PDF (3.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Original Paper | Open Access

Extraction of ADCIGs in viscoelastic media based on fractional viscoelastic equations

Wen-Bin Tiana,bYang Liua,b,c()Jiang-Tao Maa,b
National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing, 102249, China
College of Geophysics, China University of Petroleum (Beijing), Beijing 102249, China
College of Petroleum, China University of Petroleum (Beijing), Karamay Campus, Karamay, 834000, Xinjiang, China

Edited by Meng-Jiao Zhou and Min Li

Show Author Information

Abstract

Angle domain common imaging gathers (ADCIGs) serve as not only an ideal approach for tomographic velocity modeling but also as a crucial means of mitigating low-frequency noise. Thus, they play a significant role in seismic data processing. Recently, the Poynting vector method, due to its lower computational requirements and higher resolution, has become a commonly used approach for obtaining ADCIGs. However, due to the viscoelastic properties of underground media, attenuation effects (phase dispersion and amplitude attenuation) have become a factor, which is important in seismic data processing. However, the primary applications of ADCIGs are currently confined to acoustic and elastic media. To assess the influence of attenuation and elastic effects on ADCIGs, we introduce an extraction method for ADCIGs based on fractional viscoelastic equations. This method enhances ADCIGs accuracy by simultaneously considering both the attenuation and elastic properties of underground media. Meanwhile, the S-wave quasi tensor is used to reduce the impact of P-wave energy on S-wave stress, thus further increasing the accuracy of PS-ADCIGs. In conclusion, our analysis examines the impact of the quality factor Q on ADCIGs and offers theoretical guidance for parameter inversion.

Electronic Supplementary Material

Download File(s)
petsci-21-6-4052_ESM.pdf (45.8 KB)

References

 
Alkhalifah, T., Fomel, S., 2009. Angle gathers in wave-equation imaging for VTI media. In: 79th Annual International Meeting, SEG, Expanded Abstracts, pp. 4027-4031. https://doi.org/10.1190/1.3255453.
 

Biondi, B., 2007. Angle-domain common-image gathers from anisotropic migration. Geophysics 72 (2), S81-S91. https://doi.org/10.1190/1.2430561.

 

Biondi, B., Symes, W.W., 2004. Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging. Geophysics 69 (5), 1283-1298. https://doi.org/10.1190/1.1801945.

 

Biondi, B., Tisserant, T., 2004. 3D angle-domain common-image gathers for migration velocityanalysis. Geophys. Prospect. 52 (6), 575-591. https://doi.org/10.1111/j.1365-2478.2004.00444.x.

 
Canning, A., Malkin, A., 2009. Azimuthal AVA analysis using full-azimuth 3D angle gathers. In: 79th Annual International Meeting, SEG, Expanded Abstracts, pp. 256-259. https://doi.org/10.1190/1.3255379.
 

Carcione, J.M., Cavallini, F., Mainardi, F., et al., 2002. Time-domain modeling of constant-Q seismic waves using fractional derivatives. Pure. Appl. Geophys. 159, 1719-1736. https://doi.org/10.1007/s00024-002-8705-z.

 

Chang, W.F., McMechan, G.A., 1986. Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition. Geophysics 51, 67-84. https://doi.org/10.1190/1.1442041.

 

Chang, W.F., McMechan, G.A., 1987. Elastic reverse-time migration. Geophysics 52 (10), 1365-1375. https://doi.org/10.1190/1.1442249.

 

Chen, H., Zhang, L., Zhou, H., 2023. Fractional laplacians viscoelastic wave equation low-rank temporal extrapolation. Front. Earth Sci. 10, 1044823. https://doi.org/10.3389/feart.2022.1044823.

 

Chen, H., Zhou, H., Li, Q., et al., 2016. Two efficient modeling schemes for fractional Laplacian viscoacoustic wave equation. Geophysics 81 (5), T233-T249. https://doi.org/10.1190/geo2015-0660.1.

 

Chen, P., Villa, U., Ghattas, O., 2019. Taylor approximation and variance reduction for PDE-constrained optimal control under uncertainty. J. Comput. Phys. 385, 163-186. https://doi.org/10.1016/j.jcp.2019.01.047.

 

Chen, W., Holm, S., 2004. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115 (4), 1424-1430. https://doi.org/10.1121/1.1646399.

 

Dafni, R., Symes, W.W., 2016. Kinematic artifacts in the subsurface-offset extended image and their elimination by a dip-domain specularity filter. Geophysics 81 (6), S477-S495. https://doi.org/10.1190/geo2016-0115.1.

