The microscopic occurrence characteristics primarily constrain the enrichment and mobility of shale oil. This study collected the lacustrine shales from the Palaeogene Funing Formation in the Gaoyou Sag, Subei Basin. Conventional and multistage Rock-Eval, scanning electron microscopy, and nuclear magnetic resonance (NMR) T1–T2 were performed to analyze the contents and occurrence characteristics of shale oil. Low-temperature nitrogen adsorption-desorption (LTNA/D) experiments were conducted on the shales before and after extraction. The relationships between shale oil occurrence with organic matter and pore structures were then discussed. Predominantly, the shale oil in the Funing Formation is found within fractures, with secondary occurrences in interparticle pores linked to brittle minerals and sizeable intraparticle pores associated with clay minerals. The selected shales can be categorized into two types based on the nitrogen isotherms. Type A shales are characterized by high contents of felsic and calcareous minerals but low clay minerals, with larger TOC and shale oil values. Conversely, Type B shales are marked by abundant clay minerals but diminished TOC and shale oil contents. The lower BET specific surface area (SSA), larger average pore diameter, and simpler pore surfaces and pore structures lead to the Type A shales being more conducive to shale oil enrichment and mobility. Shale oil content is predominantly governed by the abundance of organic matter, while an overabundance of organic matter typically equates to a reduced ratio of free oil and diminished fluidity. The BET SSA, volumes of pores less than 25 and 100 nm at extracted state all correlate negatively with total and adsorbed oil contents but display no correlation with free oil, while they have positive relationships with capillary-bound water. Consequently, pore water is mainly saturated in micropores (<25 nm) and minipores (25–100 nm), as well as adsorbed oil, while free oil, i.e., bound and movable oil, primarily exists in mesopores (100–1000 nm) and macropores (>1000 nm). These findings may enhance the understanding of the microscopic occurrence characteristics of shale oil and will contribute to guide resource estimation and shale oil sweet spot exploitation in the Gaoyou Sag, Subei Basin.
Bai, L., Liu, B., Du, Y., Wang, B., Tian, S., Wang, L., Xue, Z., 2022. Distribution characteristics and oil mobility thresholds in lacustrine shale reservoir: insights from N2 adsorption experiments on samples prior to and following hydrocarbon extraction. Petrol. Sci. 19 (2), 486-497. https://doi.org/10.1016/j.petsci.2021.10.018.
Cao, T., Jiang, Q., Qian, M., Liu, P., Li, Z., Tao, G., Li, M., 2023. Key technologies for pyrolysis analysis of shale oil content. Acta Petrol. Sin. 44 (2), 329-338. https://doi.org/10.7623/syxb202302008.
Dang, W., Zhang, J., Nie, H., Wang, F., Tang, X., Jiang, S., Wei, X., Liu, Q., Li, P., Li, F., Sun, J., 2022. Microscopic occurrence characteristics of shale oil and their main controlling factors: a case study of the 3rd submember continental shale of Member 7 of Yanchang Formation in Yan’an area, Ordos Basin. Acta Petrol. Sin. 43 (4), 507-523. https://doi.org/10.7623/syxb202204005.
Duan, H., Liu, S., Fu, Q., 2020. Characteristics and sedimentary environment of organic-rich shale in the second member of Paleogene Funing Formation, Subei Basin. Petrol. Geol. Exper. 42 (4), 612-617. https://doi.org/10.11781/sysydz202004612.
Fu, Q., Liu, Q., Liu, S., Duan, H., 2020. Shale oil accumulation conditions in the second member of Paleogene Funing Formation, Gaoyou Sag, Subei Basin. Petrol. Geol. Exper. 42 (4), 625-631. http://doi.org/10.11781/sysydz202004625.
Guan, M., Liu, X., Jin, Z., Lai, J., Liu, J., Sun, B., Liu, T., Hua, Z., Xu, W., Shu, H., Wang, G., Liu, M., Luo, Y., 2022. Quantitative characterization of various oil contents and spatial distribution in lacustrine shales: insight from petroleum compositional characteristics derived from programed pyrolysis. Mar. Petrol. Geol. 138, 105522. https://doi.org/10.1016/j.marpetgeo.2021.105522.
