K.M., Macquaker, J.H.S., et al., 2015. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: nomenclature and Description guidelines. J. Sediment. Res. 85 (3), 230-246. https://doi.org/10.2110/jsr.2015.11.

 

Li, Q.Q., Xu, S., Li, J.L., et al., 2023. Effects of astronomical cycles on laminated shales of the Paleogene Shahejie Formation in the dongying sag, Bohai Bay Basin, China. Energies 16 (9), 3624. https://doi.org/10.3390/en16093624.

 

Li, T.W., Jiang, Z.X., Li, Z., et al., 2017. Continental shale pore structure characteristics and their controlling factors: a case study from the lower third member of the Shahejie Formation, Zhanhua Sag, Eastern China. Gas Sci. Eng. 45, 670-692. https://doi.org/10.1016/j.jngse.2017.06.005.

 

Li, Y.Y., Zha, M., Song, R.C., et al., 2021. Microstructure and pore systems of shallow-buried fluvial mudstone caprocks in Zhanhua depression, east China inferred from SEM and MICP. Mar. Petrol. Geol. 132, 105189. https://doi.org/10.1016/j.marpetgeo.2021.105189.

 

Liu, Q.H., Zhu, X.M., Yang, Y., et al., 2016. Sequence stratigraphy and seismic geomorphology application of facies architecture and sediment-dispersal patterns analysis in the third member of Eocene Shahejie Formation, slope system of Zhanhua Sag, Bohai Bay Basin. China. Mar. Petrol. Geol. 78, 766-784. https://doi.org/10.1016/j.marpetgeo.2015.11.015.

 

Liu, Y., Zhu, R.H., Zhai, S., et al., 2023. Lithofacies identification of shale formation based on mineral content regression using LightGBM algorithm: a case study in the Luzhou block, South Sichuan Basin, China. Energy Sci. Eng. 11 (11), 4256-4272. https://doi.org/10.1002/ese3.1579.

 

Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2016. Climate-driven paleolimnological change controls lacustrine mudstone depositional process and organic matter accumulation: constraints from lithofacies and geochemical studies in the Zhanhua Depression, eastern China. Int. J. Coal Geol. 167, 103-118. https://doi.org/10.1016/j.coal.2016.09.014.

 

Pang, X.Q., Li, M., Li, B.Y., et al., 2023. Main controlling factors and movability evaluation of continental shale oil. Earth Sci. Rev. 243, 104472. https://doi.org/10.1016/j.earscirev.2023.104472.

 

Qi, J., Yang, Q., 2010. Cenozoic structural deformation and dynamic processes of the Bohai Bay basin province. China. Mar. Petrol. Geol. 27 (4), 757-771. https://doi.org/10.1016/j.marpetgeo.2009.08.012.

 

Shi, J.Y., Jin, Z.J., Liu, Q.Y., et al., 2019. Cyclostratigraphy and astronomical tuning of the middle eocene terrestrial successions in the Bohai Bay Basin, Eastern China. Glob. Planet. Change. 174, 115-126. https://doi.org/10.1016/j.gloplacha.2019.01.001.

 

Shi, J.Y., Jin, Z.J., Liu, Q.Y., et al., 2022. Laminar characteristics of lacustrine organic-rich shales and their significance for shale reservoir formation: a case study of the Paleogene shales in the Dongying Sag, Bohai Bay Basin, China. J. Asian Earth Sci. 223, 104976. https://doi.org/10.1016/j.jseaes.2021.104976.

 

Su, J.B., Zhu, W.B., Lu, H.F., et al., 2009. Geometry styles and quantification of inversion structures in the Jiyang depression, Bohai Bay Basin, eastern China. Mar. Petrol. Geol. 26 (1), 25-38. https://doi.org/10.1016/j.marpetgeo.2007.08.003.