 

Deng, F., McMechan, G.A., 2008. Viscoelastic true-amplitude prestack reverse-time depth migration. Geophysics 73 (4), S143-S155. https://doi.org/10.1190/1.2938083.

 
Dickens, T.A., winbow, G., 2011. RTM angle gathers using Poynting vectors. In: 81th Annual International Meeting, SEG, Expanded Abstracts, pp. 3109-3113. https://doi.org/10.1190/1.3627841.
 

Du, Q., Guo, C., Zhao, Q., et al., 2017. Vector-based elastic reverse time migration based on scalar imaging condition. Geophysics 82 (2), S111-S127. https://doi.org/10.1190/geo2016-0146.1.

 

Du, Q., Zhu, Y., Ba, J., 2012. Polarity reversal correction for elastic reverse time migration. Geophysics 77 (2), S31-S41. https://doi.org/10.1190/geo2011-0348.1.

 

Gong, T., Nguyen, B.D., McMechan, G.A., 2016. Polarized wavefield magnitudes with optical flow for elastic angle-domain common-image gathers. Geophysics 81 (4), S239-S251. https://doi.org/10.1190/geo2011-0348.1.

 

Guo, P., McMechan, G.A., Guan, H., 2016. Comparison of two viscoacoustic propagators for Q-compensated reverse time migration. Geophysics 81 (5), S281-S297. https://doi.org/10.1190/geo2015-0557.1.

 

Hao, Q., Greenhalgh, S., 2019. The generalized standard-linear-solid model and the corresponding viscoacoustic wave equations revisited. Geophys. J. Int. 219 (3), 1939-1947. https://doi.org/10.1093/gji/ggz407.

 

Hu, J., Wang, H., Wang, X., 2016. Angle gathers from reverse time migration using analytic wavefield propagation and decomposition in the time domain. Geophysics 81 (1), S1-S9. https://doi.org/10.1190/geo2015-0050.1.

 

Hu, T., Liu, H., Guo, X., et al., 2019. Analysis of direction-decomposed and vector-based elastic reverse time migration using the Hilbert transform. Geophysics 84 (6), S599-S617. https://doi.org/10.1190/geo2018-0324.1.

 

Jin, H., McMechan, G.A., Guan, H., 2014. Comparison of methods for extracting ADCIGs from RTM. Geophysics 79 (3), S89-S103. https://doi.org/10.1190/geo2013-0336.1.

 

Jin, H., McMechan, G.A., Nguyen, B., 2015. Improving input/output performance in 2D and 3D angle-domain common-image gathers from reverse time migration. Geophysics 80 (2), S65-S77. https://doi.org/10.1190/geo2014-0209.1.

 

Koren, Z., Ravve, I., Gonzalez, G., et al., 2008. Anisotropic local tomography. Geophysics 73 (5), VE75-VE92. https://doi.org/10.1190/1.2953979.

 

Li, F., Gao, J., Gao, Z., et al., 2021. Angle domain common image gathers from reverse time migration by combining the Poynting vector with directional decomposition. Geophys. Prospect. 69 (4), 799-820. https://doi.org/10.1111/1365-2478.13064.

 

Li, Q., Zhou, H., Zhang, Q., et al., 2016a. Efficient reverse time migration based on fractional Laplacian viscoacoustic wave equation. Geophys. J. Int. 204 (1), 488-504. https://doi.org/10.1093/gji/ggv456.

 

Li, Z., Ma, X., Fu, C., et al., 2016b. Wavefield separation and polarity reversal correction in elastic reverse time migration. J. Appl. Geophys. 127, 56-67. https://doi.org/10.1016/j.jappgeo.2016.02.012.

 

Li, Z., Wang, J., Ma, X., et al., 2023. Calculation of the stable Poynting vector using the first-order temporal derivative of the seismic wavefield. Geophysics 88 (1), S17-S25. https://doi.org/10.1190/geo2021-0736.1.

 

Liu, Q., 2019. Dip-angle image gather computation using the Poynting vector in elastic reverse time migration and their application for noise suppression. Geophysics 84 (3), S159-S169. https://doi.org/10.1190/geo2018-0229.1.

 

Liu, R., Qin, N., Yin, X., 2017. ADCIGs extraction and reflection tomography modeling for elastic wave. J. Appl. Geophys. 143, 203-211. https://doi.org/10.1016/j.jappgeo.2017.04.006.