Hu, T., Pang, X., Jiang, F., Wang, Q., Liu, X., Wang, Z., Jiang, S., Wu, G., Li, G., Xu, T., Li, M., Yu, J., Zhang, C., 2021. Movable oil content evaluation of lacustrine organic-rich shales: methods and a novel quantitative evaluation model. Earth Sci. Rev. 214, 103545. https://doi.org/10.1016/j.earscirev.2021.103545.
Jarvie, D.M., 2012. Shale resource systems for oil and gas; Part 2, Shale-oil resource systems. AAPG Mem 97, 89-119. https://doi.org/10.1306/13321447M973489.
Jiang, Q., Li, M., Qian, M., Li, Z., Li, Z., Huang, Z., Zhang, C., Ma, Y., 2016. Quantitative characterization of shale oil in different occurrence states and its application. Petrol. Geol. Exper. 38 (6), 842-849. https://doi.org/10.11781/sysydz201606842.
Jin, Z., Zhang, Q., Zhu, R., Dong, L., Fu, J., Liu, H., Yun, L., Liu, G., Li, M., Zhao, X., Wang, X., Hu, S., Tang, Y., Bai, Z., Sun, D., Li, X., 2023. Classification of lacustrine shale oil reservoirs in China and its significance. Oil Gas Geol. 44 (4), 801-819. https://doi.org/10.11743/ogg20230401.
Li, A., Ding, W., He, J., Dai, P., Yin, S., Xie, F., 2016. Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: a case study of Lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province, South China. Mar. Petrol. Geol. 70, 46-57. https://doi.org/10.1016/j.marpetgeo.2015.11.004.
Li, C., Tan, M., Wang, Z., Li, Y., Xiao, L., 2023. Nuclear magnetic resonance pore radius transformation method and fluid mobility characterization of shale oil reservoirs. Geoenergy Sci. Eng. 221, 211403. https://doi.org/10.1016/j.geoen.2022.211403.
Li, J., Lu, S., Xie, L., Zhang, J., Xue, H., Zhang, P., Tian, S., 2017. Modeling of hydrocarbon adsorption on continental oil shale: a case study on n-alkane. Fuel 206, 603-613. https://doi.org/10.1016/j.fuel.2017.06.017.
Li, J., Lu, S., Cai, J., Zhang, P., Xue, H., Zhao, X., 2018a. Adsorbed and free oil in lacustrine nanoporous shale: a theoretical model and a case study. Energ. Fuel. 32 (12), 12247-12258. https://doi.org/10.1021/acs.energyfuels.8b02953.
Li, J., Song, Z., Wang, M., Zhang, P., Cai, J., 2024. Quantitative characterization of microscopic occurrence and mobility of oil in shale matrix pores: a case study of the Shahejie Formation in the Dongying Sag. Petrol. Sci. Bull. 1, 1-20. https://doi.org/10.3969/j.issn.2096-1693.2024.01.001.
Li, J., Huang, W., Lu, S., Wang, M., Chen, G., Tian, W., Guo, Z., 2018b. Nuclear magnetic resonance T1–T2 Map Division method for hydrogen-bearing components in continental shale. Energ. Fuel. 32 (9), 9043-9054. https://doi.org/10.1021/acs.energyfuels.8b01541.
Li, J., Jiang, C., Wang, M., Lu, S., Chen, Z., Chen, G., Li, J., Li, Z., Lu, S., 2020b. Adsorbed and free hydrocarbons in unconventional shale reservoir: a new insight from NMR T1–T2 maps. Mar. Petrol. Geol. 116, 104311. https://doi.org/10.1016/j.marpetgeo.2020.104311.
Li, J., Wang, M., Fei, J., Xu, L., Shao, H., Li, M., Tian, W., Lu, S., 2022a. Determination of in situ hydrocarbon contents in shale oil plays. Part 2: two-dimensional nuclear magnetic resonance (2D NMR) as a potential approach to characterize preserved cores. Mar. Petrol. Geol. 145, 105890. https://doi.org/10.1016/j.marpetgeo.2022.105890.
Li, J., Wang, M., Jiang, C., Lu, S., Li, Z., 2022b. Sorption model of lacustrine shale oil: insights from the contribution of organic matter and clay minerals. Energy 260, 125011. https://doi.org/10.1016/j.energy.2022.125011.
