Offshore Nile Delta in Egypt represents an enormous hydrocarbon province with recent projected gas and condensate discoveries of more than 50 trillion cubic feet “TCF”. Most of these occur in the post-salt hydrocarbon plays where biogenic gases are dominant. This study integrates organic geochemistry, seismic geomorphology and petrophysics in order to decipher the origin, and accumulation conditions of the wet gas/condensate blend in the Upper Miocene sub-salt Wakar Formation sandstones in Port Fouad Marine “PFM” Field, offshore Nile Delta. Hydrocarbon pay zones are scattered thin (<10 m) sandstones deposited in as turbiditic channel/levee complex facies. Spatial distribution of vertical gas chimneys (~2 km wide) rooting-down to the Messinian Rosetta salt is associated with the lateral pinching-out of the turbiditic sandstones. Organically-rich (total organic carbon “TOC” > 1 w.t.%, hydrogen index “HI” > 200 mgHC/gTOC) and mature (Tmax > 430 °C, vitrinite reflectance “VR” > 0.6 %Ro), source rocks are restricted to Upper Miocene Wakar and Oligo-Miocene Tineh formations. The latter contains more mature organofacies (up to 1.2 %Ro) and type Ⅱ/Ⅲ kerogen, thereby demonstrating a good capability to generate wet gases. The studied gas is wet and has thermogenic origin with signs of secondary microbial alteration, whereas the condensate contains a mixture of marine and terrestrial input. Molecular biomarkers of the condensate, isotopic and molecular composition of the gas reveals a generation of condensate prior to gas expulsion from the source. The Wakar sandstones have a heterogeneous pore system where three reservoir rock types (RRTⅠ, RRTⅡ and RRTⅢ). RRTⅠ rocks present the bulk composition of the Wakar pay zones. Spatial distribution of RRTⅠ facies likely control the accumulation of the sub-salt hydrocarbons. Our results provide a new evidence on an active petroleum system in the sub-salt Paleogene successions in the offshore Nile Delta where concomitant generation of gas/condensate blend has been outlined.
Abdelwahhab, M.A., Radwan, A.A., Mahmoud, H., Mansour, A., 2022. Geophysical 3Dstatic reservoir and basin modeling of a Jurassic estuarine system (JG-Oilfield, Abu Gharadig basin, Egypt). J. Afr. Earth Sci. 225, 105067. https://doi.org/10.1016/j.jseaes.2021.105067.
Behar, F., Beaumont, V., Penteado, H., 2001. Rock-Eval 6 technology: performances and developments. Oil Gas Sci. Technol. 56 (2), 111–134. https://doi.org/10.2516/ogst:2001013.
Bernard, B.B., Brooks, J.M., Sackett, W.M., 1978. Light hydrocarbons in recent Texas continental shelf and slope sediments. J. Geophys. Res.: Oceans 83 (C8), 4053–4061. https://doi.org/10.1029/JC083iC08p04053.
Buckles, R.S., 1965. Correlating and averaging connate water saturation data. J. Can. Petrol. Technol. 9 (1), 42–52. https://doi.org/10.2118/65-01-07.
Cathles, L.M., Su, Z., Chen, D., 2010. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. Mar. Petrol. Geol. 27 (1), 82–91. https://doi.org/10.1016/j.marpetgeo.2009.09.010.
Chung, H.M., Gormly, J.R., Squires, R.M., 1988. Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution. Chem. Geol. 71 (1–3), 97–10.. https://doi.org/10.1016/0009-2541(88)90108-8.
Clauzon, G., 1982. Le canyon Messinien du Rhone: une preuve decisive du ‘dessicated deep-basin model’ (Hsü, Cita and Ryan, 1973). Bull. Soc. Geol. Fr. 24, 231–246. https://doi.org/10.2113/GSSGFBULL.S7-XXIV.3.597.
Dewan, J.T., 1983. Essentials of Modern Open-Hole Log Interpretation. Pennwell Publications, Tulsa Oklahoma, p. 361.
Dupré, S., Woodside, J., Foucher, J.P., Lange, G., Mascle, J., Boetius, A., Mastalerz, V., Stadnitskaia, A., et al., 2007. Seafloor geological studies above active gas chimneys off Egypt (central nile deep sea fan). Deep Sea Res. Oceanogr. Res. Pap. 54 (7), 1146–1172. https://doi.org/10.1016/j.dsr.2007.03.007.
