PDF (2.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Original Paper | Open Access

New alkylbenzene parameters to identify organic matter sources for source rocks of light oils and condensates from the Tarim Basin and Beibuwan Basin

Bing-Kun Menga()Dao-Fu Songb()Yuan ChenbSheng-Bao Shib
School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
National Key Laboratory of Petroleum Resources and Engineering, College of Geosciences, China University of Petroleum (Beijing), Beijing, 102249, China

Edited by Jie Hao

Show Author Information

Abstract

As an important component of light hydrocarbon compounds, alkylbenzene compounds lack indicators to indicate the source of organic matter of light oils and condensates. Forty-one oil samples from the Tarim Basin and Beibuwan Basin were analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS). The concentration distributions of thirteen light hydrocarbon compounds with organic matter source and sedimentary environment indication were studied. There is no significant difference in the concentrations of 1-methylpropylbenzene (MPB) in all studied oils. However, the concentrations of 2-MPB in the Tarim swamp oils are higher than that in the Beibuwan lacustrine oils and Tarim marine oils. Based on the significant concentration difference of 1- and 2-MPB in all studied oils, 1-/2-MPB (MPBr) was proposed as an indicator to identify the source of organic matter in crude oils. The MPBr values greater than 1.5 indicate that the crude oil mainly comes from lower aquatic organisms, bacteria, and algae. The MPBr values greater than 1.0 and less than 1.5 indicate that crude oil was derived from the combined contributions of lower aquatic organisms, bacteria and algae, and terrestrial higher plants. The MPBr values less than 1.0 suggest that the crude oil was mainly derived from terrigenous higher plants. The MPBr values in crude oils basically are not or slightly affected by depositional environment and secondary alteration. The MPBr values can be used to infer the organic matter origin in sediments, especially for the lack of biomarkers of light oils and condensates.

References

 
Aquino Neto, F.R., Trendel, J.M., Restle, A., Connan, J., Albrecht, P., 1983. Occurrence and formation of tricyclic terpanes in sediments and petroleums. In: Bjorøy, M.,Albrecht, P., Cornford, C., de Groot, K., Eglinton, G., Galimov, E., Leythaeuser, D., Pelet, R., Rullkotter, J., Speers, G. (Eds.), Advances in Organic Geochemistry 1981. € Wiley, Chichester, pp. 659e667.
 

Chang, X.C., Wang, T.G., Li, Q.M., Cheng, B., Tao, X.W., 2013. Geochemistry and possible origin of petroleum in Palaeozoic reservoirs from Halahatang Depression. J. Asian Earth Sci. 74, 129-141. https://doi.org/10.1016/j.jseaes.2013.03.024.

 

Cheng, B., Wang, T.G., Huang, H.P., Wang, G.L., Simoneit, B.R.T., 2015a. Ratios of low molecular weight alkylbenzenes (C0–C4) in Chinese crude oils as indicators of maturity and depositional environment. Org. Geochem. 88, 78-90. https://doi.org/10.1016/j.orggeochem.2015.08.008.

 

Cheng, B., Wang, T.G., Huang, H., Wang, G.L., 2015b. Application of the monoterpane ratio (MTR) to distinguish marine oils from terrigenous origin and infer depositional environment in northern Tarim Basin, China. Org. Geochem. 85, 1-10. https://doi.org/10.1016/j.orggeochem.2015.05.001.

 
Connan, J., 1984. Biodegradation of crude oils in reservoirs. In: Welte, D. (Ed.), Advances in Petroleum Geochemistry. Academic Press, London, pp. 299e335.
 

Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., Eglinton, G., 1978. Organic geochemical indicators of Palaeoenvironmental conditions of sedimentation. Nature 272 (5650), 216-222. https://doi.org/10.1038/272216a0.

 

Evans, C.R., Rogers, M.A., Bailey, N.J.L., 1971. Evolution and alteration of petroleum in western Canada. Chem. Geol. 8, 147-170. https://doi.org/10.1016/0009-2541(71)90002-7.

 

Fan, M., Huan, J., Chen, Z., 2009. Thermal simulating experiment of source rock and gas-source correlation in the Kuqa Depression of the Tarim Basin. Petroleum Geology and Experiment 31, 518-521 (in Chinese).

 

Gallegos, E.J., 1981. Alkylbenzenes derived from carotenes in coals by GC/MS. J. Chromatogr. Sci. 19, 177-182. https://doi.org/10.1093/chromsci/19.4.177.

