AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Oral microbiota in human systematic diseases

Xian Peng1Lei Cheng1,2Yong You3Chengwei Tang4Biao Ren1Yuqing Li1Xin Xu1,2( )Xuedong Zhou1,2( )
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
Show Author Information

Abstract

Oral bacteria directly affect the disease status of dental caries and periodontal diseases. The dynamic oral microbiota cooperates with the host to reflect the information and status of immunity and metabolism through two-way communication along the oral cavity and the systemic organs. The oral cavity is one of the most important interaction windows between the human body and the environment. The microenvironment at different sites in the oral cavity has different microbial compositions and is regulated by complex signaling, hosts, and external environmental factors. These processes may affect or reflect human health because certain health states seem to be related to the composition of oral bacteria, and the destruction of the microbial community is related to systemic diseases. In this review, we discussed emerging and exciting evidence of complex and important connections between the oral microbes and multiple human systemic diseases, and the possible contribution of the oral microorganisms to systemic diseases. This review aims to enhance the interest to oral microbes on the whole human body, and also improve clinician’s understanding of the role of oral microbes in systemic diseases. Microbial research in dentistry potentially enhances our knowledge of the pathogenic mechanisms of oral diseases, and at the same time, continuous advances in this frontier field may lead to a tangible impact on human health.

References

1

Miller, W. D. The human mouth as a focus of infection. Lancet 138, 340–342 (1891).

2

Billings, F. Chronic focal infections and their etiologic relations to arthritis and nephritis. Arch. Intern. Med. , 484–498 (1912).

3

Read, E., Curtis, M. A. & Neves, J. F. The role of oral bacteria in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 18, 731–742 (2021).

4

Tuominen, H. & Rautava, J. Oral microbiota and cancer development. Pathobiology 88, 116–126 (2021).

5

Li, Y. et al. Oral, tongue-coating microbiota, and metabolic disorders: a novel area of interactive research. Front. Cardiovasc. Med. 8, 730203 (2021).

6

Kamer, A. R. et al. Periodontal dysbiosis associates with reduced CSF Abeta42 in cognitively normal elderly. Alzheimers Dement. (Amst.) 13, e12172 (2021).

7

Matsha, T. E. et al. Oral microbiome signatures in diabetes mellitus and periodontal disease. J. Dent. Res. 99, 658–665 (2020).

8

Huang, Z. et al. Faecal microbiota transplantation from metabolically compromised human donors accelerates osteoarthritis in mice. Ann. Rheum. Dis. 79, 646–656 (2020).

9

Gomez, L. A. et al. Porphyromonas gingivalis placental atopobiosis and inflammatory responses in women with adverse pregnancy outcomes. Front. Microbiol. 11, 591626 (2020).

10

Xian, P. et al. The oral microbiome bank of China. Int J. Oral. Sci. 10, 16 (2018).

11

Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

12

Hathaway-Schrader, J. D. & Novince, C. M. Maintaining homeostatic control of periodontal bone tissue. Periodontology 86, 157–187 (2021).

13

Hajishengallis, G., Hasturk, H., Lambris, J. D. & Contributing authors C3-targeted therapy in periodontal disease: moving closer to the clinic. Trends Immunol. 42, 856–864 (2021).

14

Zuza, E. C. et al. Evaluation of recurrence of periodontal disease after treatment in obese and normal weight patients: two-year follow-up. J. Periodontol. 91, 1123–1131 (2020).

15

Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

16

Yete, S., D’Souza, W. & Saranath, D. High-risk human papillomavirus in oral cancer: clinical implications. Oncology 94, 133–141 (2018).

17

Diaz, P., Valenzuela Valderrama, M., Bravo, J. & Quest, A. F. G. Helicobacter pylori and gastric cancer: adaptive cellular mechanisms involved in disease progression. Front. Microbiol. 9, 5 (2018).

18

Alshamsan, A., Khan, S., Imran, A., Aljuffali, I. A. & Alsaleh, K. Prediction of Chlamydia pneumoniae protein localization in host mitochondria and cytoplasm and possible involvements in lung cancer etiology: a computational approach. Saudi Pharm. J. 25, 1151–1157 (2017).

19

Shukla, S. K., Singh, G., Shahi, K. S., Bhuvan & Pant, P. Staging, treatment, and future approaches of gallbladder carcinoma. J. Gastrointest. Cancer 49, 9–15 (2018).

20

Jans, C. & Boleij, A. The road to infection: host-microbe interactions defining the pathogenicity of Streptococcus bovis/Streptococcus equinus complex members. Front. Microbiol. 9, 603 (2018).

