PDF (8.1 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Original Paper | Open Access

Sub-lacustrine debrite system: Facies architecture and sediment distribution pattern

Jian-Ping Liua,bBen-Zhong Xianc,d()Xian-Feng Tana,b()Zhen WangeJun-Hui Wangc,dLong Luoa,bPeng ChenfYan-Xin HegRong-Heng Tianc,dQian-Ran Wuc,dJia Wanga,bJin LihLong ChenaWen-Yi PengaYi-Man ZhouaQuan-Feng Jianga
School of Petroleum Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
Chongqing Key Laboratory of Complex Oil and Gas Field Exploration and Development, Chongqing University of Science and Technology, Chongqing, 401331, China
National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing, 102249, China
College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
Jidong Oilfield of CNPC, Tangshan, Hebei, 063000, China
School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing, 100083, China
School of Earth and Space Sciences, Peking University, Beijing, 100871, China
Petroleum Exploration & Production Research Institute, SINOPEC, Beijing, 102206, China

Edited by Teng Zhu

Show Author Information

Abstract

The deep-water systems in different types of sedimentary basins exhibit significant variability. Current knowledge of deep-water deposition is mainly derived from deep-marine turbidite systems. However, the characteristics and differences of sub-lacustrine gravity flow deposition systems have been a research focus in the fields of sedimentology and petroleum geology. This study investigates the facies architecture, depositional processes, and sediment distribution patterns of a sub-lacustrine debrite system in the Eocene Dongying Rift of the Bohai Bay Basin, China, through the analysis of integrated core data, 3-D seismic data, and well-log data. Nine facies have been identified within the debrite system, representing various depositional processes such as sandy debris flow, muddy debris flow, turbidity currents, sandy slide, sandy slide/slump, and mud flow. Our research indicates that the sub-lacustrine system is primarily influenced by debris flow rather than turbidity currents, as supported by facies quantification, interpretation, and flow rheology analysis. Additionally, we have identified five basic facies building blocks in debrite systems, including slide masses, slump masses, debrite channels, debrite lobes, and turbidite sheets. We have also elucidated and proposed detailed sedimentary processes, flow transport, and transformation within the sub-lacustrine system through analysis of flow origins, facies sequences, and distribution characteristics. Our findings highlight the evolutionary progression from delta-front collapse to sandy slide/slump, sandy debris flow, and finally muddy debris flow. The efficient generation of turbidity currents from parental landslides on sand-prone slopes is deemed unlikely due to rift-basin morphology and transport distances. The formation of the five basic facies building blocks is closely linked to depositional processes and dominant flow types. Consequently, we present a deep-water depositional model for sub-lacustrine debrite systems, focusing on flow dynamics, sediment distribution patterns, and basin morphology within deep lacustrine rifts. This model offers valuable insights into the variability of deep-water deposition in diverse basin settings and aids in predicting lithologic reservoirs during deep-water hydrocarbon exploration.

References

 

Allen, J.R.L., 1971. Mixing at turbidity current heads, and its geological implications. J. Sediment. Res. 41, 97-113. https://doi.org/10.1306/74D721F8-2B21-11D7-8648000102C1865D.

 

Amy, L.A., Talling, P.J., Peakall, J., Wynn, R.B., Thynne, R.A., 2005. Bed geometry used to test recognition criteria of turbidites and (sandy) debrites. Sediment. Geol. 179, 163-174. https://doi.org/10.1016/j.sedgeo.2005.04.007.

 

Bailey, L.P., Clare, M.A., Rosenberger, K.J., Cartigny, M.J.B., Talling, P.J., Paull, C.K., Gwiazda, R., Parsons, D.R., Simmons, S.M., Xu, J., Haigh, I.D., Maier, K.L., McGann, M., Lundsten, E., 2021. Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers. Earth Planet Sc Lett 562, 116845. https://doi.org/10.1016/j.epsl.2021.116845.

 
Bouma, A.H., 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, p. 168.
 

Calves, G., Huuse, M., Clift, P.D., Brusset, S., 2015. Giant fossil mass wasting off the coast of West India: the Nataraja submarine slide. Earth Planet Sc Lett 432, 265-272. https://doi.org/10.1016/j.epsl.2015.10.022.

 

Cao, Y.C., Wang, Y.Z., Gluyas, J.G., Liu, H.M., Liu, H.N., Song, M.S., 2018. Depositional model for lacustrine nearshore subaqueous fans in a rift basin: the Eocene Shahejie Formation, dongying sag, Bohai Bay Basin, China. Sedimentology 65, 2117-2148. https://doi.org/10.1111/sed.12459.

 

Cao, Y.C., Jin, J.H., Liu, H.N., Yang, T., Liu, K.Y., Wang, Y.Z., Wang, J., Liang, C., 2021. Deep-water gravity flow deposits in a lacustrine rift basin and their oil and gas geological significance in eastern China. Petrol. Explor. Dev. 48, 286-298. https://doi.org/10.1016/S1876-3804(21)60023-X.

 

Chen, P., Xian, B.Z., Li, M.J., Liang, X.W., Wu, Q.R., Zhang, W.M., Wang, J.H., Wang, Z., Liu, J.P., 2021. A giant lacustrine flood-related turbidite system in the Triassic Ordos Basin, China: sedimentary processes and depositional architecture. Sedimentology 68, 3279-3306. https://doi.org/10.1111/sed.12891.