 

Hartgers, W.A., Sinninghe Damsté, J.S., de Leeuw, J.W., 1992. Identification of C2–C4 alkylated benzenes in flash pyrolysates of kerogens, coals and asphaltenes. J. Chromatogr. A. 606, 211-220. https://doi.org/10.1016/0021-9673(92)87027-6.

 

Hartgers, W.A., Sinninghe Damsté, J.S., de Leeuw, J.W., 1994a. Geochemical significance of alkylbenzene distributions in flash pyrolysates of kerogens, coals, and asphaltenes. Geochem. Cosmochim. Acta 58, 1759-1775. https://doi.org/10.1016/0016-7037(94)90535-5.

 

Hartgers, W.A., Sinninghe Damsté, J.S., Requejo, A.G., Allan, J., Hayes, J.M., de Leeuw, J.W., 1994b. Evidence for only minor contributions from bacteria to sedimentary organic carbon. Nature 369, 224. https://doi.org/10.1038/369224a0.

 

Hartgers, W.A., Sinninghe Damsté, J.S., Requejo, A.G., Allan, J., Hayes, J.M., Ling, Y., Xie, T.M., Primack, J., de Leeuw, J.W., 1994c. A molecular and carbon isotopic study towards the origin and diagenetic fate of diaromatic carotenoids. Org. Geochem. 22, 703-725. https://doi.org/10.1016/0146-6380(94)90134-1.

 

Hill, R.J., Lu, S.T., Tang, Y., Henry, M., Kaplan, I.R., 2004. C4-benzene and C4-naphthalene thermal maturity indicators for pyrolysates, oils and condensates. The Geochemical Society Special Publications 9, 303-319. https://doi.org/10.1016/S1873-9881(04)80022-1.

 

Hoefs, M.J.L., Van Heemst, J.D.H., Gelin, F., Koopmans, M.P., van Kaam-Peters, H.M.E., Schouten, S., de Leeuw, J.W., Sinninghe Damsté, J.S., 1995. Alternative biological sources for 1,2,3,4-tetramethylbenzene in flash pyrolysates of kerogen. Org. Geochem. 23, 975-979. https://doi.org/10.1016/0146-6380(95)00078-X.

 

Hunt, J.M., Huc, A.Y., Whelan, J.K., 1980. Generation of light hydrocarbons in sedimentary rocks. Nature 288 (5792), 688-690. https://doi.org/10.1038/288688a0.

 

Jia, W.L., Peng, P.A., Yu, C.L., Xiao, Z.Y., 2007. Source of 1,2,3,4-tetramethylbenzene in asphaltenes from the Tarim Basin. J. Asian Earth Sci. 30, 591-598. https://doi.org/10.1016/j.jseaes.2006.09.003.

 

Jia, W.L., Peng, P.A., Xiao, Z.Y., 2008. Carbon isotopic compositions of 1,2,3,4-tetramethylbenzene in marine oil asphaltenes from the Tarim Basin: evidence for the source formed in a strongly reducing environment. Sci. China E 51, 509-514. https://doi.org/10.1007/s11430-008-0030-7.

 

Kvalheim, O.M., Christy, A.A., Telnæs, N., Bjørseth, A., 1987. Maturity determination of organic matter in coals using the methylphenanthrene distribution. Geochem. Cosmochim. Acta 51 (7), 1883-1888. https://doi.org/10.1016/0016-7037(87)90179-7.

 

Leythaeuser, D., Schaefer, R.G., Cornford, C., Weiner, B., 1979a. Generation and migration of light hydrocarbons (C2–C7) in sedimentary basins. Org. Geochem. 1 (4), 191-204. https://doi.org/10.1016/0146-6380(79)90022-6.

 

Leythaeuser, D., Schaefer, R.G., Weiner, B., 1979b. Generation of low molecular weight hydrocarbons from organic matter in source beds as a function of temperature and facies. Chem. Geol. 25 (1–2), 95-108. https://doi.org/10.1016/0009-2541(79)90086-X.

 

Li, M.J., Wang, T.G., Liu, J., Zhang, M.Z., Lu, H., Ma, Q.L., Gao, L.H., 2007. Characteristics of oil and gas accumulation in yong’an-meitai area of the fushan depression, Beibuwan Basin, South China Sea. Petrol. Sci. 4, 23-33. https://doi.org/10.1007/BF03187452.