El Adl, H., Leila, M., Ahmed, M.A., Anan, T., El Shahat, A., 2021. Integrated sedimentological and petrophysical rock-typing of the messinian abu madi formation in south batra gas field, onshore nile delta, Egypt. Mar. Petrol. Geol. 124, 104835. https://doi.org/10.1016/j.marpetgeo.2020.104835.
Elmahdy, M., Radwan, A.A., Nabawy, B.S., Abdelmaksoud, A., Nastavkin, A., 2023. Integrated geophysical, petrophysical and petrographical characterization of the carbonate and clastic reservoirs of the Waihapa Field, Taranaki Basin, New Zealand. Mar. Petrol. Geol. 151, 106173. https://doi.org/10.1016/j.marpetgeo.2023.106173.
El Matboly, E., Leila, M., Peters, K., El Diasty, W., 2022. Oil biomarker signature and hydrocarbon prospectivity of paleozoic versus mesozoic source rocks in the Faghur–Sallum basins, Egypt's Western Desert. J. Petrol. Sci. Eng. 217, 110872. https://doi.org/10.1016/j.petrol.2022.110872.
Esestime, P., Hewitt, A., Hodgson, N., 2016. Zohr–A newborn carbonate play in the levantine basin, east-mediterranean. First Break 34 (2), 87–93. https://doi.org/10.3997/1365-2397.34.2.83912.
Espitalié, J., Deroo, G., Marquis, F., 1985. La pyrolyse Rock-Eval et ses applications. Deuxième partie. Rev. Inst. Fr. Petrol 40 (6), 755–784. https://doi.org/10.2516/ogst:1985045.
Fathy, D., Wagreich, M., Fathi, E., Ahmed, M., Leila, M., Sami, M., 2023. Maastrichtian anoxia and its influence on organic matter and trace metal patterns in the southern tethys realm of Egypt during greenhouse variability. ACS Omega 8 (22), 19603–19612. https://doi.org/10.1021/acsomega.3c01096.
Faber, E., Schmidt, M., Feyzullayev, A., 2015. Geochemical hydrocarbon exploration—insights from stable isotope models. Oil Gas Eur. Mag. 41, 93–98.
Gammaldi, S., Ismail, A., Zollo, A., 2022. Fluid accumulation zone by seismic attributes and amplitude versus offset analysis at Solfatara volcano, Campi Flegrei, Italy. Front. Earth Sci. 10, 866534. https://doi.org/10.3389/feart.2022.866534.
Guo, G., Diaz, M.A., Paz, F., Smalley, J., Waninger, E., 2007. Rock typing as an effective tool for permeability and water-saturation modelling: a case study in a clastic reservoir in the Oriente Basin. Res. Eval. & Eng. 10 (6), 730–739. https://doi.org/10.2118/97033-PA.
Hassan, M., Leila, M., Ahmed, A., Issa, G., Hegab, O., 2023a. Geochemical characteristics of natural gases and source rocks in Obayied sub-basin, north Western Desert, Egypt: implications for gas-source correlation. Acta Geochim 42, 241–255. https://doi.org/10.1007/s11631-022-00576-5.
Hassan, A., Radwan, A., Mahfouz, K., Leila, M., 2023b. Sedimentary facies analysis, seismic interpretation, and reservoir rock typing of the syn-rift Middle Jurassic reservoirs in Meleiha concession, north Western Desert, Egypt. J. Petrol. Expl. Prod. https://doi.org/10.1007/s13202-023-01677-4.
Hussein, I., Abd-Allah, A., 2001. Tectonic evolution of the northeastern part of the African continental margin, Egypt. J. Afr. Earth Sci. 33, 49–69. https://doi.org/10.1016/S0899-5362(01)90090-9.
Hyndman, R.D., Spence, G.D., 1992. A seismic study of methane hydrate marine bottom simulating reflectors. J. Geophys. Res. 97, 6683–6698. https://doi.org/10.1029/92JB00234.
