Angle domain common imaging gathers (ADCIGs) serve as not only an ideal approach for tomographic velocity modeling but also as a crucial means of mitigating low-frequency noise. Thus, they play a significant role in seismic data processing. Recently, the Poynting vector method, due to its lower computational requirements and higher resolution, has become a commonly used approach for obtaining ADCIGs. However, due to the viscoelastic properties of underground media, attenuation effects (phase dispersion and amplitude attenuation) have become a factor, which is important in seismic data processing. However, the primary applications of ADCIGs are currently confined to acoustic and elastic media. To assess the influence of attenuation and elastic effects on ADCIGs, we introduce an extraction method for ADCIGs based on fractional viscoelastic equations. This method enhances ADCIGs accuracy by simultaneously considering both the attenuation and elastic properties of underground media. Meanwhile, the S-wave quasi tensor is used to reduce the impact of P-wave energy on S-wave stress, thus further increasing the accuracy of PS-ADCIGs. In conclusion, our analysis examines the impact of the quality factor Q on ADCIGs and offers theoretical guidance for parameter inversion.
Biondi, B., 2007. Angle-domain common-image gathers from anisotropic migration. Geophysics 72 (2), S81-S91. https://doi.org/10.1190/1.2430561.
Biondi, B., Symes, W.W., 2004. Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging. Geophysics 69 (5), 1283-1298. https://doi.org/10.1190/1.1801945.
Biondi, B., Tisserant, T., 2004. 3D angle-domain common-image gathers for migration velocityanalysis. Geophys. Prospect. 52 (6), 575-591. https://doi.org/10.1111/j.1365-2478.2004.00444.x.
Carcione, J.M., Cavallini, F., Mainardi, F., et al., 2002. Time-domain modeling of constant-Q seismic waves using fractional derivatives. Pure. Appl. Geophys. 159, 1719-1736. https://doi.org/10.1007/s00024-002-8705-z.
Chang, W.F., McMechan, G.A., 1986. Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition. Geophysics 51, 67-84. https://doi.org/10.1190/1.1442041.
Chang, W.F., McMechan, G.A., 1987. Elastic reverse-time migration. Geophysics 52 (10), 1365-1375. https://doi.org/10.1190/1.1442249.
Chen, H., Zhang, L., Zhou, H., 2023. Fractional laplacians viscoelastic wave equation low-rank temporal extrapolation. Front. Earth Sci. 10, 1044823. https://doi.org/10.3389/feart.2022.1044823.
Chen, H., Zhou, H., Li, Q., et al., 2016. Two efficient modeling schemes for fractional Laplacian viscoacoustic wave equation. Geophysics 81 (5), T233-T249. https://doi.org/10.1190/geo2015-0660.1.
Chen, P., Villa, U., Ghattas, O., 2019. Taylor approximation and variance reduction for PDE-constrained optimal control under uncertainty. J. Comput. Phys. 385, 163-186. https://doi.org/10.1016/j.jcp.2019.01.047.
Chen, W., Holm, S., 2004. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115 (4), 1424-1430. https://doi.org/10.1121/1.1646399.
Dafni, R., Symes, W.W., 2016. Kinematic artifacts in the subsurface-offset extended image and their elimination by a dip-domain specularity filter. Geophysics 81 (6), S477-S495. https://doi.org/10.1190/geo2016-0115.1.
Deng, F., McMechan, G.A., 2008. Viscoelastic true-amplitude prestack reverse-time depth migration. Geophysics 73 (4), S143-S155. https://doi.org/10.1190/1.2938083.
Du, Q., Guo, C., Zhao, Q., et al., 2017. Vector-based elastic reverse time migration based on scalar imaging condition. Geophysics 82 (2), S111-S127. https://doi.org/10.1190/geo2016-0146.1.
Du, Q., Zhu, Y., Ba, J., 2012. Polarity reversal correction for elastic reverse time migration. Geophysics 77 (2), S31-S41. https://doi.org/10.1190/geo2011-0348.1.