21

Haghi, F., Goli, E., Mirzaei, B. & Zeighami, H. The association between fecal enterotoxigenic B. fragilis with colorectal cancer. BMC Cancer 19, 879 (2019).

22

Yu, T. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563 e516 (2017).

23

Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).

24

Graves, D. T., Correa, J. D. & Silva, T. A. The oral microbiota is modified by systemic diseases. J. Dent. Res. 98, 148–156 (2019).

25

Gao, L. et al. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 9, 488–500 (2018).

26

Jia, X. et al. Berberine ameliorates periodontal bone loss by regulating gut microbiota. J. Dent. Res. 98, 107–116 (2019).

27

Bourgeois, D., Inquimbert, C., Ottolenghi, L. & Carrouel, F. Periodontal pathogens as risk factors of cardiovascular diseases, diabetes, rheumatoid arthritis, cancer, and chronic obstructive pulmonary disease-is there cause for consideration? Microorganisms 7, 424 (2019).

28

Engevik, M. A. et al. Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation. mBio 12, e02706–e02720 (2021).

29

Hashioka, S. et al. Implications of systemic inflammation and periodontitis for major depression. Front. Neurosci. 12, 483 (2018).

30

Dawes, C. & Wong, D. T. W. Role of saliva and salivary diagnostics in the advancement of oral health. J. Dent. Res. 98, 133–141 (2019).

31

Li, B. et al. Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice. Int. J. Oral. Sci. 11, 10 (2019).

32

Qiao, Y. & Ran, Z. Potential influential factors on incidence and prevalence of inflammatory bowel disease in mainland China. JGH Open 4, 11–15 (2020).

33

Cohen, L. J., Cho, J. H., Gevers, D. & Chu, H. Genetic factors and the intestinal microbiome guide development of microbe-based therapies for inflammatory bowel diseases. Gastroenterology 156, 2174–2189 (2019).

34

Glassner, K. L., Abraham, B. P. & Quigley, E. M. M. The microbiome and inflammatory bowel disease. J. Allergy Clin. Immunol. 145, 16–27 (2020).

35

Falcao, A. & Bullon, P. A review of the influence of periodontal treatment in systemic diseases. Periodontology 79, 117–128 (2019).

36

Zhang, Z. et al. Porphyromonas gingivalis outer membrane vesicles inhibit the invasion of Fusobacterium nucleatum into oral epithelial cells by downregulating FadA and FomA. J. Periodontol. https://doi.org/10.1002/JPER.21-0144 (2021).

37

Kato, T. et al. Oral administration of Porphyromonas gingivalis alters the gut microbiome and serum metabolome. mSphere 3, e00460–00418 (2018).

38

Liu, H. et al. Fusobacterium nucleatum exacerbates colitis by damaging epithelial barriers and inducing aberrant inflammation. J. Dig. Dis. 21, 385–398 (2020).

39

Li, Y., Shao, F., Zheng, S., Tan, Z. & He, Y. Alteration of Streptococcus salivarius in buccal mucosa of oral lichen planus and controlled clinical trial in OLP treatment. Probiot. Antimicrob. Proteins 12, 1340–1348 (2020).

40

Yin, W. et al. Inverse association between poor oral health and inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 15, 525–531 (2017).

41

Ito, S. et al. Specific strains of Streptococcus mutans, a pathogen of dental caries, in the tonsils, are associated with IgA nephropathy. Sci. Rep. 9, 20130 (2019).

42

Qi, Y. et al. New insights into the role of oral microbiota dysbiosis in the pathogenesis of inflammatory bowel disease. Digest. Dis. Sci. 67, 42–55 (2022).

43

Xiao, J., Fiscella, K. A. & Gill, S. R. Oral microbiome: possible harbinger for children’s health. Int. J. Oral Sci. 12, 12 (2020).

44

Xun, Z., Zhang, Q., Xu, T., Chen, N. & Chen, F. Dysbiosis and ecotypes of the salivary microbiome associated with inflammatory bowel diseases and the assistance in diagnosis of diseases using oral bacterial profiles. Front. Microbiol. 9, 1136 (2018).

45

Goel, R. M. et al. Streptococcus salivarius: a potential salivary biomarker for orofacial granulomatosis and Crohn’s disease? Inflamm. Bowel Dis. 25, 1367–1374 (2019).

46

Purcell, R. V., Kaakoush, N. O., Mitchell, H. M., Pearson, J. F. & Keenan, J. I. Gastrointestinal pathobionts in pediatric Crohn’s disease patients. Int. J. Microbiol. 2018, 9203908 (2018).