 

Liu, S.Y., Wang, H.Z., Liu, T.C., et al., 2015. Kirchhoff PSDM angle-gather generation based on the traveltime gradient. Appl. Geophys. 12 (1), 64-72. https://doi.org/10.1007/s11770-014-0470-8.

 
Luo, M., Lu, R., Winbow, G., et al., 2010. A comparison of methods for obtaining local image gathers in depth migration. In: 80th Annual International Meeting, SEG, Expanded Abstracts, pp. 3247-3251. https://doi.org/10.1190/1.3513522.
 
McGarry, R., Qin, Y., 2013. Direction-vector-based angle gathers from anisotropic elastic RTM. In: 83th Annual International Meeting, SEG, Expanded Abstracts, pp. 3820-3824. https://doi.org/10.1190/segam2013-0949.1.
 

Moradi, S., Innanen, K.A., 2017. Born scattering and inversion sensitivities in viscoelastic transversely isotropic media. Geophys. J. Int. 211 (2), 1177-1188. https://doi.org/10.1093/gji/ggx363.

 
Mosher, C.C., Foster, D.J., Hassanzadeh, S., 1997. Common angle imaging with offset plane waves. In: 67th Annual International Meeting, SEG, Expanded Abstracts, pp. 1379-1382. https://doi.org/10.1190/1.1885663.
 

Robertsson, J.O., Blanch, J.O., Symes, W.W., 1994. Viscoelastic finite-difference modeling. Geophysics 59 (9), 1444-1456. https://doi.org/10.1190/1.1443701.

 

Sava, P.C., Fomel, S., 2003. Angle-domain common-image gathers by wavefield continuation methods. Geophysics 68 (3), 1065-1074. https://doi.org/10.1190/1.1581078.

 

Sava, P., Biondi, B., 2004. Wave-equation migration velocity analysis. I. Theory. Geophys. Prospect. 52 (6), 593-606. https://doi.org/10.1111/j.1365-2478.2004.00447.x.

 

Song, G., Zhang, X., Wang, Z., et al., 2020. The asymptotic local finite-difference method of the fractional wave equation and its viscous seismic wavefield simulation. Geophysics 85 (3), T179-T189. https://doi.org/10.1190/geo2019-0066.1.

 
Soubaras, R., 2003. Angle gathers for shot-record migration by local harmonic decomposition. In: 73th Annual International Meeting, SEG, Expanded Abstracts, pp. 889-892. https://doi.org/10.1190/1.1818083.
 

Sun, C., Qiao, Z., Wu, D., et al., 2017. Modeling of wave equation with fractional derivative using optimal finite-difference method in constant-Q attenuation media. Acta Seismol. Sin. 39 (3), 343-355. https://doi.org/10.11939/jass.2017.03.004.

 

Sun, J., Zhu, T., 2018. Strategies for stable attenuation compensation in reverse-time migration. Geophys. Prospect. 66 (3), 498-511. https://doi.org/10.1111/1365-2478.12579.

 

Sun, J., Zhu, T., Fomel, S., 2015. Viscoacoustic modeling and imaging using low-rank approximation. Geophysics 80 (5), A103-A108. https://doi.org/10.1190/geo2015-0083.1.

 

Sun, R., McMechan, G.A., Hsiao, H.H., et al., 2004. Separating P-and S-waves in prestack 3D elastic seismograms using divergence and curl. Geophysics 69 (1), 286-297. https://doi.org/10.1190/1.1649396.

 

Symes, W.W., 2007. Reverse time migration with optimal checkpointing. Geophysics 72 (5), SM213-SM221. https://doi.org/10.1190/1.2742686.

 

Tang, C., McMechan, G.A., 2016. Multidirectional slowness vector for computing angle gathers from reverse time migration. Geophysics 81 (2), S55-S68. https://doi.org/10.1190/geo2015-0134.1.

 

Tang, C., McMechan, G.A., Wang, D., 2017. Two algorithms to stabilize multidirectional Poynting vectors for calculating angle gathers from reverse time migration. Geophysics 82 (2), S129-S141. https://doi.org/10.1190/geo2016-0101.1.

 
Vyas, M., Du, X., Mobley, E., et al., 2011a. Methods for computing angle gathers using RTM. In: 73rd Annual International Conference and Exhibition, EAGE. Extended Abstracts. https://doi.org/10.3997/2214-4609.201701153.
 