Ismail, A., Ewida, H.F., Al-Ibiary, M.G., Gammaldi, S., Zollo, A., 2020. Identification of gas zones and chimneys using seismic attributes analysis at the Scarab field, offshore, Nile Delta, Egypt. Petrol. Res. 5 (1), 59–69. https://doi.org/10.1016/j.ptlrs.2019.09.002.
Ismail, A., Ewida, H.F., Al-Ibiary, M.G., Nazeri, S., Salama, N., Gammaldi, S., Zollo, A., 2021. The detection of deep seafloor pockmarks, gas chimneys, and associated features with seafloor seeps using seismic attributes in the West offshore Nile Delta, Egypt. Explor. Geophys. 52 (4), 388–408. https://doi.org/10.1080/08123985.2020.1827229.
Ismail, A., Ewida, H.F., Nazeri, S., Al-Ibiary, M.G., Zollo, A., 2022. Gas channels and chimneys prediction using artificial neural networks and multi-seismic attributes, offshore West Nile Delta, Egypt. J. Petrol. Sci. Eng. 208, 109349. https://doi.org/10.1016/j.petrol.2021.109349.
Ismail, A., Radwan, A., Leila, M., Eysa, E., 2024. Integrating 3D subsurface imaging, seismic attributes, and wireline logging analyses: implications for a high resolution detection of deep-rooted gas escape features, eastern offshore Nile Delta, Egypt. J. Afr. Earth Sci. 213, 105230. https://doi.org/10.1016/j.jafrearsci.2024.105230.
Kim, J.C., Lee, Y.I., Hisada, K., 2007. Depositional and compositional controls on sandstone diagenesis, the Tetori group (Middle Jurassic-Early Cretaceous), central Japan. Sed. Geol. 195, 183–202. https://doi.org/10.1016/j.sedgeo.2006.08.011.
Kneller, B.C., Bennet, S.J., McCaffrey, W.D., 1997. Velocity and turbulence structure of gravity currents and internal solitary waves: potential sediment transport and the formation of wave ripples in deep waters. Sediment. Geol. 112, 235–250. https://doi.org/10.1016/S0037-0738(97)00031-6.
Lashin, A., Abd El Aal, M., 2005. Contribution of AVO and multi attribute analysis in delineating the fluid content and rock properties of the gas-bearing reservoirs in the Northeastern part of Nile Delta, Egypt. J. Appl. Geophys. 4 (2), 279–301. https://doi.org/10.1016/j.ejpe.2017.09.002.
Leila, M., 2019. Clay minerals distribution in the pre-, syn-Messinian salinity crisis sediments of the onshore Nile Delta, Egypt: mineral origin and implications on the reservoir quality. J. Afr. Earth Sci. 154, 35–48. https://doi.org/10.1016/j.jafrearsci.2019.03.016.
Leila, M., Moscariello, A., 2017. Organic geochemistry of oil and natural gas in the West Dikirnis and El-Tamad fields, onshore Nile Delta, Egypt: interpretation of potential source rocks. J. Petrol. Geol. 40 (1), 37–58. https://doi.org/10.1111/jpg.12663.
Leila, M., Moscariello, A., 2018. Depositional and petrophysical controls on the volumes of hydrocarbons trapped in the Messinian reservoirs, onshore Nile Delta, Egypt. Petrol. Times 4 (3), 250–267. https://doi.org/10.1016/j.petlm.2018.04.003.
Leila, M., Moscariello, A., 2019. Seismic stratigraphy and sedimentary facies analysis of the pre- and syn-Messinain salinity crisis sequences, onshore Nile Delta, Egypt, Implications for reservoir quality prediction. Mar. Petrol. Geol. 101, 303–321. https://doi.org/10.1016/j.marpetgeo.2018.12.003.
Leila, M., Mohamed, A., 2020. Diagenesis and petrophysical characteristics of the shallow Pliocene sandstone reservoirs in the Shinfas gas field, onshore Nile delta, Egypt. J. Pet. Explor. Prod. Technol. 10, 1743–1761. https://doi.org/10.1007/s13202-020-00873-w.