Gong, T., Nguyen, B.D., McMechan, G.A., 2016. Polarized wavefield magnitudes with optical flow for elastic angle-domain common-image gathers. Geophysics 81 (4), S239-S251. https://doi.org/10.1190/geo2011-0348.1.
Guo, P., McMechan, G.A., Guan, H., 2016. Comparison of two viscoacoustic propagators for Q-compensated reverse time migration. Geophysics 81 (5), S281-S297. https://doi.org/10.1190/geo2015-0557.1.
Hao, Q., Greenhalgh, S., 2019. The generalized standard-linear-solid model and the corresponding viscoacoustic wave equations revisited. Geophys. J. Int. 219 (3), 1939-1947. https://doi.org/10.1093/gji/ggz407.
Hu, J., Wang, H., Wang, X., 2016. Angle gathers from reverse time migration using analytic wavefield propagation and decomposition in the time domain. Geophysics 81 (1), S1-S9. https://doi.org/10.1190/geo2015-0050.1.
Hu, T., Liu, H., Guo, X., et al., 2019. Analysis of direction-decomposed and vector-based elastic reverse time migration using the Hilbert transform. Geophysics 84 (6), S599-S617. https://doi.org/10.1190/geo2018-0324.1.
Jin, H., McMechan, G.A., Guan, H., 2014. Comparison of methods for extracting ADCIGs from RTM. Geophysics 79 (3), S89-S103. https://doi.org/10.1190/geo2013-0336.1.
Jin, H., McMechan, G.A., Nguyen, B., 2015. Improving input/output performance in 2D and 3D angle-domain common-image gathers from reverse time migration. Geophysics 80 (2), S65-S77. https://doi.org/10.1190/geo2014-0209.1.
Koren, Z., Ravve, I., Gonzalez, G., et al., 2008. Anisotropic local tomography. Geophysics 73 (5), VE75-VE92. https://doi.org/10.1190/1.2953979.
Li, F., Gao, J., Gao, Z., et al., 2021. Angle domain common image gathers from reverse time migration by combining the Poynting vector with directional decomposition. Geophys. Prospect. 69 (4), 799-820. https://doi.org/10.1111/1365-2478.13064.
Li, Q., Zhou, H., Zhang, Q., et al., 2016a. Efficient reverse time migration based on fractional Laplacian viscoacoustic wave equation. Geophys. J. Int. 204 (1), 488-504. https://doi.org/10.1093/gji/ggv456.
Li, Z., Ma, X., Fu, C., et al., 2016b. Wavefield separation and polarity reversal correction in elastic reverse time migration. J. Appl. Geophys. 127, 56-67. https://doi.org/10.1016/j.jappgeo.2016.02.012.
Li, Z., Wang, J., Ma, X., et al., 2023. Calculation of the stable Poynting vector using the first-order temporal derivative of the seismic wavefield. Geophysics 88 (1), S17-S25. https://doi.org/10.1190/geo2021-0736.1.
Liu, Q., 2019. Dip-angle image gather computation using the Poynting vector in elastic reverse time migration and their application for noise suppression. Geophysics 84 (3), S159-S169. https://doi.org/10.1190/geo2018-0229.1.
Liu, R., Qin, N., Yin, X., 2017. ADCIGs extraction and reflection tomography modeling for elastic wave. J. Appl. Geophys. 143, 203-211. https://doi.org/10.1016/j.jappgeo.2017.04.006.
Liu, S.Y., Wang, H.Z., Liu, T.C., et al., 2015. Kirchhoff PSDM angle-gather generation based on the traveltime gradient. Appl. Geophys. 12 (1), 64-72. https://doi.org/10.1007/s11770-014-0470-8.
Moradi, S., Innanen, K.A., 2017. Born scattering and inversion sensitivities in viscoelastic transversely isotropic media. Geophys. J. Int. 211 (2), 1177-1188. https://doi.org/10.1093/gji/ggx363.
Robertsson, J.O., Blanch, J.O., Symes, W.W., 1994. Viscoelastic finite-difference modeling. Geophysics 59 (9), 1444-1456. https://doi.org/10.1190/1.1443701.