 

Li, M.J., Wang, T.G., Liu, J., Zhang, M.Z., Gao, L.H., 2008a. Total alkyl dibenzothiophenes content tracing the filling pathway of condensate reservoir in the Fushan Depression, South China Sea. Sci. China E 51, 138-145. https://doi.org/10.1007/s11430-008-6025-6.

 

Li, M.J., Wang, T.G., Liu, J., Wu, W.Q., Gao, L.H., 2008b. Occurrence and origin of carbon dioxide in the fushan depression, Beibuwan Basin, South China Sea. Mar. Petrol. Geol. 28, 500-513. https://doi.org/10.1016/j.marpetgeo.2007.07.007.

 

Li, M.J., Wang, T.G., Liu, J., Zhang, M.Z., Lu, H., Ma, Q.L., Gao, L.H., 2009. Biomarker 17α(H)-diahopane: a geochemical tool to study the petroleum system of a Tertiary lacustrine basin, Northern South China Sea. Appl. Geochem. 24, 172-183. https://doi.org/10.1016/j.apgeochem.2008.09.016.

 

Liang, D.G., Zhang, S.C., Chen, J.P., Wang, F.Y., Wang, P.R., 2003. Organic geochemistry of oil and gas in the Kuqa depression, Tarim Basin, NW China. Org. Geochem. 34 (7), 873-888. https://doi.org/10.1016/s0146-6380(03)00029-9.

 

Lis, G.P., Mastalerz, M., Schimmelmann, A., 2008. Increasing maturity of kerogen type II reflected by alkylbenzene distribution from pyrolysis-gas chromatography-mass spectrometry. Org. Geochem. 39, 440-449. https://doi.org/10.1016/j.orggeochem.2008.01.007.

 

Meng, B.K., Song, D.F., Chen, Y., Shi, S.B., Zhou, S.X., 2022. Origin, Distribution and geochemical significance of isopropyltoluene isomers in crude oil. J. Earth Sci. 33, 215-228. https://doi.org/10.1007/s12583-020-1348-0.

 

Mair, B.J., Ronen, Z., Eisenbraun, E.J., Horodysky, A.G., 1966. Terpenoid precursors of hydrocarbons from the gasoline range of petroleum. Science 154, 1339-1341. https://doi.org/10.1126/science.154.3754.1339.

 

Meng, B.K., Song, D.F., Chen, Y., Shi, S.B., 2023. Distribution and geochemical significance of alkylbenzenes for crude oil with different depositional environments and thermal maturities. Petrol. Sci. 21 (2), 777-790. https://doi.org/10.1016/j.petsci.2023.10.030.

 

Nytoft, H.P., Samuel, O.J., Kildahl-Andersen, G., Johansen, J.E., Jones, M., 2009. Novel C15 sesquiterpanes in Niger Delta oils: structural identification and potential application as new markers of angiosperm input in light oils. Org. Geochem. 40, 595-603. https://doi.org/10.1016/S0031-6458(83)80090-2.

 

Odden, W., Patience, R.L., Van Graas, G.W., 1998. Application of light hydrocarbons (C4–C13) to oil/source rock correlations: a study of the light hydrocarbon compositions of source rocks and test fluids from offshore Mid-Norway. Org. Geochem. 28 (12), 823-847. https://doi.org/10.1016/S0146-6380(98)00039-4.

 

Ostroukhov, S.B., Aref'Yev, O.A., Pustil'Nikova, S.D., Zabrodina, M.N., Petrov, AlA., 1983. C12–C30 n-alkylbenzenes in crude oils. Petrol. Chem. U.S.S.R. 23, 1-12. https://doi.org/10.1016/S0031-6458(83)80090-2.

 

Pedentchouk, N., Freeman, K.H., Harris, N.B., Clifford, D.J., Grice, K., 2004. Sources of alkylbenzenes in Lower Cretaceous lacustrine source rocks, West African rift basins. Org. Geochem. 35, 33-45. https://doi.org/10.1016/j.orggeochem.2003.04.001.

 

Peters, K.E., Fowler, M.G., 2002. Applications of petroleum geochemistry to exploration and reservoir management. Org. Geochem. 33, 5-36. https://doi.org/10.1016/S0146-6380(01)00125-5.

 
Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History, vol. 2. Cambridge University Press, Cambridge.
 

Radke, M., Willsch, H., 1994. Extractable alkyldibenzothiophenes in Posidonia Shale (Toarcian) source rocks: relationship of yields to petroleum formation and expulsion. Geochem. Cosmochim. Acta 58, 5223-5244. https://doi.org/10.1016/0016-7037(94)90307-7.