47

Castano-Rodriguez, N., Kaakoush, N. O., Lee, W. S. & Mitchell, H. M. Dual role of Helicobacter and Campylobacter species in IBD: a systematic review and meta-analysis. Gut 66, 235–249 (2017).

48

Brennan, C. A. et al. Aspirin modulation of the colorectal cancer-associated microbe Fusobacterium nucleatum. mBio 12, e00547–00521 (2021).

49

Yamashita, T., Tai, S., Tsukahara, T. & Inoue, R. Fusobacterium nucleatum impedes remission of colitis in a mouse model. Biosci. Biotechnol. Biochem. 85, 1235–1242 (2021).

50

Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum—symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 17, 156–166 (2019).

51

Kitamoto, S. et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 182, 447–462 e414 (2020).

52

Inohara, N. Route connection: mouth to intestine in colitis. Cell Host Microbe 22, 730–731 (2017).

53

Kitamoto, S., Nagao-Kitamoto, H., Hein, R., Schmidt, T. M. & Kamada, N. The bacterial connection between the oral cavity and the gut diseases. J. Dent. Res. 99, 1021–1029 (2020).

54

Moutsopoulos, N. M. & Konkel, J. E. Tissue-specific immunity at the oral mucosal barrier. Trends Immunol. 39, 276–287 (2018).

55

Lu, H. et al. Deep sequencing reveals microbiota dysbiosis of tongue coat in patients with liver carcinoma. Sci. Rep. 6, 33142 (2016).

56

Lu, H. et al. Deep sequencing reveals microbiota dysbiosis tongue coat. Patients Liver Carcinoma 6, 1–11 (2016).

57

Iwasaki, T. et al. Correlation between ultrasound-diagnosed non-alcoholic fatty liver and periodontal condition in a cross-sectional study in Japan. Sci. Rep. 8, 7496 (2018).

58

Sasaki, N. et al. Endotoxemia by Porphyromonas gingivalis injection aggravates non-alcoholic fatty liver disease, disrupts glucose/lipid metabolism, and alters gut microbiota in mice. Front. Microbiol. 9, 2470 (2018).

59

Alakhali, M. S., Al-Maweri, S. A., Al-Shamiri, H. M., Al-Haddad, K. & Halboub, E. The potential association between periodontitis and non-alcoholic fatty liver disease: a systematic review. Clin. Oral Investig. 22, 2965–2974 (2018).

60

Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

61

Blasco-Baque, V. et al. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut 66, 872–885 (2017).

62

Zhong, X. et al. Oral microbiota alteration associated with oral cancer and areca chewing. Oral. Dis. 27, 226–239 (2021).

63

Zhang, X., Li, C., Cao, W. & Zhang, Z. Alterations of gastric microbiota in gastric cancer and precancerous stages. Front. Cell Infect. Microbiol. 11, 559148 (2021).

64

Zanetta, P. et al. Oral microbiota and vitamin D impact on oropharyngeal squamous cell carcinogenesis: a narrative literature review. Crit. Rev. Microbiol. 47, 224–239 (2021).

65

Sarkar, P. et al. Dysbiosis of oral microbiota during oral squamous cell carcinoma development. Front. Oncol. 11, 614448 (2021).

66

Wang, J., Jia, Z., Zhang, B., Peng, L. & Zhao, F. Tracing the accumulation of in vivo human oral microbiota elucidates microbial community dynamics at the gateway to the GI tract. Gut 69, 1355–1356 (2020).

67

Teles, F. R. F., Alawi, F., Castilho, R. M. & Wang, Y. Association or causation? Exploring the oral microbiome and cancer links. J. Dent. Res. 99, 1411–1424 (2020).

68

Kakabadze, M. Z., Paresishvili, T., Karalashvili, L., Chakhunashvili, D. & Kakabadze, Z. Oral microbiota and oral cancer: review. Oncol. Rev. 14, 476 (2020).

69

Fan, X. et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 67, 120–127 (2018).

70

Peters, B. A. et al. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 77, 6777–6787 (2017).

71

Han, Y. W. Commentary: oral bacteria as drivers for colorectal cancer. J. Periodontol. 85, 1155–1157 (2014).

72

Gur, C. et al. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1. Oncoimmunology 8, e1581531 (2019).

73

Zhang, L., Liu, Y., Zheng, H. J. & Zhang, C. P. The oral microbiota may have influence on oral cancer. Front. Cell Infect. Microbiol. 9, 476 (2019).

74

Zhou, X. et al. The clinical potential of oral microbiota as a screening tool for oral squamous cell carcinomas. Front. Cell Infect. Microbiol. 11, 728933 (2021).