Sava, P.C., Fomel, S., 2003. Angle-domain common-image gathers by wavefield continuation methods. Geophysics 68 (3), 1065-1074. https://doi.org/10.1190/1.1581078.
Sava, P., Biondi, B., 2004. Wave-equation migration velocity analysis. I. Theory. Geophys. Prospect. 52 (6), 593-606. https://doi.org/10.1111/j.1365-2478.2004.00447.x.
Song, G., Zhang, X., Wang, Z., et al., 2020. The asymptotic local finite-difference method of the fractional wave equation and its viscous seismic wavefield simulation. Geophysics 85 (3), T179-T189. https://doi.org/10.1190/geo2019-0066.1.
Sun, C., Qiao, Z., Wu, D., et al., 2017. Modeling of wave equation with fractional derivative using optimal finite-difference method in constant-Q attenuation media. Acta Seismol. Sin. 39 (3), 343-355. https://doi.org/10.11939/jass.2017.03.004.
Sun, J., Zhu, T., 2018. Strategies for stable attenuation compensation in reverse-time migration. Geophys. Prospect. 66 (3), 498-511. https://doi.org/10.1111/1365-2478.12579.
Sun, J., Zhu, T., Fomel, S., 2015. Viscoacoustic modeling and imaging using low-rank approximation. Geophysics 80 (5), A103-A108. https://doi.org/10.1190/geo2015-0083.1.
Sun, R., McMechan, G.A., Hsiao, H.H., et al., 2004. Separating P-and S-waves in prestack 3D elastic seismograms using divergence and curl. Geophysics 69 (1), 286-297. https://doi.org/10.1190/1.1649396.
Symes, W.W., 2007. Reverse time migration with optimal checkpointing. Geophysics 72 (5), SM213-SM221. https://doi.org/10.1190/1.2742686.
Tang, C., McMechan, G.A., 2016. Multidirectional slowness vector for computing angle gathers from reverse time migration. Geophysics 81 (2), S55-S68. https://doi.org/10.1190/geo2015-0134.1.
Tang, C., McMechan, G.A., Wang, D., 2017. Two algorithms to stabilize multidirectional Poynting vectors for calculating angle gathers from reverse time migration. Geophysics 82 (2), S129-S141. https://doi.org/10.1190/geo2016-0101.1.
Wang, B.L., Gao, J.H., Chen, W.C., et al., 2013. Extracting efficiently angle gathers using Poynting vector during reverse time migration. Chin. J. Geophys. 56 (1), 262-268. https://doi.org/10.6038/cjg20130127.
Wang, N., Zhou, H., Chen, H., et al., 2018a. A constant fractional-order viscoelastic wave equation and its numerical simulation scheme. Geophysics 83 (1), T39-T48. https://doi.org/10.1190/geo2016-0609.1.
Wang, W., McMechan, G.A., Zhang, Q., 2015. Comparison of two algorithms for isotropic elastic P and S vector decomposition. Geophysics 80 (4), T147-T160. https://doi.org/10.1190/geo2014-0563.1.
Wang, Y., Harris, J.M., Bai, M., et al., 2022. An explicit stabilization scheme for Q-compensated reverse time migration. Geophysics 87 (3), F25-F40. https://doi.org/10.1190/geo2021-0134.1.
Wang, Y., Zhou, H., Chen, H., et al., 2018b. Adaptive stabilization for Q-compensated reverse time migration. Geophysics 83 (1), S15-S32. https://doi.org/10.1190/geo2017-0244.1.
Wang, Y., Zhou, H., Zhao, X., et al., 2019. Q-compensated viscoelastic reverse time migration using mode-dependent adaptive stabilization scheme. Geophysics 84 (4), S301-S315. https://doi.org/10.1190/geo2018-0423.1.
Wu, B., Yang, H., Sun, W., et al., 2018. Common offset 3D prestack seismic data anti-aliasing beamforming, migration and imaging. Chin. J. Geophys. 61 (8), 3297-3309. https://doi.org/10.6038/cjg2018L0784.