 

Chen, P., Xian, B.Z., Li, M.J., Fang, L.H., Rahman, N.U., Liu, J.P., Chen, S.R., Tian, R.H., Wu, Q.R., 2023. Intensified lacustrine turbidite deposition as a response to the carnian pluvial episode: insights from the triassic ordos basin in north China plate. Palaeogeogr Palaeocl 111599. https://doi.org/10.1016/j.palaeo.2023.111599.

 
Coleman, J.M., Prior, D.B., 1982. Deltaic environments of deposition. In: Scholle, P.A., Spearing, D. (Eds.), Sandstone Depositional Environments, vol. 31. AAPG Mere., pp. 139−178
 
Costa, J.E., Williams, G.P., 1984. Debris-flow Dynamics (Videotape), 84-606. USGS Open-File, 22.5min.
 
Coussot, P., 2017. Mudflow rheology and dynamics. Routledge.
 

Coussot, P., Meunier, M., 1996. Recognition, classification and mechanical description of debris flows. Earth Sci. Rev. 40, 209-227. https://doi.org/10.1016/0012-8252(95)00065-8.

 

Cronin, B., Owen, D., Hartley, A., Kneller, B., 1998. Slumps, debris flows and sandy deep-water channel systems: implications for the application of sequence stratigraphy to deep water clastic sediments. J Geol Soc London 155, 429-432. https://doi.org/10.1144/gsjgs.155.3.0429.

 
Cronin, B.T., Çelik, H., Hurst, A., Turkmen, I., 2005. Mud Prone Entrenched DeepWater Slope Channel Complexes from the Eocene of Eastern Turkey, vol. 244. Geological Society, London, Special Publications, pp. 155-180. https://doi.org/10.1144/GSL.SP.2005.244.01.1.
 

Dasgupta, P., 2003. Sediment gravity flow-the conceptual problems. Earth Sci. Rev. 62, 265-281. https://doi.org/10.1016/S0012-8252(02)00160-5.

 

Dodd, T.J., McCarthy, D.J., Amy, L., Plenderleith, G.E., Clarke, S.M., 2022. Hybrid event bed character and distribution in the context of ancient deep-lacustrine fan models. Sedimentology 69 (4), 1891-1926. https://doi.org/10.1111/sed.12979.

 

Dott, Jr.R.H., 1963. Dynamics of subaqueous gravity depositional processes. AAPG Bull. 47, 104-128. https://doi.org/10.1306/BC743973-16BE-11D7-8645000102C1865D.

 

Ducassou, E., Fournier, L., Sierro, F.J., Zarikian, C.A., Lofi, J., Flores, J.A., Roque, C., 2016. Origin of the large Pliocene and Pleistocene debris flows on the Algarve margin. Mar. Geol. 377, 58-76. https://doi.org/10.1016/j.margeo.2015.08.018.

 

Elverhøi, A., Norem, H., Andersen, E.S., Dowdeswell, J.A., Fossen, I., Haflidason, H., Kenyon, N.H., Laberg, J.S., King, E.L., Sejrup, H.P., Solheim, A., Vorren, T., 1997. On the origin and flow behavior of submarine slides on deep-sea fans along the Norwegian-Barents Sea continental margin. Geo Mar. Lett. 17, 119-125. https://doi.org/10.1007/s003670050016.

 

Enos, P., 1977. Flow regimes in debris flow. Sedimentology 24, 133-142. https://doi.org/10.1111/j.1365-3091.1977.tb00123.x.

 

Falk, P.D., Dorsey, R.J., 1998. Rapid development of gravelly high-density turbidity currents in marine Gilbert-type fan deltas, Loreto Basin, Baja California Sur, Mexico. Sedimentology 45, 331-349. https://doi.org/10.1046/j.1365-3091.1998.0153e.x.

 

Felix, M., Peakall, J., 2006. Transformation of debris flows into turbidity currents: mechanisms inferred from laboratory experiments. Sedimentology 53, 107-123. https://doi.org/10.1111/j.1365-3091.2005.00757.x.

 

Felix, M., Leszczyński, S., Ślączka, A., Uchman, A., Amy, L., Peakall, J., 2009. Field expressions of the transformation of debris flows into turbidity currents, with examples from the Polish Carpathians and the French Maritime Alps. Mar. Petrol. Geol. 26, 2011-2020. https://doi.org/10.1016/j.marpetgeo.2009.02.014.

 

Feng, Y.L., Li, S.T., Lu, Y.C., 2013. Sequence stratigraphy and architectural variability in late Eocene lacustrine strata of the Dongying Rift, Bohai Bay Basin, eastern China. Sediment. Geol. 295, 1-26. https://doi.org/10.1016/j.sedgeo.2013.07.004.

 

Feng, Y.L., Jiang, S., Hu, S.Y., Li, S.T., Lin, C.S., Xie, X.N., 2016. Sequence stratigraphy and importance of syndepositional structural slope-break for architecture of Paleogene syn-rift lacustrine strata, Bohai Bay Basin, E. China. Mar. Petrol. Geol. 69, 183-204. https://doi.org/10.1016/j.marpetgeo.2015.10.013.

 

Fisher, R.V., 1971. Features of coarse-grained, high-concentration fluids and their deposits. J. Sediment. Res. 41, 916-927. https://doi.org/10.1306/74D723B5-2B21-11D7-8648000102C1865D.

 

Fisher, R.V., 1983. Flow transformations in sediment gravity flows. Geology 11, 273-274. https://doi.org/10.1130/0091-7613(1983)112.0.CO;2.