75

Lim, Y., Totsika, M., Morrison, M. & Punyadeera, C. Oral microbiome: a new biomarker reservoir for oral and oropharyngeal cancers. Theranostics 7, 4313–4321 (2017).

76

Hussein, A. A. et al. Global incidence of oral and oropharynx cancer in patients younger than 45 years versus older patients: a systematic review. Eur. J. Cancer 82, 115–127 (2017).

77

Islami, F. et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J. Clin. 68, 31–54 (2018).

78

Irani, S. New insights into oral cancer-risk factors and prevention: a review of literature. Int. J. Prev. Med. 11, 202 (2020).

79

Wen, L. et al. Porphyromonas gingivalis promotes oral squamous cell carcinoma progression in an immune microenvironment. J. Dent. Res. 99, 666–675 (2020).

80

Zhang, S. et al. Analysis of differentially expressed genes in oral epithelial cells infected with Fusobacterium nucleatum for revealing genes associated with oral cancer. J. Cell Mol. Med. 25, 892–904 (2021).

81

Kamarajan, P. et al. Periodontal pathogens promote cancer aggressivity via TLR/MyD88 triggered activation of Integrin/FAK signaling that is therapeutically reversible by a probiotic bacteriocin. PLoS Pathog. 16, e1008881 (2020).

82

Fitzsimonds, Z. R., Rodriguez-Hernandez, C. J., Bagaitkar, J. & Lamont, R. J. From beyond the pale to the pale riders: the emerging association of bacteria with oral cancer. J. Dent. Res. 99, 604–612 (2020).

83

Sankari, S. L., Mahalakshmi, K. & Kumar, V. N. A comparative study of Candida species diversity among patients with oral squamous cell carcinoma and oral potentially malignant disorders. BMC Res. Notes 13, 488 (2020).

84

Lafuente Ibanez de Mendoza, I., Maritxalar Mendia, X., Garcia de la Fuente, A. M., Quindos Andres, G. & Aguirre Urizar, J. M. Role of Porphyromonas gingivalis in oral squamous cell carcinoma development: a systematic review. J. Periodontal Res. 55, 13–22 (2020).

85

Liu, S. et al. Porphyromonas gingivalis promotes immunoevasion of oral cancer by protecting cancer from macrophage attack. J. Immunol. 205, 282–289 (2020).

86

Chen, Q. et al. Salivary Porphyromonas gingivalis predicts outcome in oral squamous cell carcinomas: a cohort study. BMC Oral Health 21, 228 (2021).

87

Torralba, M. G. et al. Oral microbial species and virulence factors associated with oral squamous cell carcinoma. Microb. Ecol. 82, 1030–1046 (2021).

88

Li, Q. et al. Role of oral bacteria in the development of oral squamous cell carcinoma. Cancers 12, 2797 (2020).

89

Chen, M. Y. et al. Carcinogenesis of male oral submucous fibrosis alters salivary microbiomes. J. Dent. Res. 100, 397–405 (2021).

90

Alizadehgharib, S., Ostberg, A. K., Dahlstrand Rudin, A., Dahlgren, U. & Christenson, K. Immunological response of human leucocytes after exposure to lipopolysaccharides from Porphyromonas gingivalis. Clin. Exp. Dent. Res. 7, 531–538 (2021).

91

Elsayed, R. et al. Porphyromonas gingivalis provokes exosome secretion and paracrine immune senescence in bystander dendritic cells. Front. Cell Infect. Microbiol. 11, 669989 (2021).

92

Ren, L., Yang, J., Wang, J., Zhou, X. & Liu, C. The roles of FOXO1 in periodontal homeostasis and disease. J. Immunol. Res. 2021, 5557095 (2021).

93

Aral, K., Milward, M. R. & Cooper, P. R. Gene expression profiles of mitochondria-endoplasmic reticulum tethering in human gingival fibroblasts in response to periodontal pathogens. Arch. Oral Biol. 128, 105173 (2021).

94

Vyhnalova, T., Danek, Z., Gachova, D. & Linhartova, P. B. The role of the oral microbiota in the etiopathogenesis of oral squamous cell carcinoma. Microorganisms 9, 1549 (2021).

95

Moura, M. F. et al. Nonsurgical periodontal therapy decreases the severity of rheumatoid arthritis and the plasmatic and salivary levels of RANKL and Survivin: a short-term clinical study. Clin. Oral Investig. 25, 6643–6652 (2021).