Li, J., Yin, J., Zhang, Y., Lu, S., Wang, W., Li, J., Chen, F., Meng, Y., 2015a. A comparison of experimental methods for describing shale pore features — a case study in the Bohai Bay Basin of eastern China. Int. J. Coal Geol. 152, 39-49. https://doi.org/10.1016/j.coal.2015.10.009.
Li, W., Lu, S., Xue, H., Zhang, P., Hu, Y., 2015b. Oil content in argillaceous dolomite from the Jianghan Basin, China: application of new grading evaluation criteria to study shale oil potential. Fuel 143, 424-429. https://doi.org/10.1016/j.fuel.2014.11.080.
Li, W., Cao, J., Shi, C., Xu, T., Zhang, H., Zhang, Y., 2020a. Shale oil in saline lacustrine systems: a perspective of complex lithologies of fine-grained rocks. Mar. Petrol. Geol. 116, 104351. https://doi.org/10.1016/j.marpetgeo.2020.104351.
Liang, C., Wu, J., Cao, Y., Liu, K., Khan, D., 2022. Storage space development and hydrocarbon occurrence model controlled by lithofacies in the Eocene Jiyang Sub-basin, East China: significance for shale oil reservoir formation. J. Petrol. Sci. Eng. 215, 110631. https://doi.org/10.1016/j.petrol.2022.110631.
Lin, Z., Li, J., Lu, S., Hu, Q., Zhang, P., Wang, J., Zhi, Q., Huang, H., Yin, N., Wang, Y., Ge, T., 2024. The occurrence characteristics of oil in shales matrix from organic geochemical screening data and pore structure properties: an experimental study. Petrol. Sci. 21 (1), 1-13. https://doi.org/10.1016/j.petsci.2023.09.002.
Liu, B., Bai, L., Chi, Y., Jia, R., Fu, X., Yang, L., 2019. Geochemical characterization and quantitative evaluation of shale oil reservoir by two-dimensional nuclear magnetic resonance and quantitative grain fluorescence on extract: a case study from the Qingshankou Formation in Southern Songliao Basin, northeast China. Mar. Petrol. Geol. 109, 561-573. https://doi.org/10.1016/j.marpetgeo.2019.06.046.
Liu, B., Jiang, X., Bai, L., Lu, R., 2022. Investigation of oil and water migrations in lacustrine oil shales using 20 MHz 2D NMR relaxometry techniques. Petrol. Sci. 19 (3), 1007-1018. https://doi.org/10.1016/j.petsci.2021.10.011.
Liu, X., Lai, J., Fan, X., Shu, H., Wang, G., Ma, X., Liu, M., Guan, M., Luo, F., 2020. Insights in the pore structure, fluid mobility and oiliness in oil shales of Paleogene Funing Formation in Subei Basin. China. Mar. Petrol. Geol. 114, 104228. https://doi.org/10.1016/j.marpetgeo.2020.104228.
Lu, S., Huang, W., Chen, F., Li, J., Wang, M., Xue, H., Wang, W., Cai, X., 2012. Classification and evaluation criteria of shale oil and gas resources: Discussion and application. Petrol. Explor. Develop. 39 (2), 268-276. https://doi.org/10.1016/S1876-3804(12)60042-1.
Lu, S., Xue, H., Wang, M., Xiao, D., Huang, W., Li, J., Xie, L., Tian, S., Wang, S., Li, J., Wang, W., Chen, F., Li, W., Xue, Q., Liu, X., 2016. Several key issues and research trends in evaluation of shale oil. Acta Petrol. Sin. 37 (10), 1309-1322. https://doi.org/10.7623/syxb201610012.
Ma, C., Zhao, X., Yang, T., Jiang, W., Guo, B., Han, G., Bi, H., Ma, J., Bian, C., Zhou, K., Zhou, S., Zhu, H., 2022. Mineralogy, organic geochemistry, and microstructural characterization of lacustrine Shahejie Formation, Qikou Sag, Bohai Bay Basin: contribution to understanding microcosmic storage mechanism of shale oil. J. Petrol. Sci. Eng. 209, 109843. https://doi.org/10.1016/j.petrol.2021.109843.