 

Galloway, W.E., 1998. Siliciclastic slope and base-of-slope depositional systems: component facies, stratigraphic architecture, and classification. AAPG Bull. 82, 569-595. https://doi.org/10.1306/1D9BC5BB-172D-11D7-8645000102C1865D.

 

Gardner, J.V., Mayer, L.A., Clarke, J.E.H., 2000. Morphology and processes in lake Tahoe (California-Nevada). GSA Bull 112, 736-746. https://doi.org/10.1130/0016-7606(2000)112<736:MAPILT>2.0.CO;2.

 

Gawthorpe, R.L., Leeder, M.R., 2000. Tectono-sedimentary evolution of active extensional basins. Basin Res. 12, 195-218. https://doi.org/10.1111/j.1365-2117.2000.00121.x.

 

Gee, M.J.R., Masson, D.G., Watts, A.B., Allen, P.A., 1999. The Saharan debris flow: an insight into the mechanics of long runout submarine debris flows. Sedimentology 46, 317-335. https://doi.org/10.1046/j.1365-3091.1999.00215.x.

 

Gong, C.L., Steel, R.J., Wang, Y.M., Lin, C.S., Olariu, C., 2016. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas. Earth Sci. Rev. 154, 72-101. https://doi.org/10.1016/j.earscirev.2015.12.003.

 
Hackbarth, C.J., Shaw, R.D., 1994. Morphology and stratigraphy of a mid-Pleistocene turbidite leveed channel from seismic, core and log data, northeastern Gulf of Mexico. In: Weimer, P., Bouma, A.H., Perkins, B.F. (Eds.), Submarine Fans and Turbidite Systems: Gulf Coast Society of the Society of Economic Paleontologists and Mineralogists Foundation, 15th Annual Research Conference, pp. 127-133. https://doi.org/10.5724/gcs.94.15.0137 .
 

Hampton, M.A., 1972. The role of subaqueous debris flow in generating turbidity currents. J. Sediment. Res. 42, 775-793. https://doi.org/10.1306/74D7262B-2B21-11D7-8648000102C1865D.

 

Hampton, M.A., 1975. Competence of fine-grained debris flows. J. Sediment. Res. 45, 834-844. https://doi.org/10.1306/212F6E5B-2B24-11D7-8648000102C1865D.

 

Hampton, M.A., Lee, H.J., Locat, J., 1996. Submarine landslides. Rev. Geophys. 34, 33-59. https://doi.org/10.1029/95RG03287.

 

Haughton, P.D., Barker, S.P., McCaffrey, W.D., 2003. ‘Linked’ debrites in sand-rich turbidite systems-origin and significance. Sedimentology 50, 459-482. https://doi.org/10.1046/j.1365-3091.2003.00560.x.

 

Haughton, P., Davis, C., McCaffrey, W., Barker, S., 2009. Hybrid sediment gravity flow deposits-classification, origin and significance. Mar. Petrol. Geol. 26, 1900-1918. https://doi.org/10.1016/j.marpetgeo.2009.02.012.

 

Heezen, B.C., Ewing, M., 1952. Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake. Am. J. Sci. 250, 849-873. https://doi.org/10.2475/ajs.250.12.849.

 

Hiscott, R.N., James, N.P., 1985. Carbonate debris flows, Cow Head Group, western Newfoundland. J. Sediment. Res. 55, 735-745. https://doi.org/10.1306/212F87D3-2B24-11D7-8648000102C1865D.

 

Hu, S.B., O'Sullivan, P.B., Raza, A., Kohn, B.P., 2001. Thermal history and tectonic subsidence of the Bohai Basin, northern China: a Cenozoic rifted and local pull-apart basin. Phys. Earth Planet. In. 126, 221-235. https://doi.org/10.1016/S0031-9201(01)00257-6.

 

Ito, M., 2008. Downfan transformation from turbidity currents to debris flows at a channel-to-lobe transitional zone: the lower Pleistocene Otadai Formation, Boso Peninsula, Japan. J. Sediment. Res. 78, 668-682. https://doi.org/10.2110/jsr.2008.076.

 

Iverson, R.M., 1997. The physics of debris flows. Rev. Geophys. 35, 245-296. https://doi.org/10.1029/97RG00426.

 

Jin, Q., Wang, R., Zhu, G.Y., Zheng, Y., Rong, Q.H., 2005. The lacustrine Liangjialou Fan in the Dongying Rift, eastern China: deep-water reservoir sandstones in a nonmarine rift basin. J. Petrol. Geol. 28, 397-411. https://doi.org/10.1111/j.1747-5457.2005.tb00090.x.

 
Johnson, A.M., 1970. Physical Processes in Geology: A Method for Interpretation of Natural Phenomena; Intrusions in Igneous Rocks, Fractures, and Folds. Flow of Debris and Ice. Freeman, Cooper, San Francisco, p. 577.
 
Johnson, A.M., 1984. Debris flow. In: Brunsden, D., Prior, D.B. (Eds.), Slope Instability. Wiley, Chichester, pp. 257e361.
 

Kane, I.A., Pontén, A.S., 2012. Submarine transitional flow deposits in the Paleogene Gulf of Mexico. Geology 40, 1119-1122. https://doi.org/10.1130/G33410.1.

 

Kane, I.A., Pontén, A.S., Vangdal, B., Eggenhuisen, J.T., Hodgson, D.M., Spychala, Y.T., 2017. The stratigraphic record and processes of turbidity current transformation across deep-marine lobes. Sedimentology 64, 1236-1273. https://doi.org/10.1111/sed.12346.