96

Elazazy, O., Amr, K., Abd El Fattah, A. & Abouzaid, M. Evaluation of serum and gingival crevicular fluid microRNA-223, microRNA-203 and microRNA-200b expression in chronic periodontitis patients with and without diabetes type 2. Arch. Oral Biol. 121, 104949 (2021).

97

Chopra, A., Bhat, S. G. & Sivaraman, K. Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update. J. Oral Microbiol. 12, 1801090 (2020).

98

Zheng, S. et al. Porphyromonas gingivalis survival skills: immune evasion. J. Periodontal Res. 56, 1007–1018 (2021).

99

Meng, F. et al. Porphyromonas gingivalis promotes the motility of esophageal squamous cell carcinoma by activating NF-kappaB signaling pathway. Microbes Infect. 21, 296–304 (2019).

100

Guo, W. et al. Pyruvate kinase M2 promotes prostate cancer metastasis through regulating ERK1/2-COX-2 signaling. Front. Oncol. 10, 544288 (2020).

101

de Vicente, J. C. et al. PD-L1 expression in tumor cells is an independent unfavorable prognostic factor in oral squamous cell carcinoma. Cancer Epidemiol. Biomark. Prev. 28, 546–554 (2019).

102

Groeger, S., Denter, F., Lochnit, G., Schmitz, M. L. & Meyle, J. Porphyromonas gingivalis cell wall components induce programmed death ligand 1 (PD-L1) expression on human oral carcinoma cells by a receptor-interacting protein kinase 2 (RIP2)-dependent mechanism. Infect. Immun. 88, e00051–00020 (2020).

103

Pontarollo, G. et al. Protease-activated receptor signaling in intestinal permeability regulation. FEBS J. 287, 645–658 (2020).

104

Zhang, L. et al. The virulence factor GroEL promotes gelatinase secretion from cells in the osteoblast lineage: Implication for direct crosstalk between bacteria and adult cells. Arch. Oral Biol. 122, 104991 (2021).

105

Mu, W. et al. Intracellular Porphyromonas gingivalis promotes the proliferation of colorectal cancer cells via the MAPK/ERK signaling pathway. Front. Cell Infect. Microbiol. 10, 584798 (2020).

106

Binder Gallimidi, A. et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 6, 22613–22623 (2015).

107

Harrandah, A. M., Chukkapalli, S. S., Bhattacharyya, I., Progulske-Fox, A. & Chan, E. K. L. Fusobacteria modulate oral carcinogenesis and promote cancer progression. J. Oral. Microbiol. 13, 1849493 (2020).

108

Stasiewicz, M. & Karpinski, T. M. The oral microbiota and its role in carcinogenesis. Semin. Cancer Biol. (2021).

109

Nieminen, M. T. et al. Treponema denticola chymotrypsin-like proteinase may contribute to orodigestive carcinogenesis through immunomodulation. Br. J. Cancer 118, 428–434 (2018).

110

Listyarifah, D. et al. Treponema denticola chymotrypsin-like proteinase is present in early-stage mobile tongue squamous cell carcinoma and related to the clinicopathological features. J. Oral Pathol. Med. 47, 764–772 (2018).

111

Asgarian, F. S., Mahdian, M. & Amori, N. Epidemiology and trends of gastrointestinal cancer in Iran (2004-2008). J. Cancer Res. Ther. 17, 963–968 (2021).

112

He, F. et al. Esophageal cancer: trends in incidence and mortality in China from 2005 to 2015. Cancer Med. 10, 1839–1847 (2021).

113

Nwizu, N., Wactawski-Wende, J. & Genco, R. J. Periodontal disease and cancer: epidemiologic studies and possible mechanisms. Periodontol 2000 83, 213–233 (2020).

114

Narikiyo, M. et al. Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci. 95, 569–574 (2004).

115

Chen, X. et al. Oral microbiota and risk for esophageal squamous cell carcinoma in a high-risk area of China. PLoS ONE 10, e0143603 (2015).

116

Gao, S. G. et al. Preoperative serum immunoglobulin G and A antibodies to Porphyromonas gingivalis are potential serum biomarkers for the diagnosis and prognosis of esophageal squamous cell carcinoma. BMC Cancer 18, 17 (2018).

117

Gao, S. et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect. Agent Cancer 11, 3 (2016).

118

Chang, J. S., Tsai, C. R., Chen, L. T. & Shan, Y. S. Investigating the association between periodontal disease and risk of pancreatic cancer. Pancreas 45, 134–141 (2016).

119

Torres, P. J. et al. Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ 3, e1373 (2015).

120

Wang, S. et al. Fusobacterium nucleatum acts as a pro-carcinogenic bacterium in colorectal cancer: from association to causality. Front Cell Dev. Biol. 9, 710165 (2021).