 

Requejo, A.G., Allan, J., Creaney, S., Gray, N.R., Cole, K.S., 1992. Aryl isoprenoids and diaromatic carotenoids in Paleozoic source rocks and oils from the Western Canada and Williston Basins. Org. Geochem. 19 (1–3), 245-264. https://doi.org/10.1016/0146-6380(92)90041-U.

 

SantamaríA-Orozco, D., Horsfield, B., Di Primio, R., Welte, D.H., 1998. Influence of maturity on distributions of benzo- and dibenzothiophenes in Tithonian source rocks and crude oils, Sonda de Campeche, Mexico. Org. Geochem. 28, 423-439. https://doi.org/10.1016/S0146-6380(98)00009-6.

 

Sinninghe Damsté, J.S., Keely, B.J., Betts, S.E., Baas, M., Maxwell, J.R., de Leeuw, J.W., 1993. Variations in abundances and distributions of isoprenoid chromans and long-chain alkylbenzenes in sediments of the Mulhouse Basin: a molecular sedimentary record of palaeosalinity. Org. Geochem. 20, 1201-1215. https://doi.org/10.1016/0146-6380(93)90009-Z.

 

Song, D.F., Wang, T.G., Li, H.B., 2015. Geochemical characteristics and origin of the crude oils and condensates from Yakela Faulted-Uplift, Tarim Basin. J. Petrol. Sci. Eng. 133, 602-611. https://doi.org/10.1016/j.petrol.2015.07.007.

 

Song, D.F., Li, M.J., Shi, S.B., Han, Z.Z., Meng, B.K., 2019. Geochemistry and possible origin of crude oils from Bashituo oil field, Tarim Basin. AAPG Bull. 103 (4), 973-995. https://doi.org/10.1306/10031817403.

 

Summons, R.E., Powell, T.G., 1987. Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria. Geochem. Cosmochim. Acta 51, 557-566. https://doi.org/10.1016/0016-7037(87)90069-X.

 

Tao, S.Z., Wang, C.Y., Du, J.G., Liu, L., Chen, Z., 2015. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China. Mar. Petrol. Geol. 67 (6), 460-467. https://doi.org/10.1016/j.marpetgeo.2015.05.030.

 

ten Haven, H.L., 1996. Applications and limitations of Mango's light hydrocarbon parameters in petroleum correlation studies. Org. Geochem. 24 (10–11), 957-976. https://doi.org/10.1016/S0146-6380(96)00091-5.

 

Thompson, K.F.M., 1987. Fractionated aromatic petroleums and the generation of gas-condensates. Org. Geochem. 11, 573-590. https://doi.org/10.1016/0146-6380(87)90011-8.

 

Thompson, K.F.M., 1988. Gas-condensate migration and oil fractionation in deltaic systems. Mar. Petrol. Geol. 5 (3), 237-246. https://doi.org/10.1016/0264-8172(88)90004-9.

 
Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence. Springer, Amsterdam. https://doi.org/10.1007/978-3-642-87813-8.
 

van Aarssen, B.G.K., Hessels, J.K.C., Abbink, O.A., de Leeuw, J.W., 1992. The occurrence of polycyclic sesqui-, tri-, and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from southeast Asia. Geochem. Cosmochim. Acta 56, 1231-1246. https://doi.org/10.1016/0016-7037(92)90059-R.

 

Volkman, J.K., Alexander, R., Kagi, R.I., Rowland, S.J., Sheppard, P.N., 1984. Biodegradation of aromatic hydrocarbons in crude oils from the Barrow Sub-basin of Western Australia. Org. Geochem. 6, 619-632. https://doi.org/10.1016/0146-6380(84)90084-6.

 

Wang, T.G., He, F.Q., Wang, C.J., Zhang, W.B., Wang, J.Q., 2008. Oil filling history of the Ordovician oil reservoir in the major part of the Tahe oilfield, Tarim Basin, NW China. Org. Geochem. 39, 1637-1646. https://doi.org/10.1016/j.orggeochem.2008.05.006.

 

Wang, G.L., Cheng, B., Wang, T.G., Simoneit, B.R.T., Shi, S.B., Wang, P.R., 2014. Monoterpanes as molecular indicators to diagnose depositional environments for source rocks of crude oils and condensates. Org. Geochem. 72, 59-68. https://doi.org/10.1016/j.orggeochem.2014.05.004.