 

Kim, S.B., Chough, S.K., Chun, S.S., 1995. Bouldery deposits in the lowermost part of the Cretaceous Kyokpori Formation, SW Korea: cohesionless debris flows and debris falls on a steep-gradient delta slope. Sediment. Geol. 98, 97-119. https://doi.org/10.1016/0037-0738(95)00029-8.

 

Koo, W.M., Olariu, C., Steel, R.J., Olariu, M.I., Carvajal, C.R., Kim, W., 2016. Coupling between shelf-edge architecture and submarine-fan growth style in a supply-dominated margin. J. Sediment. Res. 86, 613-628. https://doi.org/10.2110/jsr.2016.42.

 

Kremer, K., Corella, J.P., Adatte, T., Garnier, E., Zenhäusern, G., Girardclos, S., 2015. Origin of turbidites in deep Lake Geneva (France-Switzerland) in the last 1500 years. J. Sediment. Res. 85, 1455-1465. https://doi.org/10.2110/jsr.2015.92.

 

Laberg, J.S., Vorren, T.O., 1995. Late Weichselian submarine debris flow deposits on the Bear Island Trough mouth fan. Mar. Geol. 127, 45-72. https://doi.org/10.1016/0025-3227(95)00055-4.

 
Lawton, T.F., 2019. Laramide sedimentary basins and sediment-dispersal systems. In: The sedimentary basins of the United States and Canada. Elsevier, pp. 529e557. https://doi.org/10.1016/B978-0-444-63895-3.00013-9.
 

Lee, S.H., Chough, S.K., Back, G.G., Kim, Y.B., Sung, B.S., 1999. Gradual downslope change in high-resolution acoustic characters and geometry of large-scale submarine debris lobes in Ulleung Basin, East Sea (Sea of Japan), Korea. Geo Mar. Lett. 19, 254-261. https://doi.org/10.1007/s003670050116.

 

Li, J., 1983. The main features of the mudflow in Jiang-Jia Ravine. Zeitsch Geomorphol 27, 325-341. https://doi.org/10.1127/zfg/27/1983/325.

 
Li, C.Y., 2005. Study on the Forming Mechanism of the Slumped Turbidite and the Controlling Sandbody Model of High Freqency Base-Level Cycle of Dongying Deltas. China University of Geoscience, Beijing), Beijing. Ph.D. Dissertation.
 

Li, S.J., Zheng, D.S., Jiang, Z.X., Hu, B., Wang, J.X., Jiao, Y.H., 2005. Water depth of palaeo-lacustrine basin recovered by dominance diversity of Ostracoda: an example from sedimentary period of the Member 3 of Shahejie Formation of Paleogene in Dongying sag, Shandong Province. J Palaeogeog 7, 399-404 (in Chinese).

 

Li, X.B., Yang, Z.L., Wang, J., Liu, H.Q., Chen, Q.L., Rong, W.Y., Liao, J.B., Li, Z.Y., 2016. Mud-coated intraclasts: a criterion for recognizing sandy mass-transport deposits-deep-lacustrine massive sandstone of the Upper Triassic Yanchang Formation, Ordos Basin, Central China. J. Asian Earth Sci. 129, 98-116. https://doi.org/10.1016/j.jseaes.2016.06.007.

 

Lin, C.S., Pan, Y.L., Xiao, J.X., Kong, F.X., Liu, J.Y., Zheng, H.R., 2000. Structural slope-break zone: Key concept for stratigraphic sequence analysis and petroleum forecasting in fault subsidence basins. Earth Sci. J. China Univ. Geosci. 25, 260-266 (in Chinese).

 

Liu, J.P., Xian, B.Z., Wang, J.H., Ji, Y.L., Lu, Z.Y., Liu, S.J., 2017. Sedimentary architecture of a sub-lacustrine debris fan: Eocene Dongying Rift, Bohai Bay Basin, east China. Sediment. Geol. 362, 66-82. https://doi.org/10.1016/j.sedgeo.2017.09.014.

 

Liu, J.T., Hsu, R.T., Hung, J.J., Chang, Y.P., Wang, Y.H., Rendle-Bühring, R.H., Lee, C.L., Huh, C.A., Yang, R.J., 2021. From the highest to the deepest, The Gaoping River–Gaoping Submarine Canyon dispersal system. Earth Sci. Rev. 153, 274-300. https://doi.org/10.1016/j.earscirev.2015.10.012.

 

Liu, J.P., Xian, B.Z., Tan, X.F., Zhang, L., Su, M., Wu, Q.R., Wang, Z., Chen, P., He, Y.X., Zhang, S.H., Li, J., Gao, Y., Yu, Q.H., 2022. Depositional process and dispersal pattern of a faulted margin hyperpycnal system: The Eocene Dongying Depression, Bohai Bay Basin, China. Mar. Petrol. Geol. 135, 105405. https://doi.org/10.1016/j.marpetgeo.2021.105405.

 

Lowe, D.R., 1976. Subaqueous liquefied and fluidized sediment flow and their deposits. Sedimentology 23, 285-308. https://doi.org/10.1111/j.1365-3091.1976.tb00051.x.

 
Lowe, D.R., 1979. Sediment gravity flows: their classifications and some problems of application to natural flows and deposits. In: Doyle, L.J., Pilkey, O.H. (Eds.), Geology of Continental Slopes, vol. 27. SEPM Special Publication, pp. 75-82. https://doi.org/10.2110/pec.79.27.0075.
 

Lowe, D.R., 1982. Sediment gravity flows: II depositional models with special reference to the deposits of high-density turbidity currents. J. Sediment. Res. 52, 279-297. https://doi.org/10.1306/212F7F31-2B24-11D7-8648000102C1865D.