Leila, M., Moscariello, A., Kora, M., Mohamed, A., Samankassou, E., 2020. Sedimentology and reservoir quality of a Messinian mixed siliciclastic carbonate succession, onshore Nile Delta, Egypt. Mar. Petrol. Geol. 112, 104076. https://doi.org/10.1016/j.marpetgeo.2019.104076.
Leila, M., Ali, E., Abu El-Magd, A., Alwan, L., Elgendy, A., 2021a. Formation evaluation and reservoir characteristics of the Messinian Abu Madi sandstones in Faraskour gas field, onshore Nile delta, Egypt. J. Pet. Explor. Prod. Technol. 11, 133–155. https://doi.org/10.1007/s13202-020-01011-2.
Leila, M., Levy, D., Battani, A., Piccardi, L., Segvic, B., Badurina, L., Pasquet, G., Cambaudon, V., Moretti, I., 2021b. Origin of continuous hydrogen flux in gas manifestations at the Larderello geothermal field, Central Italy. Chem. Geol. 585, 120564. https://doi.org/10.1016/j.chemgeo.2021.120564.
Leila, M., Awadalla, A., Farag, A., Moscariello, A., 2022a. Organic geochemistry and oil-source rock correlation of the Cretaceous succession in West Wadi El-Rayan (WWER) concession: implications for a new Cretaceous petroleum system in the north Western Desert, Egypt. J. Petrol. Sci. Eng. 219, 111071. https://doi.org/10.1016/j.petrol.2022.111071.
Leila, M., Loisseau, K., Moretti, I., 2022b. Controls on generation and accumulation of blended gases (CH4/H2/He) in the Neoproterozoic Amadeus Basin, Australia. Mar. Petrol. Geol. 140, 105643. https://doi.org/10.1016/j.marpetgeo.2022.105643.
Leila, M., El Sharawy, M., Bakr, A., Mohamed, A.K., 2022c. Controls of facies distribution on reservoir quality in the Messinian incised-valley fill Abu Madi Formation in Salma delta gas field, northeastern onshore Nile Delta, Egypt. J. Nat. Gas Sci. Eng. 97, 104360. https://doi.org/10.1016/j.jngse.2021.104360.
Leila, M., Sen, S., Ganguli, S., Moscariello, A., Abioui, M., 2023a. Integrated petrographical and petrophysical evaluation for reservoir management of the upper Miocene Qawasim sandstones in west Dikirnis, onshore nile delta, Egypt. Geoener. Sci. Eng. 226, 211789. https://doi.org/10.1016/j.geoen.2023.211789.
Leila, M., Moscariello, A., Sweet, D., Segvic, B., 2023b. Diagenetic signatures in the deltaic and fluvial-estuarine Messinian sandstone reservoirs in the Nile Delta as a tool for high-resolution stratigraphic correlations. Int. J. Sediment Res. 38, 754–768. https://doi.org/10.1016/j.ijsrc.2023.05.002.
Loegering, M.J., Milkov, A.V., 2017. Geochemistry of petroleum gases and liquids from the Inhassoro, Pande and Temane fields onshore Mozambique. Geosciences 7 (2), 33. https://doi.org/10.3390/geosciences7020033.
Lofi, J., Sage, F., Deverchere, J., Loncke, L., Maillard, A., Gaullier, V., Thinon, I., Gillet, H., Guennoc, P., Gorini, C., 2011a. Refining our knowledge of the Messinian salinity crisis records in the offshore domain through multi-site seismic analysis. La Soc. Geol. Fr 182, 163–180. https://doi.org/10.2113/gssgfbull.182.2.163.
Lowe, D.R., 1982. Sediment gravity flows: Ⅱ depositional models with special reference to the deposits of high-density turbidity current. J. Sediment. Petrol. 52, 279–297. https://doi.org/10.1306/212F7F31-2B24-11D7-8648000102C1865D.
Mackenzie, A.S., Quigley, T.M., 1988. Principles of geochemical prospect appraisal. AAPG Bull. 72 (4), 399–415. https://doi.org/10.1306/703C8EA2-1707-11D7-8645000102C1865D.
Madof, A.S., Bertoni, C., Lofi, J., 2019. Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. Geology 47 (1), 171–174. https://doi.org/10.1130/G45873.1.