 

Wang, N., Xu, Y., Li, W., Wang, F., Chen, G., Liu, Y., Cheng, R., Liu, H., 2022. The compositions of biomarkers and macerals in the first member of the Shahejie Formation in the Liaodong Bay subbasin, Bohai Bay Basin: implications for biological sources and seawater incursions. J. Petrol. Sci. Eng. 218, 110947. https://doi.org/10.1016/j.petrol.2022.110947.

 

Xiao, H., Wang, T.G., Li, M., Lai, H., Liu, J., Mao, F., Tang, Y., 2019. Geochemical characteristics of Cretaceous Yogou Formation source rocks and oil-source correlation within a sequence stratigraphic framework in the Termit Basin, Niger. J. Petrol. Sci. Eng. 172, 360-372. https://doi.org/10.1016/j.petrol.2018.09.082.

 

Yabuta, H., Mita, H., Shimoyama, A., 2002. Detection of mono- and bicyclic alkanes and their characteristics in Neogene sediments of the Shinjo Basin, Japan. Geochem. J. 36, 31-49. https://doi.org/10.2343/geochemj.36.31.

 

Yassaa, N., Peeken, L., Zöllner, E., Bluhm, K., Arnold, S., Spracklen, D., Williams, J., 2008. Evidence for marine production of monoterpenes. Enviro. Chem. 5, 391-401. https://doi.org/10.1071/EN08047.

 

You, B., Chen, J.F., Ni, Z.Y., 2023. Reclassification and distribution patterns of discovered oils in the dongying depression, Bohai Bay Basin, China. Petrol. Sci. 20 (1), 114-127. https://doi.org/10.1016/j.petsci.2022.08.013.

 

Zhang, S.C., 2000. The migration fractionation: an important mechanism in the formation of condensate and waxy oil. Chin. Sci. Bull. 45, 1341-1344. https://doi.org/10.1007/BF03182916.

 

Zhang, S.C., Huang, H.P., 2005. Geochemistry of Paleozoic marine petroleum from the Tarim Basin, NW China, Part 1. Oil family classification. Org. Geochem. 36 (8), 1204-1214. https://doi.org/10.1016/j.orggeochem.2005.01.013.

 

Zhang, S.C., Zhang, B., Zhu, G.Y., Wang, H.T., Li, Z.X., 2011a. Geochemical evidence for coal-derived hydrocarbons and their charge history in the Dabei gas field, Kuqa Thrust Belt, Tarim Basin, NW China. Mar. Petrol. Geol. 28 (7), 1364-1375. https://doi.org/10.1016/j.marpetgeo.2011.02.006.

 

Zhang, S.C., Su, J., Wang, X.M., Zhu, G.Y., Yang, H.J., Liu, K.Y., Li, Z.X., 2011b. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China: Part 3. Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations. Org. Geochem. 42, 1394-1410. https://doi.org/10.1016/j.orggeochem.2011.08.013.

 

Zhang, S.C., Huang, H.P., Su, J., Liu, M., Zhang, H.F., 2014a. Geochemistry of alkylbenzenes in the Paleozoic oils from the Tarim Basin, NW China. Org. Geochem. 77, 126-139. https://doi.org/10.1016/j.orggeochem.2014.10.003.

 

Zhang, S.C., Huang, H.P., Su, J., Zhu, G.Y., Wang, X.M., Larter, S., 2014b. Geochemistry of Paleozoic marine oils from the Tarim Basin, NW China. Part 4: paleobiodegradation and oil charge mixing. Org. Geochem. 67, 41-57. https://doi.org/10.1016/j.orggeochem.2013.12.008.

 

Zhang, S., Huang, H., Su, J., Liu, M., 2015. Ultra-deep liquid hydrocarbon exploration potential in cratonic region of the Tarim Basin inferred from gas condensate genesis. Fuel 160, 583-595. https://doi.org/10.1016/j.fuel.2015.08.023.

 

Zhu, G., Yang, H., Zhang, B., Su, J., Chen, L., Lu, Y.H., Liu, X.W., 2012. The geological feature and origin of Dina 2 large gas field in Kuqa depression, Tarim Basin. Acta Pet. Sin. 28, 2479-2492 (in Chinese).

Petroleum Science
Pages 76-89
Cite this article:
Meng B-K, Song D-F, Chen Y, et al. New alkylbenzene parameters to identify organic matter sources for source rocks of light oils and condensates from the Tarim Basin and Beibuwan Basin. Petroleum Science, 2025, 22(1): 76-89. https://doi.org/10.1016/j.petsci.2024.07.027
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return