 
Maar, J.D.G., 1999. Experiments on Subaqueous Sandy Gravity Flows: Flow Dynamics and Deposit Structures. MSc. University of Minnesota, Thesis.
 

Marr, J.G., Harff, P.A., Shanmugam, G., Parker, G., 2001. Experiments on subaqueous sandy gravity flows: the role of clay and water content in flow dynamics and depositional structures. GSA Bull 113, 1377-1386. https://doi.org/10.1130/0016-7606(2001)113<1377:EOSSGF>2.0.CO;2.

 

Masson, D.G., Harbitz, C.B., Wynn, R.B., Pedersen, G., Løvholt, F., 2006. Submarine landslides: processes, triggers and hazard prediction. Phil. Trans. Roy. Soc. Lond.: Math. Phys. Eng. Sci. 364, 2009-2039. https://doi.org/10.1098/rsta.2006.1810.

 
Middleton, G.V., Hampton, M.A., 1973. Sediment gravity flows: mechanics of flow and deposition. In: Middleton, G.V., Bouma, A.H. (Eds.), Co-Chairmen), Turbidites and Deep Water Sedimentation. SEPM Pacific Section, Short Course, pp. 1−38.
 
Middleton, G.V., Hampton, M.A., 1976. Subaqueous sediment transport and deposition by sediment gravity flows. In: Stanley, D.J., Swift, D.J.P. (Eds.), Marine Sediment Transport and Environmental Management. Wiley, New York, pp. 197-218.
 

Migeon, S., Ducassou, E., Le Gonidec, Y., Rouillard, P., Mascle, J., Revel-Rolland, M., 2010. Lobe construction and sand/mud segregation by turbidity currents and debris flows on the western Nile deep-sea fan (Eastern Mediterranean). Sediment. Geol. 229, 124-143. https://doi.org/10.1016/j.sedgeo.2010.02.011.

 

Mohrig, D., Ellis, C., Parker, G., Whipple, K.X., Hondzo, M., 1998. Hydroplaning of subaqueous debris flows. GSA Bull 110, 387-394. https://doi.org/10.1130/0016-7606(1998)110<0387:HOSDF>2.3.CO;2.

 

Morton, D.M., Campbell, R.H., 1974. Spring mudflows at Wrightwood, southern California. Q J Eng Geol Hydroge 7, 377-384. https://doi.org/10.1144/GSL.QJEG.1974.007.04.

 

Mulder, T., Alexander, J., 2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48, 269-299. https://doi.org/10.1046/j.1365-3091.2001.00360.x.

 

Muravchik, M., Henstra, G.A., Eliassen, G.T., Gawthorpe, R.L., Leeder, M., Kranis, H., Skourtsos, E., Andrews, J., 2020. Deep-water sediment transport patterns and basin floor topography in early rift basins: Plio-Pleistocene syn-rift of the Corinth Rift, Greece. Basin Res. 32, 1184-1212. https://doi.org/10.1111/bre.12423.

 
Mutti, E., Normark, W.R., 1991. An integrated approach to the study of turbidite systems. In: Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. Springer, New York, NY, pp. 75−106. https://doi.org/10.1007/978-1-4684-8276-8_4.
 
Mutti, E., Bernoulli, D., Ricci Lucchi, F., Tinterri, R., 2009. Turbidites and turbidity currents from Alpine “Flysch” to the exploration of continental margins. In: McKenzie, J.A., Bernoulli, D., Cita, M.B. (Eds.), Symposium on Major Discoveries in Sediment Geol in the Mediterranean Realm from a Historical Perspective to New Development. Sedimentology, vol. 56, pp. 267−318. https://doi.org/10.1111/j.1365-3091.2008.01019.x.
 
Nemec, W., 1990. Aspects of sediment movement on steep delta slopes. In: Colella, A., Prior, D.B. (Eds.), Coarse-Grained Deltas, vol. 10. IAS Special Publication, pp. 29−73. https://doi.org/10.1002/9781444303858.ch3.
 

Nisbet, E.G., Piper, D.J.W., 1998. Giant submarine landslides: slumps, mega turbidites and their impart. Nature 392, 329-330. https://doi.org/10.1038/32765.

 

Normark, W.R., 1970. Growth patterns of deep sea fans. AAPG Bull. 54, 2170-2195. https://doi.org/10.1306/5D25CC79-16C1-11D7-8645000102C1865D.

 

O’Brien, J.S., Julien, P.Y., 1988. Laboratory analysis of mudflow properties. J. Hydraul. Eng. 114, 877-887. https://doi.org/10.1061/(ASCE)0733-9429.

 

Parsons, J.D., Whipple, K.X., Simoni, A., 2001. Experimental study of the grain-flow, fluid mud transition in debris flows. J. Geol. 109, 427-447. https://doi.org/10.1086/320798.

 

Peng, J.W., 2021. Sedimentology of the Upper Pennsylvanian organic-rich Cline Shale, Midland Basin: From gravity flows to pelagic suspension fallout. Sedimentology 68, 805-833. https://doi.org/10.1111/sed.12811.

 

Peng, J.W., Hu, Z.Q., Feng, D.J., Wang, Q.R., 2022. Sedimentology and sequence stratigraphy of lacustrine deep-water fine-grained sedimentary rocks: The Lower Jurassic Dongyuemiao Formation in the Sichuan Basin, Western China. Mar. Petrol. Geol. 146, 105933. https://doi.org/10.1016/j.marpetgeo.2022.105933.