Mei, Q., Guo, R., Zhou, X., Cheng, G., Li, S., Bai, Y., Liu, J., Wu, W., Zhao, J., 2023. Pore structure characteristics and impact factors of laminated shale oil reservoir in Chang 73 sub-member of Ordos Basin, China. J. Nat. Gas Geosci. 8 (4), 227-243. https://doi.org/10.1016/j.jnggs.2023.07.003.
Wang, J., Lu, S., Zhang, P., Li, Q., Yin, Y., Li, W., Zhou, N., Chen, G., Yi, Y., Wu, C., 2024. Characterization of shale oil and water micro-occurrence based on a novel method for fluid identification by NMR T2 spectrum. Fuel 374, 132426. https://doi.org/10.1016/j.fuel.2024.132426.
Wang, M., Xue, H., Tian, S., Wilkins, R., Wang, Z., 2015. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao basin, NE China. Mar. Petrol. Geol. 67, 144-153. https://doi.org/10.1016/j.marpetgeo.2015.05.011.
Wang, M., Ma, R., Li, J., Lu, S., Li, C., Guo, Z., Li, Z., 2019. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie formation of Jiyang depression, Bohai Bay Basin. China. Petrol. Explor. Develop. 46 (4), 833-846. https://doi.org/10.1016/S1876-3804(19)60242-9.
Wang, M., Li, M., Li, J., Xu, L., Zhang, J., 2022a. The key parameter of shale oil resource evaluation: oil content. Petrol. Sci. 19 (4), 1443-1459. https://doi.org/10.1016/j.petsci.2022.03.006.
Wang, N., Li, C., Feng, Y., Song, Y., Guo, T., Li, M., Chen, Z., 2022b. Novel method for determining the oil moveable threshold and an innovative model for evaluating the oil content in shales. Energy 239, 121484. https://doi.org/10.1016/j.energy.2021.121848.
Wang, X., Wang, M., Li, J., Shao, H., Deng, Z., Wu, Y., 2022c. Thermal maturity: the controlling factor of wettability, pore structure, and oil content in the lacustrine Qingshankou shale, Songliao Basin. J. Petrol. Sci. Eng. 215, 110648. https://doi.org/10.1016/j.petrol.2022.110618.
Wang, Y., Zhu, Y., Liu, S., Zhang, R., 2016. Pore characterization and its impact on methane adsorption capacity for organic-rich marine shales. Fuel 181, 227-237. https://doi.org/10.1016/j.fuel.2016.04.082.
Xue, H., Tian, S., Wang, W., Zhang, W., Du, T., Mu, G., 2016. Correction of oil content—One key parameter in shale oil resource assessment. Oil Gas Geol. 37 (1), 15-22. https://doi.org/10.11743/ogg20160103.
Yao, Y., Liu, D., Tang, D., Tang, S., Huang, W., 2008. Fractal characterization of adsorption-pores of coals from North China: an investigation on CH4 adsorption capacity of coals. Int. J. Coal Geol. 73 (1), 27-42. https://doi.org/10.1016/j.coal.2007.07.003.
Zan, 2020. Enrichment characteristics and main controlling factors of shale oil reservoir in the second member of Paleogene Funing Formation, Beigang Subsag, Jinhu Sag, Subei Basin. Petrol. Geol. Exper. 42 (4), 618-624. https://doi.org/10.11781/sysydz202004618.
Zhang, H., Huang, H., Li, Z., Liu, M., 2019. Comparative study between sequential solvent-extraction and multiple isothermal stages pyrolysis: a case study on Eocene Shahejie Formation shales, Dongying Depression, East China. Fuel 263, 116591. https://doi.org/10.1016/j.fuel.2019.116591.
Zhang, J., Zhu, R., Wu, S., Jiang, X., Liu, C., Cai, Y., Zhang, S., Zhang, S., 2023a. Microscopic oil occurrence in high-maturity lacustrine shales: Qingshankou Formation, Gulong Sag, Songliao basin. Petrol. Sci. 20 (5), 2726-2746. https://doi.org/10.1016/j.petsci.2023.08.026.
Zhang, P., Lu, S., Li, J., Xue, H., Li, W., Zhang, P., 2017. Characterization of shale pore system: a case study of Paleogene Xin'gouzui Formation in the Jianghan basin. China. Mar. Petrol. Geol. 79, 321-334. https://doi.org/10.1016/j.marpetgeo.2016.10.014.