Xiao, X., Leaney, W.S., 2010. Local vertical seismic profiling (VSP) elastic reverse-time migration and migration resolution: salt-flank imaging with transmitted P-to-S waves. Geophysics 75 (2), S35-S49. https://doi.org/10.1190/1.3309460.
Xing, G., Zhu, T., 2019. Modeling frequency-independent Q viscoacoustic wave propagation in heterogeneous media. J. Geophys. Res. Solid Earth 124 (11), 11568-11584. https://doi.org/10.1029/2019JB017985.
Xu, S., Zhang, Y., Tang, B., 2011. 3D angle gathers from reverse time migration. Geophysics 76 (2), S77-S92. https://doi.org/10.1190/1.3536527.
Yang, K., Wang, X., Zhang, J., 2022. Elastic reverse time migration angle gathers using a stabilized Poynting vector without zero points within the wave propagation ranges. Geophysics 87 (3), S137-S150. https://doi.org/10.1190/geo2021-0415.1.
Yang, P., Brossier, R., Métivier, L., et al., 2016. Wavefield reconstruction in attenuating media: a checkpointing-assisted reverse-forward simulation method. Geophysics 81 (6), R349-R362. https://doi.org/10.1190/geo2016-0082.1.
Yoon, K., Marfurt, K.J., 2006. Reverse-time migration using the Poynting vector. Explor. Geophys. 37 (1), 102-107. https://doi.org/10.1071/EG06102.
Zhang, Q., McMechan, G.A., 2011a. Common-image gathers in the incident phase-angle domain from reverse time migration in 2D elastic VTI media. Geophysics 76 (6), S197-S206. https://doi.org/10.1190/geo2011-0015.1.
Zhang, Q., McMechan, G.A., 2011b. Direct vector-field method to obtain angle-domain common-image gathers from isotropic acoustic and elastic reverse-time migration. Geophysics 76 (5), WB135-WB149. https://doi.org/10.1190/geo2010-0314.1.
Zhang, Q., McMechan, G.A., 2010. 2D and 3D elastic wavefield vector decomposition in the wavenumber domain for VTI media. Geophysics 75 (3), D13-D26. https://doi.org/10.1190/1.3431045.
Zhang, Q., McMechan, G.A., 2013. Polarization-based wave-equation migration velocity analysis in acoustic media. Geophysics 78 (6), U77-U88. https://doi.org/10.1190/geo2012-0428.1.
Zhang, Y., Liu, Y., Xu, S., 2020. Arbitrary-order Taylor series expansion-based viscoacoustic wavefield simulation in 3D vertical transversely isotropic media. Geophys. Prospect. 68 (8), 2379-2399. https://doi.org/10.1111/1365-2478.12999.
Zhang, Y., Xu, S., Tang, B., et al., 2010. Angle gathers from reverse time migration. Lead. Edge 29 (11), 1364-1371. https://doi.org/10.1190/1.3517308.
Zhao, X., Zhou, H., Wang, Y., et al., 2018. A stable approach for Q-compensated viscoelastic reverse time migration using excitation amplitude imaging condition. Geophysics 83 (5), S459-S476. https://doi.org/10.1190/geo2018-0222.1.
Zhu, H., 2017. Elastic wavefield separation based on the Helmholtz decomposition. Geophysics 82 (2), S173-S183. https://doi.org/10.1190/geo2016-0419.1.
Zhu, T., 2017. Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent Q wave equation. Geophysics 82 (4), WA1-WA10. https://doi.org/10.1190/geo2016-0635.1.
Zhu, T., Carcione, J.M., 2014. Theory and modelling of constant-Q P-and S-waves using fractional spatial derivatives. Geophys. J. Int. 196 (3), 1787-1795. https://doi.org/10.1093/gji/ggt483.
Zhu, T., Harris, J.M., 2014. Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics 79 (3), T105-T116. https://doi.org/10.1190/geo2013-0245.1.
Zhu, T., Harris, J.M., Biondi, B., 2014. Q-compensated reverse-time migration. Geophysics 79 (3), S77-S87. https://doi.org/10.1190/geo2013-0344.1.