 

Piper, D.J.W., Aksu, A.E., 1987. The source and origin of the 1929 Grand Banks turbidity current inferred from sediment budgets. Geo Mar. Lett. 7, 177-182. https://doi.org/10.1007/BF02242769.

 

Piper, D.J.W., Cochonat, P., Morrison, M.L., 1999. The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentology 46, 79-97. https://doi.org/10.1046/j.1365-3091.1999.00204.x.

 

Plink-Björklund, P., Steel, R.J., 2004. nitiation of turbidity currents: outcrop evidence for Eocene hyperpycnal flow turbidites. Sediment. Geol. 165, 29-52. https://doi.org/10.1016/j.sedgeo.2003.10.013.

 

Plint, A.G., 1986. Slump blocks, intraformational conglomerates and associated erosional structures in Pennsylvanian fluvial strata of eastern Canada. Sedimentology 33, 387-399. https://doi.org/10.1111/j.1365-3091.1986.tb00543.x.

 

Posamentier, H.W., Kolla, V., 2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. J. Sediment. Res. 73, 367-388. https://doi.org/10.1306/111302730367.

 

Postma, G., Nemec, W., Kleinspehn, K.L., 1988. Large floating clasts in turbidites: a mechanism for their emplacement. Sediment. Geol. 58, 47-61. https://doi.org/10.1016/0037-0738(88)90005-X.

 

Prélat, A., Hodgson, D.M., Flint, S.S., 2009. Evolution, architecture and hierarchy of distributary deep-water deposits: a high-resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology 56, 2132-2154. https://doi.org/10.1111/j.1365-3091.2009.01073.x.

 

Prélat, A., Covault, J.A., Hodgson, D.M., Fildani, A., Flint, S.S., 2010. Intrinsic controls on thenrange of volumes, morphologies, and dimensions of submarine lobes. Sediment. Geol. 232, 66-76. https://doi.org/10.1016/j.sedgeo.2010.09.010.

 

Qiu, G.Q., Wang, J.F., Zhang, X., Li, C.X., 2001. Preliminary study on stratigraphy architecture of middle-Shasan Dongying delta and its significance to hydrocarbon exploration. J. Tongji Univ. 29, 1195-1199. https://doi.org/10.3969/j.issn.1000-0550.2001.04.015 (in Chinese).

 

Reading, H.G., Richards, M., 1994. Turbidite systems in deep-water basin margins classified by grain size and feeder system. AAPG Bull. 78, 792-822. https://doi.org/10.1306/A25FE3BF-171B-11D7-8645000102C1865D.

 
Sanders, J.E., 1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. In: Middleton, G.V. (Ed.), Primary Sedimentary Structures and Their Hydrodynamic Interpretation, vol. 12. SEPM Special Publication, pp. 192−219. https://doi.org/10.2110/pec.65.08.0192.
 

Sawyer, D.E., Flemings, P.B., Buttles, J., Mohrig, D., 2012. Mudflow transport behavior and deposit morphology: Role of shear stress to yield strength ratio in subaqueous experiments. Mar. Geol. 307, 28-39. https://doi.org/10.1016/j.margeo.2012.01.009.

 

Shanmugam, G., 1996. High-density turbidity currents: are they sandy debris flows? J. Sediment. Res. 66, 2-10. https://doi.org/10.1306/D426828E-2B26-11D7-8648000102C1865D.

 

Shanmugam, G., 2000. 50 years of the turbidite paradigm (1950s-1990s): deep-water processes and facies models−a critical perspective. Mar. Petrol. Geol. 17, 285-342. https://doi.org/10.1016/S0264-8172(99)00011-2.

 
Shanmugam, G., 2012. New perspectives on deep-water sandstones: origin, recognition, initiation, and reservoir quality. In: Handbook of Petroleum Exploration and Production, vol. 9. Elsevier, Amsterdam, p. 524.
 

Shanmugam, G., 2013. New perspectives on deep-water sandstones: Implications. Petrol. Explor. Dev. 40, 316-324. https://doi.org/10.1016/S1876-3804(13)60038-5.

 

Shanmugam, G., 2016. Submarine fans: a critical retrospective (1950-2015). J Palaeogeog 5, 110-184. https://doi.org/10.1016/j.jop.2015.08.011.

 
Shanmugam, G., Moiola, R.J., 1994. An unconventional model for the deep-water sandstones of the Jackfork Group (Pennsylvanian), Ouachita Mountains, Arkansas and Oklahoma. In: Submarine Fans and Turbidite Systems: Gulf Coast Section of SEPM 15th Annual Research Conference, pp. 311−326. https://doi.org/10.5724/gcs.94.15.0335.
 

Shanmugam, G., Lehtonen, L.R., Straume, T., Syvertsen, S.E., Hodgkinson, R.J., Skibeli, M., 1994. Slump and debris-flow dominated upper slope facies in the Cretaceous of the Norwegian and northern North Seas (61-67 N): Implications for sand distribution. AAPG Bull. 78, 910-937. https://doi.org/10.1306/A25FE3E7-171B-11D7-8645000102C1865D.

 

Shanmugam, G., Bloch, R.B., Mitchell, S.M., Beamish, G.W., Hodgkinson, R.J., Damuth, J.E., Straume, T., Syvertsen, S.E., Shields, K.E., 1995. Basin-floor fans in the North Sea: sequence stratigraphic models vs. sedimentary facies. AAPG Bull. 79, 477-511. https://doi.org/10.1306/8D2B1570-171E-11D7-8645000102C1865D.