121

Keum, N. & Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 16, 713–732 (2019).

122

Pignatelli, P. et al. The potential of colonic tumor tissue Fusobacterium nucleatum to predict staging and its interplay with oral abundance in colon cancer patients. Cancers 13, 1032 (2021).

123

Todd, S. M., Settlage, R. E., Lahmers, K. K. & Slade, D. J. Fusobacterium genomics using MinION and illumina sequencing enables genome completion and correction. mSphere 3, e00269–18 (2018).

124

Yusuf, E., Wybo, I. & Pierard, D. Case series of patients with Fusobacterium nucleatum bacteremia with emphasis on the presence of cancer. Anaerobe 39, 1–3 (2016).

125

Shin, J. et al. Antibody and T cell responses to Fusobacterium nucleatum and Treponema denticola in health and chronic periodontitis. PLoS ONE 8, e53703 (2013).

126

Hashemi Goradel, N. et al. Fusobacterium nucleatum and colorectal cancer: a mechanistic overview. J. Cell. Physiol. 234, 2337–2344 (2019).

127

Nabel, E. G. Cardiovascular disease. N. Engl. J. Med. 349, 60–72 (2003).

128

Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019).

129

Beck, J. D. & Offenbacher, S. Systemic effects of periodontitis: epidemiology of periodontal disease and cardiovascular disease. J. Periodontol. 76, 2089–2100 (2005).

130

Tonetti, M. S. & Van Dyke, T. E., working group 1 of the joint, E.F.P.A.A.P.w. Periodontitis and atherosclerotic cardiovascular disease: consensus report of the Joint EFP/AAPWorkshop on Periodontitis and Systemic Diseases. J. Periodontol. 84, S24–S29 (2013).

131

Persson, G. R. & Persson, R. E. Cardiovascular disease and periodontitis: an update on the associations and risk. J. Clin. Periodontol. 35, 362–379 (2008).

132

Forner, L., Nielsen, C. H., Bendtzen, K., Larsen, T. & Holmstrup, P. Increased plasma levels of IL-6 in bacteremic periodontis patients after scaling. J. Clin. Periodontol. 33, 724–729 (2006).

133

Zheng, X. Y. et al. Plumbagin suppresses chronic periodontitis in rats via down-regulation of TNF-alpha, IL-1beta and IL-6 expression. Acta Pharm. Sin. 38, 1150–1160 (2017).

134

Marietta, E., Horwath, I., Balakrishnan, B. & Taneja, V. Role of the intestinal microbiome in autoimmune diseases and its use in treatments. Cell Immunol. 339, 50–58 (2019).

135

Zardawi, F., Gul, S., Abdulkareem, A., Sha, A. & Yates, J. Association between periodontal disease and atherosclerotic cardiovascular diseases: revisited. Front. Cardiovasc. Med. 7, 625579 (2020).

136

Herrera, D., Molina, A., Buhlin, K. & Klinge, B. Periodontal diseases and association with atherosclerotic disease. Periodontology 83, 66–89 (2020).

137

Martini, A. M. et al. Association of novel Streptococcus sanguinis virulence factors with pathogenesis in a native valve infective endocarditis model. Front. Microbiol. 11, 10 (2020).

138

Chamat-Hedemand, S. et al. Prevalence of infective endocarditis in Streptococcal bloodstream infections is dependent on streptococcal species. Circulation 142, 720–730 (2020).

139

Schoffer, C., Oliveira, L. M., Santi, S. S., Antoniazzi, R. P. & Zanatta, F. B. C-reactive protein levels are associated with periodontitis and periodontal inflamed surface area in adults with end-stage renal disease. J. Periodontol. 92, 793–802 (2021).

140

Liu, Y. et al. The combined use of salivary biomarkers and clinical parameters to predict the outcome of scaling and root planing: a cohort study. J. Clin. Periodontol. 47, 1379–1390 (2020).

141

Brun, A. et al. Innovative application of nested PCR for detection of Porphyromonas gingivalis in human highly calcified atherothrombotic plaques. J. Oral. Microbiol. 12, 1742523 (2020).

142

Chiu, C. J., Chang, M. L., Kantarci, A., Van Dyke, T. E. & Shi, W. Exposure to Porphyromonas gingivalis and modifiable risk factors modulate risk for early diabetic retinopathy. Transl. Vis. Sci. Technol. 10, 23 (2021).

143

Cairo, F. et al. Periodontal pathogens in atheromatous plaques. A controlled clinical and laboratory trial. J. Periodontal Res. 39, 442–446 (2004).