Zhang, P., Lu, S., Li, J., Chen, C., Xue, H., Zhang, J., 2018. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR). Mar. Petrol. Geol. 89, 778-785. https://doi.org/10.1016/j.marpetgeo.2017.11.015.
Zhang, P., Lu, S., Li, J., Chang, X., 2020. 1D and 2D Nuclear magnetic resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks. Mar. Petrol. Geol. 114, 104210. https://doi.org/10.1016/j.marpetgeo.2019.104210.
Zhang, P., Lu, S., Zeng, Z., Chang, X., Li, J., Chen, G., Zhang, J., Lin, Z., Li, J., 2021. Pore structure and fractal character of lacustrine oil-bearing shale from the Dongying Sag, Bohai Bay Basin, China. Geofluids , 1-19. https://doi.org/10.1155/2021/9945494.
Zhang, P., Lu, S., Li, J., Chang, X., Lin, Z., Chen, G., Li, J., Liu, J., Tian, S., 2022a. Evaluating microdistribution of adsorbed and free oil in a lacustrine shale using nuclear magnetic resonance: a theoretical and experimental study. J. Petrol. Sci. Eng. 212, 110208. https://doi.org/10.1016/j.petrol.2022.110208.
Zhang, P., Lu, S., Li, Z., Duan, H., Chang, X., Qiu, Y., Fu, Q., Zhi, Q., Wang, J., Huang, H., 2022b. Key oil content parameter Correction of shale oil resources: a case study of the Paleogene Funing Formation, Subei Basin, China. Energ. Fuel. 36 (10), 5316-5326. https://doi.org/10.1021/acs.energyfuels.2c00610.
Zhang, P., Lu, S., Li, J., Wang, J., Zhang, J., 2023b. Oil occurrence mechanism in nanoporous shales: a theoretical and experimental study. Mar. Petrol. Geol. 156, 106442. https://doi.org/10.1016/j.marpetgeo.2023.106422.
Zhang, P., Yin, Y., Lu, S., Wang, J., Zhang, J., Zhi, Q., Huang, H., 2023c. Key factors controlling oil contents in different lithofacies shales from the Funing Formation, Subei Basin: Evidence from scanning electron microscopy. Mar. Petrol. Geol. 229, 212115. https://doi.org/10.1016/j.geoen.2023.212115.
Zhang, P., Lu, S., Wang, J., Li, W., Yin, Y., Chen, G., Zhou, N., Wu, H., 2024a. Microscopic occurrence and distribution of oil and water in situ shale: Evidence from nuclear magnetic resonance. Petrol. Sci. https://doi.org/10.1016/j.petsci.2024.04.007.
Zhang, P., Wu, H., Lu, S., Wang, J., Li, W., Yin, Y., Zhou, N., Zhang, J., Chen, G., Yi, Y., Wu, C., 2024b. The occurrence of pore fluid in shale-oil reservoirs using nuclear magnetic resonance: the Paleogene Funing Formation, Subei Basin, Eastern China. Mar. Petrol. Geol. 167, 106986. https://doi.org/10.1016/j.marpetgeo.2024.106986.
Zhang, Q., Jin, Z., Zhu, R., Liu, Q., Zhang, R., Wang, G., Chen, W., Littke, R., 2023d. Remarkable issues of Rock-Eval pyrolysis in the assessment of shale oil/gas. Oil Gas Geol. 44 (4), 1020-1032. https://doi.org/10.11743/ogg20230417.
Zhu, X., Duan, H., Sun, Y., 2023. Breakthrough and significance of Paleogene continental shale oil exploration in Gaoyou Sag, Subei Basin. Acta Petrol. Sin. 44 (8), 1206-1221+1257. https://doi.org/10.7623/syxb202308002.
Zou, C., Yang, Z., Cui, J., Zhu, R., Hou, L., Tao, S., Yuan, X., Wu, S., Lin, S., Wang, L., Bai, B., Yao, J., 2013. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Petrol. Explor. Develop. 40 (1), 15-27. https://doi.org/10.1016/S1876-3804(13)60002-6.
Zou, C., Pan, S., Jing, Z., Gao, J., Yang, Z., Wu, S., Zhao, Q., 2020. Shale oil and gas revolution and its impact. Acta Petrol. Sin. 41 (1), 1-12. https://doi.org/10.7623/syxb202001001.