 

Sharp, R.P., Nobles, L.H., 1953. Mudflow of 1941 at Wrightwood, Southern California. GSA Bull 64, 547-560. https://doi.org/10.1130/0016-7606(1953)64[547:MOAWSC]2.0.CO;2.

 

Shepard, F.P., 1932. Landslide modifications of submarine valleys. Eos, Transactions American Geophysical Union 13, 226-230. https://doi.org/10.1029/TR013i001p00226.

 
Soh, W., 1989. Coarse clast dominant submarine debrite, the Mio-Pliocene Fujikawa Group, central Japan. In: Taira, A., Mazuda, F. (Eds.), Sedimentary Facies in the Active Plate Margin. Terra Scientific Publishing, Tokyo, pp. 495e510.
 

Sohn, Y.K., 2000. Depositional processes of submarine debris flows in the Miocene fan deltas, Pohang Basin, SE Korea with special reference to flow transformation. J. Sediment. Res. 70, 491-503. https://doi.org/10.1306/2DC40922-0E47-11D7-8643000102C1865D.

 

Sohn, Y.K., Rhee, C.W., Kim, B.C., 1999. Debris flow and hyperconcentrated flood-flow deposits in an alluvial fan, northwestern part of the Cretaceous Yongdong Basin, Central Korea. J. Geol. 107, 111-132. https://doi.org/10.1086/314334.

 

Sømme, T.O., Helland-Hansen, W., Granjeon, D., 2009. Impact of eustatic amplitude variations on shelf morphology, sediment dispersal, and sequence stratigraphic interpretation: Icehouse versus greenhouse systems. Geology 37, 587-590. https://doi.org/10.1130/G25511A.1.

 

Southern, S.J., Kane, I.A., Warchoł, M.J., Porten, K.W., McCaffrey, W.D., 2017. Hybrid event beds dominated by transitional-flow facies: character, distribution and significance in the Maastrichtian Springar Formation, north-west Vøring Basin, Norwegian Sea. Sedimentology 64, 747-776. https://doi.org/10.1111/sed.12323.

 

Soutter, E.L., Kane, I.A., Huuse, M., 2018. Giant submarine landslide triggered by Paleocene mantle plume activity in the North Atlantic. Geology 46, 511-514. https://doi.org/10.1130/G40308.1.

 
Steel, R.J., Olsen, T., Armentrout, J.M., Rosen, N.C., 2002. Clinoforms, clinoform trajectories and deepwater sands. In: Sequence-stratigraphic Models for Exploration and Production: Evolving Methodology, Emerging Models and Application Histories: Gulf Coast Section SEPM 22nd Research Conference, Houston, Texas, pp. 367−381. https://doi.org/10.5724/gcs.02.22.0367.
 

Stow, D.A., Johansson, M., 2000. Deep-water massive sands: nature, origin and hydrocarbon implications. Mar. Petrol. Geol. 17, 145-174. https://doi.org/10.1016/S0264-8172(99)00051-3.

 

Stow, D.A., Mayall, M., 2000. Deep-water sedimentary systems: new models for the 21st century. Mar. Petrol. Geol. 17, 125-135. https://doi.org/10.1016/S0264-8172(99)00064-1.

 

Talling, P.J., 2014. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Mar. Geol. 352, 155-182. https://doi.org/10.1016/j.margeo.2014.02.006.

 

Talling, P.J., Amy, L.A., Wynn, R.B., Peakall, J., Robinson, M., 2004. Beds comprising debrite sandwiched within co-genetic turbidite: origin and widespread occurrence in distal depositional environments. Sedimentology 51, 163-194. https://doi.org/10.1111/j.1365-3091.2004.00617.x.

 

Talling, P.J., Wynn, R.B., Masson, D.G., Frenz, M., Cronin, B.T., Schiebel, R., Akhmetzhanov, A.M., Dallmeier-Tiessen, S., Benetti, S., Weaver, P.P.E., Georgiopoulou, A., Zuhlsdorff, C., Amy, L.A., 2007. Onset of submarine debris flow deposition far from original giant landslide. Nature 450, 541-544. https://doi.org/10.1038/nature06313.

 

Talling, P.J., Malgesini, G., Sumner, E.J., Amy, L.A., Felletti, F., Blackbourn, G., Nutt, C., Wilcox, C., Harding, I.C., Akbari, S., 2012. Planform geometry, stacking pattern, and extrabasinal origin of low strength and intermediate strength cohesive debris flow deposits in the Marnoso-arenacea Formation, Italy. Geosphere 8, 1207-1230. https://doi.org/10.1130/GES00734.1.

 

Tan, M., Sun, H., Fu, Y., Zhang, X., Cui, H., Ma, H., 2022. Hybrid event bed characteristics and its role in high-frequency facies change of the Upper Triassic submarine fan in the West Qinling area of NE Tibetan Plateau. Mar. Petrol. Geol. 146, 105937. https://doi.org/10.1016/j.marpetgeo.2022.105937.

 
Tian, Z.Q., 2004. The fine description of Ying 11 Es3 low permeability reservoir, the numerical simulation and analysis of horizontal well-development in Dongxin Oil Field. Graduate School of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), PhD dissertation, 1−150. (in Chinese).
 

Tian, R.H., Xian, B.Z., Wu, Q.R., Shu, Q.L., Liu, J.P., Zhang, W.M., Wang, Z., Li, Q., Rahman, N., Gao, Y.K., Wang, J.W., 2023. Turbidite system controlled by fault interaction and linkage on a slope belt of rift basin: Zhanhua depression, Bohai Bay Basin, China. Mar. Petrol. Geol. 155, 106377. https://doi.org/10.1016/j.marpetgeo.2023.106377.