144

Khumaedi, A. I., Purnamasari, D., Wijaya, I. P. & Soeroso, Y. The relationship of diabetes, periodontitis and cardiovascular disease. Diabetes Metab. Syndr. 13, 1675–1678 (2019).

145

Xuan, Y. et al. Tanshinone IIA attenuates atherosclerosis in apolipoprotein E knockout mice infected with Porphyromonas gingivalis. Inflammation 40, 1631–1642 (2017).

146

Li, L., Messas, E., Batista, E. L. Jr, Levine, R. A. & Amar, S. Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model. Circulation 105, 861–867 (2002).

147

Genco, R., Offenbacher, S. & Beck, J. Periodontal disease and cardiovascular disease: epidemiology and possible mechanisms. J. Am. Dent. Assoc. 133, 14S–22S (2002).

148

Bartova, J. et al. Periodontitis as a risk factor of atherosclerosis. J. Immunol. Res. 2014, 636893 (2014).

149

Isola, G., Polizzi, A., Alibrandi, A., Williams, R. C. & Lo Giudice, A. Analysis of galectin-3 levels as a source of coronary heart disease risk during periodontitis. J. Periodontal Res. 56, 597–605 (2021).

150

Isola, G., Polizzi, A., Alibrandi, A., Williams, R. C. & Leonardi, R. Independent impact of periodontitis and cardiovascular disease on elevated soluble urokinase-type plasminogen activator receptor (suPAR) levels. J. Periodontol. 92, 896–906 (2021).

151

Kamer, A. R., Craig, R. G., Niederman, R., Fortea, J. & de Leon, M. J. Periodontal disease as a possible cause for Alzheimer’s disease. Periodontology 83, 242–271 (2020).

152

Lin, L. et al. Resilience to Plasma and Cerebrospinal Fluid Amyloid-beta in Cognitively Normal Individuals: Findings From Two Cohort Studies. Front. Aging Neurosci. 13, 610755 (2021).

153

Werber, T. et al. The association of periodontitis and Alzheimer’s disease: how to hit two birds with one stone. J. Alzheimers Dis. 84, 1–21 (2021).

154

Paganini-Hill, A., White, S. C. & Atchison, K. A. Dentition, dental health habits, and dementia: the Leisure World Cohort Study. J. Am. Geriatr. Soc. 60, 1556–1563 (2012).

155

Noble, J. M. et al. Periodontitis is associated with cognitive impairment among older adults: analysis of NHANES-Ⅲ. J. Neurol. Neurosurg. Psychiatry 80, 1206–1211 (2009).

156

Dominy, S. S. et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 5, eaau3333 (2019).

157

Zeng, F. et al. Receptor for advanced glycation end products up-regulation in cerebral endothelial cells mediates cerebrovascular-related amyloid beta accumulation after Porphyromonas gingivalis infection. J. Neurochem. 158, 724–736 (2021).

158

Stephan, A. & Phillips, A. G. A case for a non-transgenic animal model of Alzheimer’s disease. Genes Brain Behav. 4, 157–172 (2005).

159

Kook, S. Y. et al. High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell Death Dis. 5, e1083 (2014).

160
Horowitz, M., Horowitz, M., Ochs, M., Carrau, R. & Kassam, A. Trigeminal neuralgia and glossopharyngeal neuralgia: two orofacial pain syndromes encountered by dentists. J. Am. Dent. Assoc. 135, 1427–1433 (2004). quiz 1468.
161
Association, A. D., Vol. Suppl 1, 1–2 (American Diabetes Association, Diabetes Care; 2019).
162

Genco, R. J., Graziani, F. & Hasturk, H. Effects of periodontal disease on glycemic control, complications, and incidence of diabetes mellitus. Periodontology 83, 59–65 (2020).

163

Nguyen, A. T. M. et al. The association of periodontal disease with the complications of diabetes mellitus. A systematic review. Diabetes Res. Clin. Pract. 165, 108244 (2020).

164

Matsha, T. et al. Oral microbiome signatures in diabetes mellitus and periodontal disease. J. Dent. Res. 99, 658–665 (2020).

165

Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host-microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 18, 521–538 (2020).

166

Isola, G. et al. Identification of the different salivary Interleukin-6 profiles in patients with periodontitis: a cross-sectional study. Arch. Oral. Biol. 122, 104997 (2021).

167

Jia, L. et al. Pathogenesis of important virulence factors of Porphyromonas gingivalis via toll-like receptors. Front. Cell Infect. Microbiol. 9, 262 (2019).

168

Mattera, M. et al. Effect of maternal periodontitis on GLUT4 and inflammatory pathway in adult offspring. J. Periodontol. 90, 884–893 (2019).