Milkov, A.V., Etiope, G., 2018. Revised genetic diagrams for natural gases based on a global dataset of> 20,000 samples. Org. Geochem. 125, 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002.
Mokhtar, M., Saad, M., Selim, S., 2016. Reservoir architecture of deep marine slope channel, Scarab field, offshore Nile Delta, Egypt: application of reservoir characterization. Egy. J. Petrol. 25, 495–508. https://doi.org/10.1016/j.ejpe.2015.11.003.
Moldowan, J.M., Seifert, W.K., Arnold, E., Clardy, J., 1984. Structure proof and significance of stereoisomeric 28, 30-bisnorhopanes in petroleum and petroleum source rocks. Geochem. Cosmochim. Acta 48 (8), 1651–1661. https://doi.org/10.1016/0016-7037(84)90334-X.
Nabawy, B.S., Basal, A.M.K., Sarhan, M.A., Safa, M., 2018. Reservoir zonation, rock typing and compartmentalization of the tortonian-serravallian sequence, Temsah gas field, offshore nile delta, Egypt. Mar. Petrol. Geol. 92, 609–631. https://doi.org/10.1016/j.marpetgeo.2018.03.030.
Nabawy, B.S., Shehata, A.M., 2015. Integrated petrophysical and geological characterization for the Sidi salem-wakar sandstones, off-shore nile delta, Egypt. J. Afr. Earth Sci. 110, 160–175. https://doi.org/10.1016/j.jafrearsci.2015.06.017.
Nabawy, B.S., Mostafa, A., Radwan, A.A., Kotb, A.G., Leila, M., 2023. Seismic reservoir characterization of the syn-rift lower Miocene Rudeis Formation in the July oilfield, Gulf of Suez basin, Egypt: implication for reservoir quality assessment. Geoener. Sci. Eng. 226, 211797. https://doi.org/10.1016/j.geoen.2023.211797.
Poupon, A., Clavier, C., Dumanoir, J., Gaymard, R., Misk, A., 1970. Log analysis of sand-shale sequences-A systematic approach. J. Petrol. Technol. 22 (7), 867–881. https://doi.org/10.2118/2897-PA.
Prinzhofer, A., Battani, A., 2003. Gas isotopes tracing: an important tool for hydrocarbon exploration. Oil & Gas Sci. Tech.-Rev. IFP 58, 299–311. https://doi.org/10.2516/ogst:2003018.
Radwan, A.A., Abdelwahhab, M.A., Nabawy, B.S., Mahfouz, K., Ahmed, M., 2022a. Facies analysis-constrained geophysical 3D-static reservoir modeling of Cenomanian units in the Aghar Oilfield (Western Desert, Egypt): insights into paleoenvironment and petroleum geology of fluviomarine systems. Mar. Petrol. Geol. 136, 105436. https://doi.org/10.1016/j.marpetgeo.2021.105436.
Radwan, A.A., Nabawy, B.S., 2022. Hydrocarbon prospectivity of the Miocene-Pliocene clastic reservoirs, Northern Taranaki basin, New Zealand: integration of petrographic and geophysical studies. J. Pet. Explor. Prod. Technol. 12 (7), 1945–1962. https://doi.org/10.1007/s13202-021-01451-4.
Radwan, A.A., Nabawy, B.S., Abdelmaksoud, A., Lashin, A., 2021. Integrated sedimentological and petrophysical characterization for clastic reservoirs: a case study from New Zealand. J. Nat. Gas Sci. Eng. 88, 103797. https://doi.org/10.1016/j.jngse.2021.103797.
Radwan, A.A., Nabawy, B.S., Shihata, M., Leila, M., 2022b. Seismic interpretation, reservoir characterization, gas origin and entrapment of the Miocene-Pliocene Mangaa C sandstone, Karewa gas field, north Taranaki Basin, New Zealand. Mar. Petrol. Geol. 135, 105420. https://doi.org/10.1016/j.marpetgeo.2021.105420.
Riad, S., Abdelrahman, E., Refai, E., El-Ghalban, H., 1989. Geothermal studied in the nile delta. J. Afr. Earth Sci. 9, 637–649. https://doi.org/10.1016/0899-5362(89)90048-1.