 

Walker, R.G., 1978. Deep-water sandstone facies and ancient submarine fans: models for exploration for stratigraphic traps. AAPG Bull. 62, 932-966. https://doi.org/10.1306/C1EA4F77-16C9-11D7-8645000102C1865D.

 

Walsh, J.P., Corbett, R., Mallinson, D., Goni, M., Dail, M., Loewy, C., Marciniak, K., Ryan, K., Smith, C., Stevens, A., Summers, B., Tesi, T., 2006. Mississippi delta mudflow activity and 2005 Gulf hurricanes. Eos, Transactions American Geophysical Union 87, 477-478. https://doi.org/10.1029/2006EO440002.

 

Wang, X., Wang, Y., Tan, M., Cai, F., 2020. Deep-water deposition in response to sea-level fluctuations in the past 30 kyr on the northern margin of the South China Sea. Deep Sea Res Pt I 163, 103317. https://doi.org/10.1016/j.dsr.2020.103317.

 
Weimer, P., Pettingill, H.S., 2007. Deep-water exploration and production: A global overview. Atlas of deep-water outcrops. In: AAPG Studies in Geology, vol. 56. https://doi.org/10.1306/12401007St56285.
 

Weirich, F.H., 1988. Field evidence for hydraulic jumps in subaqueous sediment gravity flows. Nature 332, 626-629. https://doi.org/10.1038/332626a0.

 

Whipple, K.X., Dunne, T., 1992. The influence of debris-flow rheology on fan morphology. Owens Valley, California. GSA Bull 104, 887-900. https://doi.org/10.1130/0016-7606(1992)104<0887:TIODFR>2.3.CO;2.

 

Woodcock, N.H., 1976. Structural style in slump sheets: Ludlow series, Powys, Wales. J Geol Soc London 132, 399-415. https://doi.org/10.1144/gsjgs.132.4.039.

 

Wu, Q.R., Xian, B.Z., Gao, X.Z., Bai, Q.L., Wang, Z., Liu, J.P., Chen, P., Li, Y.Z., Rahman, N., Tian, R.H., Zhang, W.M., Zhang, H.Z., 2022. Differences of sedimentary triggers and depositional architecture of lacustrine turbidites from normal regression to forced regression: Eocene Dongying depression, Bohai Bay Basin, East China. Sediment. Geol. 439, 106222. https://doi.org/10.1016/j.sedgeo.2022.106222.

 

Xian, B.Z., An, S.Q., Shi, W.H., 2014. Subaqueous debris flow: hotspots and advances of deep-water sedimention. Geol. Rev. 60, 39-51. https://doi.org/10.3969/j.issn.0371-5736.2014.01.004 (in Chinese).

 

Xian, B.Z., Liu, J.P., Dong, Y.L., Lu, Z.Y., He, Y.X., Wang, J.H., 2017. Classification and facies sequence model of subaqueous debris flows. Acta Geol Sin-Engl (English Edition) 91, 751-752. https://doi.org/10.1111/1755-6724.13140.

 

Xian, B.Z., Wang, J.H., Liu, J.P., Dong, Y.L., Gong, C.L., Lu, Z.Y., 2018. Delta-fed turbidites in a lacustrine rift basin: the Eocene Dongying Rift, Bohai Bay Basin, East China. Aust. J. Earth Sci. 65, 135-151. https://doi.org/10.1080/08120099.2018.1401558.

 

Yang, R.C., Jin, Z.J., Van Loon, A.J., Han, Z.Z., Fan, A.P., 2017. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China, Implications for unconventional petroleum development. AAPG Bull. 101, 95-117. https://doi.org/10.1306/06101615095.

 

Yang, T., Cao, Y.C., Liu, K.Y., Tian, J.C., Zavala, C., Wang, Y.Z., 2020. Gravity-flow deposits caused by different initiation processes in a deep-lake system. AAPG Bull. 104, 1463-1499. https://doi.org/10.1306/03172017081.

 

Yang, T., Cao, Y.C., Liu, H.N., 2023. Highstand sublacustrine fans: The role of a sudden increase in sediment supply. Basin Res. 1−23. https://doi.org/10.1111/bre.12762.

 

Zavala, C., Arcuri, M., 2016. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics. Sediment. Geol. 337, 36-54. https://doi.org/10.1016/j.sedgeo.2016.03.008.

 

Zhang, J.G., Jiang, Z.X., Liang, C., Wu, J., Xian, B.Z., Li, Q., 2016. Lacustrine massive mudrock in the Eocene Jiyang Depression, Bohai Bay Basin, China: Nature, origin and significance. Mar. Petrol. Geol. 77, 1042-1055. https://doi.org/10.1016/j.marpetgeo.2016.08.008.

 

Zou, C.N., Wang, L., Li, Y., Tao, S.Z., Hou, L.H., 2012. Deep-lacustrine transformation of sandy debrites into turbidites, Upper Triassic, Central China. Sediment. Geol. 265, 143-155. https://doi.org/10.1016/j.sedgeo.2012.04.004.

Petroleum Science
Pages 110-129
Cite this article:
Liu J-P, Xian B-Z, Tan X-F, et al. Sub-lacustrine debrite system: Facies architecture and sediment distribution pattern. Petroleum Science, 2025, 22(1): 110-129. https://doi.org/10.1016/j.petsci.2024.11.007
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return