Vyas, M., Nichols, D., Mobley, E., 2011b. Efficient RTM angle gathers using source directions. In: 81th Annual International Meeting, SEG, Expanded Abstracts, pp. 3104-3108. https://doi.org/10.1190/1.3627840.
 

Wang, B.L., Gao, J.H., Chen, W.C., et al., 2013. Extracting efficiently angle gathers using Poynting vector during reverse time migration. Chin. J. Geophys. 56 (1), 262-268. https://doi.org/10.6038/cjg20130127.

 

Wang, N., Zhou, H., Chen, H., et al., 2018a. A constant fractional-order viscoelastic wave equation and its numerical simulation scheme. Geophysics 83 (1), T39-T48. https://doi.org/10.1190/geo2016-0609.1.

 

Wang, W., McMechan, G.A., Zhang, Q., 2015. Comparison of two algorithms for isotropic elastic P and S vector decomposition. Geophysics 80 (4), T147-T160. https://doi.org/10.1190/geo2014-0563.1.

 
Wang, Y.F., Zhou, H., Zhang, Q.C., et al., 2017a. Wavefield reconstruction in attenuating media using time-reversal checkpointing and k-space filtering. In: 79th Annual International Conference and Exhibition, EAGE. Extended Abstracts. https://doi.org/10.3997/2214-4609.201701152.
 
Wang, Y.F., Zhou, H., Zhao, X.Z., et al., 2017b. The k-space Green's functions for decoupled constant-Q wave equation and its adjoint equation. In: 79th Annual International Conference and Exhibition, EAGE. Extended Abstracts. https://doi.org/10.3997/2214-4609.201701153.
 

Wang, Y., Harris, J.M., Bai, M., et al., 2022. An explicit stabilization scheme for Q-compensated reverse time migration. Geophysics 87 (3), F25-F40. https://doi.org/10.1190/geo2021-0134.1.

 

Wang, Y., Zhou, H., Chen, H., et al., 2018b. Adaptive stabilization for Q-compensated reverse time migration. Geophysics 83 (1), S15-S32. https://doi.org/10.1190/geo2017-0244.1.

 

Wang, Y., Zhou, H., Zhao, X., et al., 2019. Q-compensated viscoelastic reverse time migration using mode-dependent adaptive stabilization scheme. Geophysics 84 (4), S301-S315. https://doi.org/10.1190/geo2018-0423.1.

 

Wu, B., Yang, H., Sun, W., et al., 2018. Common offset 3D prestack seismic data anti-aliasing beamforming, migration and imaging. Chin. J. Geophys. 61 (8), 3297-3309. https://doi.org/10.6038/cjg2018L0784.

 

Xiao, X., Leaney, W.S., 2010. Local vertical seismic profiling (VSP) elastic reverse-time migration and migration resolution: salt-flank imaging with transmitted P-to-S waves. Geophysics 75 (2), S35-S49. https://doi.org/10.1190/1.3309460.

 
Xie, Y., Sun, J., Zhang, Y., et al., 2015. Compensating for visco-acoustic effects in TTI reverse time migration. In: 85th Annual International Meeting, SEG, Expanded Abstracts, pp. 3996-4001. https://doi.org/10.1190/segam2015-5855445.1.
 

Xing, G., Zhu, T., 2019. Modeling frequency-independent Q viscoacoustic wave propagation in heterogeneous media. J. Geophys. Res. Solid Earth 124 (11), 11568-11584. https://doi.org/10.1029/2019JB017985.

 

Xu, S., Zhang, Y., Tang, B., 2011. 3D angle gathers from reverse time migration. Geophysics 76 (2), S77-S92. https://doi.org/10.1190/1.3536527.

 
Yan, J., Ross, W., 2013. Improving the stability of angle gather computation using Poynting vectors. In: 83th Annual International Meeting, SEG, Expanded Abstracts, pp. 3784-3788. https://doi.org/10.1190/segam2013-0632.1.
 

Yang, K., Wang, X., Zhang, J., 2022. Elastic reverse time migration angle gathers using a stabilized Poynting vector without zero points within the wave propagation ranges. Geophysics 87 (3), S137-S150. https://doi.org/10.1190/geo2021-0415.1.

 

Yang, P., Brossier, R., Métivier, L., et al., 2016. Wavefield reconstruction in attenuating media: a checkpointing-assisted reverse-forward simulation method. Geophysics 81 (6), R349-R362. https://doi.org/10.1190/geo2016-0082.1.

 

Yoon, K., Marfurt, K.J., 2006. Reverse-time migration using the Poynting vector. Explor. Geophys. 37 (1), 102-107. https://doi.org/10.1071/EG06102.