Rizzini, A., Vezzani, F., Cococcetta, V., Milad, G., 1978. Stratigraphy and sedimentation of a neogene—quaternary section in the nile delta area (ARE). Mar. Geol. 27 (3–4), 327–348. https://doi.org/10.1016/0025-3227(78)90038-5.
Rogers, R., 2015. Offshore Gas Hydrates: Origins, Development, and Production. Gulf Professional Publishing, p. 381. https://doi.org/10.1016/C2014-0-02709-8.
Roy, S., Hovland, M., Braathen, A., 2016. Evidence of fluid seepage in Grønfjorden, Spitsbergen: implications from an integrated acoustic study of seafloor morphology, marine sediments and tectonics. Mar. Geol. 380, 67–78. https://doi.org/10.1016/j.margeo.2016.07.002.
Sarhan, M., Hemdan, K., 1994. North Nile Delta structural setting trapping and mechanism, Egypt. 13 1, 1–18. Cairo, Egypt.
Sassen, R., Joye, S., Sweet, S.T., DeFreitas, D., Milkov, A., MacDonald, I., 1999. Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities, Gulf of Mexico continental slope. Org. Geochem. 30 (7), 485–497. https://doi.org/10.1016/S0146-6380(99)00050-9.
Schoell, M., 1983. Genetic characterization of natural gases. AAPG Bull. 67 (12), 2225–2238. https://doi.org/10.1306/AD46094A-16F7-11D7-8645000102C1865D.
Shanmugam, G., 1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. AAPG Bull. 69, 1241–1254. https://doi.org/10.1306/AD462BC3-16F7-11D7-8645000102C1865D.
Sharaf, L., 2003. Source rock evaluation and geochemistry of condensates and natural gasses, offshore Nile Delta, Egypt. J. Petrol. Geol. 26 (2), 189–209. https://doi.org/10.1111/j.1747-5457.2003.tb00025.x.
Skalinski, M., Kenter, J.A., 2015. Carbonate petrophysical rock typing: integrating geological attributes and petrophysical properties while linking with dynamic behaviour. Geol. Soc. London, Spec. Publ. 406 (1), 229–259. https://doi.org/10.1144/SP406.6.
Schön, J., 1996. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. Elsevier, Oxford, p. 582.
Sofer, Z., 1984. Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration. AAPG Bull. 68 (1), 31–49. https://doi.org/10.1306/AD460963-16F7-11D7-8645000102C1865D.
Sun, Q., Wu, S., Hovland, M., Luo, P., Lu, Y., Qu, T., 2011. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea. Mar. Petrol. Geol. 28 (6), 1146–1156. https://doi.org/10.1016/j.marpetgeo.2011.03.003.
Tiab, D., Donaldson, E.C., 2015. Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, fourth ed. Gulf Professional Publishing, Houston, p. 894. https://doi.org/10.1016/C2014-0-03707-0.
Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence, second ed. Springer-Verlag, Berlin, p. 699. https://doi.org/10.1007/978-3-642-87813-8.
Tissot, B.P., Pelet, R., Ungerer, P.H., 1987. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bull. 71 (12), 1445–1466. https://doi.org/10.1306/703C80E7-1707-11D7-8645000102C1865D.
Vandré, C., Cramer, B., Gerling, P., Winsemann, J., 2007. Natural gas formation in the western Nile delta (Eastern Mediterranean): thermogenic versus microbial. Org. Geochem. 38 (4), 523–539. https://doi.org/10.1016/j.orggeochem.2006.12.006.
Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314. https://doi.org/10.1016/S0009-2541(99)00092-3.
Wu, X., Liu, G., Liu, Q., Liu, J., Yuan, X., 2016. Geochemical characteristics and genetic types of natural gas in the changxing-Feixianguan formations from the Yuanba gas field in the Sichuan basin, China. J. Nat. Gas Geosci. 1 (4), 267–275. https://doi.org/10.1016/j.jnggs.2016.09.003.
Yasser, A., Leila, M., El Bastawesy, M., El Mahmoudi, A., 2022. Reservoir heterogeneity analysis and flow unit characteristics of the upper cretaceous bahariya formation in salam field, north western desert, Egypt. Arabian J. Geosci. 14, 1635. https://doi.org/10.1007/s12517-021-07985-5.