169

Bhat, U. G., Ilievski, V., Unterman, T. G. & Watanabe, K. Porphyromonas gingivalis lipopolysaccharide upregulates insulin secretion from pancreatic beta cell line MIN6. J. Periodontol. 85, 1629–1636 (2014).

170

Maritim, A. C., Sanders, R. A. & Watkins, J. B. 3rd Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol. 17, 24–38 (2003).

171

Yaribeygi, H., Sathyapalan, T., Atkin, S. L. & Sahebkar, A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell. Longev. 2020, 8609213 (2020).

172

Torrungruang, K., Katudat, D., Mahanonda, R., Sritara, P. & Udomsak, A. Periodontitis is associated with elevated serum levels of cardiac biomarkers-Soluble ST2 and C-reactive protein. J. Clin. Periodontol. 46, 809–818 (2019).

173

Wang, Y. et al. A randomized controlled trial of the effects of non-surgical periodontal therapy on cardiac function assessed by echocardiography in type 2 diabetic patients. J. Clin. Periodontol. 47, 726–736 (2020).

174

Aletaha, D. & Smolen, J. S. Diagnosis and management of rheumatoid arthritis: a review. J. Am. Med. Assoc. 320, 1360–1372 (2018).

175

Hollenbach, J. A. et al. A specific amino acid motif of HLA-DRB1 mediates risk and interacts with smoking history in Parkinson’s disease. Proc. Natl Acad. Sci. USA 116, 7419–7424 (2019).

176

Sakkas, L. I., Daoussis, D., Liossis, S. N. & Bogdanos, D. P. The infectious basis of ACPA-positive rheumatoid arthritis. Front. Microbiol. 8, 1853 (2017).

177

Munoz-Atienza, E. et al. The P. gingivalis autocitrullinome is not a target for ACPA in early rheumatoid arthritis. J. Dent. Res. 99, 456–462 (2020).

178

Potempa, J., Mydel, P. & Koziel, J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 606–620 (2017).

179

Gomez-Banuelos, E., Mukherjee, A., Darrah, E. & Andrade, F. Rheumatoid arthritis-associated mechanisms of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. J. Clin. Med. 8, 1309 (2019).

180

Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

181

Vogel, J. P. et al. The global epidemiology of preterm birth. Best. Pract. Res. Clin. Obstet. Gynaecol. 52, 3–12 (2018).

182

Chen, C. et al. Preterm birth in China between 2015 and 2016. Am. J. Public Health 109, 1597–1604 (2019).

183

Walani, S. R. Global burden of preterm birth. Int. J. Gynaecol. Obstet. 150, 31–33 (2020).

184

Fardini, Y., Chung, P., Dumm, R., Joshi, N. & Han, Y. W. Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect. Immun. 78, 1789–1796 (2010).

185

Chopra, A., Radhakrishnan, R. & Sharma, M. Porphyromonas gingivalis and adverse pregnancy outcomes: a review on its intricate pathogenic mechanisms. Crit. Rev. Microbiol. 46, 213–236 (2020).

186

Latorre Uriza, C. et al. Periodontal disease, inflammatory cytokines, and PGE2 in pregnant patients at risk of preterm delivery: a pilot study. Infect. Dis. Obstet. Gynecol. 2018, 7027683 (2018).

187

Lin, D., Moss, K., Beck, J. D., Hefti, A. & Offenbacher, S. Persistently high levels of periodontal pathogens associated with preterm pregnancy outcome. J. Periodontol. 78, 833–841 (2007).

188

Barak, S., Oettinger-Barak, O., Machtei, E. E., Sprecher, H. & Ohel, G. Evidence of periopathogenic microorganisms in placentas of women with preeclampsia. J. Periodontol. 78, 670–676 (2007).

189

Liu, H., Redline, R. W. & Han, Y. W. Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response. J. Immunol. 179, 2501–2508 (2007).

190

Fox, C. & Eichelberger, K. Maternal microbiome and pregnancy outcomes. Fertil. Steril. 104, 1358–1363 (2015).

International Journal of Oral Science
Article number: 14
Cite this article:
Peng X, Cheng L, You Y, et al. Oral microbiota in human systematic diseases. International Journal of Oral Science, 2022, 14: 14. https://doi.org/10.1038/s41368-022-00163-7

134

Views

1

Downloads

205

Crossref

188

Web of Science

201

Scopus

Altmetrics

Received: 29 September 2021
Revised: 06 January 2022
Accepted: 09 January 2022
Published: 02 March 2022
© The Author(s) 2022

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return