 
Yoon, K., 2017. Reverse time migration angle gathers using Poynting vector and pseudospectral method. In: 87th Annual International Meeting, SEG, Expanded Abstracts, pp. 4630-4634. https://doi.org/10.1190/segam2017-17749395.1.
 
Yoon, K., Guo, M., Cai, J., et al., 2011. 3D RTM angle gathers from source wave propagation direction and dip of reflector. In: 81th Annual International Meeting, SEG, Expanded Abstracts, pp. 1057-1060. https://doi.org/10.1190/1.3627847.
 
Yoon, K., Marfurt, K.J., Starr, W., 2004. Challenges in reverse-time migration. In: 74th Annual International Meeting, SEG, Expanded Abstracts, p. 1507. https://doi.org/10.1190/1.1851068, 1060.
 
Zhang, Q., 2014. RTM angle gathers and specular filter (SF) RTM using optical flow. In: 84th Annual International Meeting, SEG, Expanded Abstracts, pp. 3816-3820. https://doi.org/10.1190/segam2014-0792.1.
 

Zhang, Q., McMechan, G.A., 2011a. Common-image gathers in the incident phase-angle domain from reverse time migration in 2D elastic VTI media. Geophysics 76 (6), S197-S206. https://doi.org/10.1190/geo2011-0015.1.

 

Zhang, Q., McMechan, G.A., 2011b. Direct vector-field method to obtain angle-domain common-image gathers from isotropic acoustic and elastic reverse-time migration. Geophysics 76 (5), WB135-WB149. https://doi.org/10.1190/geo2010-0314.1.

 

Zhang, Q., McMechan, G.A., 2010. 2D and 3D elastic wavefield vector decomposition in the wavenumber domain for VTI media. Geophysics 75 (3), D13-D26. https://doi.org/10.1190/1.3431045.

 

Zhang, Q., McMechan, G.A., 2013. Polarization-based wave-equation migration velocity analysis in acoustic media. Geophysics 78 (6), U77-U88. https://doi.org/10.1190/geo2012-0428.1.

 

Zhang, Y., Liu, Y., Xu, S., 2020. Arbitrary-order Taylor series expansion-based viscoacoustic wavefield simulation in 3D vertical transversely isotropic media. Geophys. Prospect. 68 (8), 2379-2399. https://doi.org/10.1111/1365-2478.12999.

 

Zhang, Y., Xu, S., Tang, B., et al., 2010. Angle gathers from reverse time migration. Lead. Edge 29 (11), 1364-1371. https://doi.org/10.1190/1.3517308.

 

Zhao, X., Zhou, H., Wang, Y., et al., 2018. A stable approach for Q-compensated viscoelastic reverse time migration using excitation amplitude imaging condition. Geophysics 83 (5), S459-S476. https://doi.org/10.1190/geo2018-0222.1.

 
Zhou, C., Jiao, J., Lin, S., et al., 2011. Multi-parameter joint tomography for anisotropic model building. In: 73rd Annual International Conference and Exhibition, EAGE. Extended Abstracts. https://doi.org/10.3997/2214-4609.20149473.
 

Zhu, H., 2017. Elastic wavefield separation based on the Helmholtz decomposition. Geophysics 82 (2), S173-S183. https://doi.org/10.1190/geo2016-0419.1.

 

Zhu, T., 2017. Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent Q wave equation. Geophysics 82 (4), WA1-WA10. https://doi.org/10.1190/geo2016-0635.1.

 

Zhu, T., Carcione, J.M., 2014. Theory and modelling of constant-Q P-and S-waves using fractional spatial derivatives. Geophys. J. Int. 196 (3), 1787-1795. https://doi.org/10.1093/gji/ggt483.

 

Zhu, T., Harris, J.M., 2014. Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics 79 (3), T105-T116. https://doi.org/10.1190/geo2013-0245.1.

 

Zhu, T., Harris, J.M., Biondi, B., 2014. Q-compensated reverse-time migration. Geophysics 79 (3), S77-S87. https://doi.org/10.1190/geo2013-0344.1.

Petroleum Science
Pages 4052-4066
Cite this article:
Tian W-B, Liu Y, Ma J-T. Extraction of ADCIGs in viscoelastic media based on fractional viscoelastic equations. Petroleum Science, 2024, 21(6): 4052-4066. https://doi.org/10.1016/j.petsci.2024.09.027
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return