 

Su, S.Y., Jiang, Z.X., Shan, X.L., et al., 2018. Effect of lithofacies on shale reservoir and hydrocarbon bearing capacity in the Shahejie Formation, Zhanhua Sag, eastern China. J. Pet. Sci. Eng. 174, 1303-1308. https://doi.org/10.1016/j.petrol.2018.11.048.

 

Sun, N.L., Chen, T.Y., Gao, J.B., et al., 2023. Lithofacies and reservoir characteristics of saline lacustrine fine-grained sedimentary rocks in the northern Dongpu Sag, Bohai Bay Basin: implications for shale oil exploration. J. Asian Earth Sci. 252, 105686. https://doi.org/10.1016/j.jseaes.2023.105686.

 

Tang, Y., Cao, J., He, W.J., et al., 2021. Discovery of shale oil in alkaline lacustrine basins: the late paleozoic fengcheng formation, mahu sag, junggar basin, China. Pet. Sci. 18 (5), 1281-1293. https://doi.org/10.1016/j.petsci.2021.04.001.

 

Tian, M., Tan, M.J., Wang, M., 2023. Identification of shale lithofacies from FMI images and ECS logs using machine learning with GLCM features. Process 11 (10), 2982. https://doi.org/10.3390/pr11102982.

 

Wang, G.C., Garr, T.R., 2013. Organic-rich Marcellus Shale lithofacies modeling and distribution pattern analysis in the Appalachian basin. AAPG (Am. Assoc. Pet. Geol.) Bull. 97 (12), 2173-2205. https://doi.org/10.1306/05141312135.

 

Wang, M., Li, M., Li, J.B., et al., 2022. The key parameter of shale oil resource evaluation: oil content. Pet. Sci. 19 (4), 1443-1459. https://doi.org/10.1016/j.petsci.2022.03.006.

 

Williams, T.S., Bhattacharya, S., Song, L.S., et al., 2022. Petrophysical analysis and mudstone lithofacies classification of the HRZ shale, North Slope, Alaska. J. Pet. Sci. Eng. 208 (Part: C), 109454. https://doi.org/10.1016/j.petrol.2021.109454.

 

Xu, J.L., Wang, R.T., Zan, L., 2023. Shale oil occurrence and slit medium coupling based on a molecular dynamics simulation. J. Pet. Sci. Eng. 220 (Part A), 111151. https://doi.org/10.1016/j.petrol.2022.111151.

 

Xu, S., Hao, F., Shu, Z.G., et al., 2020. Pore structures of different types of shales and shale gas exploration of the Ordovician Wufeng and Silurian Longmaxi successions in the eastern Sichuan Basin, South China. J. Asian Earth Sci. 193, 104271. https://doi.org/10.1016/j.jseaes.2020.104271.

 

Xue, C.Q., Mcbeck, J.A., Lu, H.J., et al., 2023. Classification of shale lithofacies with minimal data: application to the early Permian shales in the Ordos Basin, China. J. Asian Earth Sci. 259, 105901. https://doi.org/10.1016/j.jseaes.2023.105901.

 

Zhang, Y., Dilek, Y., Zhang, F.Q., et al., 2020. Structural architecture and tectonic evolution of the cenozoic Zhanhua sag along the tan–Lu fault zone in the eastern North China: reconciliation of tectonic models on the origin of the Bohai Bay Basin. Tectonophysics 775, 228303. https://doi.org/10.1016/j.tecto.2019.228303.

 

Zhou, J., Wu, G.A., Geng, Y.N., et al., 2023. Laboratory study of the factors affecting hydraulic fracturing effect for inter-salt oil shale layers, Qianjiang Depression, China. Pet. Sci. 20 (3), 1690-1706. https://doi.org/10.1016/j.petsci.2023.01.002.

Petroleum Science
Pages 42-54
Cite this article:
Wang Y-F, Xu S, Hao F, et al. Machine learning-based grayscale analyses for lithofacies identification of the Shahejie formation, Bohai Bay Basin, China. Petroleum Science, 2025, 22(1): 42-54. https://doi.org/10.1016/j.petsci.2024.07.021
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return