AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation

Yunfeng Lin1 ( )Qian Li2Lihua Wang3Quanyi Guo4Shuyun Liu4Shihui Zhu5Yu Sun5Yujiang Fan6Yong Sun7Haihang Li8Xudong Tian8Delun Luo9Sirong Shi1( )
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Zhangjiang Laboratory, Shanghai, China
Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
College of Biomedical Engineering, Sichuan University, Chengdu, China
Jiangsu Trautec Medical Technology Company Limited, Changzhou, China
Chengdu Jingrunze Gene Technology Company Limited, Chengdu, China
Show Author Information

Abstract

With the emergence of DNA nanotechnology in the 1980s, self-assembled DNA nanostructures have attracted considerable attention worldwide due to their inherent biocompatibility, unsurpassed programmability, and versatile functions. Especially promising nanostructures are tetrahedral framework nucleic acids (tFNAs), first proposed by Turberfield with the use of a one-step annealing approach. Benefiting from their various merits, such as simple synthesis, high reproducibility, structural stability, cellular internalization, tissue permeability, and editable functionality, tFNAs have been widely applied in the biomedical field as three-dimensional DNA nanomaterials. Surprisingly, tFNAs exhibit positive effects on cellular biological behaviors and tissue regeneration, which may be used to treat inflammatory and degenerative diseases. According to their intended application and carrying capacity, tFNAs could carry functional nucleic acids or therapeutic molecules through extended sequences, sticky-end hybridization, intercalation, and encapsulation based on the Watson and Crick principle. Additionally, dynamic tFNAs also have potential applications in controlled and targeted therapies. This review summarized the latest progress in pure/modified/dynamic tFNAs and demonstrated their regenerative medicine applications. These applications include promoting the regeneration of the bone, cartilage, nerve, skin, vasculature, or muscle and treating diseases such as bone defects, neurological disorders, joint-related inflammatory diseases, periodontitis, and immune diseases.

References

1

Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

2

Broker, T. R. & Lehman, I. R. Branched DNA molecules: intermediates in T4 recombination. J. Mol. Biol. 60, 131–149 (1971).

3

Jones, M. R., Seeman, N. C. & Mirkin, C. A. Nanomaterials. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

4

Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

5

Massich, M. D. et al. Regulating immune response using polyvalent nucleic acid-gold nanoparticle conjugates. Mol. Pharm. 6, 1934–1940 (2009).

6

Chiu, Y. T. E., Li, H. & Choi, C. H. J. Progress toward understanding the interactions between DNA nanostructures and the cell. Small 15, e1805416 (2019).

7

Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).

8

Ponnuswamy, N. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 8, 15654 (2017).

9

Agarwal, N. P., Matthies, M., Gur, F. N., Osada, K. & Schmidt, T. L. Block copolymer micellization as a protection strategy for DNA origami. Angew. Chem. Int Ed. Engl. 56, 5460–5464 (2017).

10

Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

11

Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

12

Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

13

Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

14

Frank-Kamenetskii, M. D. & Mirkin, S. M. Triplex DNA structures. Annu. Rev. Biochem. 64, 65–95 (1995).

15

Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

16

Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

17

Fu, J., Liu, M., Liu, Y. & Yan, H. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. Acc. Chem. Res. 45, 1215–1226 (2012).

18

Wang, X. et al. Paranemic crossover DNA: there and back again. Chem. Rev. 119, 6273–6289 (2019).

19

Loescher, S., Groeer, S. & Walther, A. 3D DNA origami nanoparticles: from basic design principles to emerging applications in soft matter and (bio-)nanosciences. Angew. Chem. Int Ed. Engl. 57, 10436–10448 (2018).

20

Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

21

Torring, T., Voigt, N. V., Nangreave, J., Yan, H. & Gothelf, K. V. DNA origami: a quantum leap for self-assembly of complex structures. Chem. Soc. Rev. 40, 5636–5646 (2011).

22

Rosi, N. L. et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027–1030 (2006).

23

Juul, S. et al. Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage. ACS Nano 7, 9724–9734 (2013).

24

Yu, Z., Li, N., Zheng, P., Pan, W. & Tang, B. Temperature-responsive DNA-gated nanocarriers for intracellular controlled release. Chem. Commun. 50, 3494–3497 (2014).

25

Elbaz, J., Wang, F., Remacle, F. & Willner, I. pH-programmable DNA logic arrays powered by modular DNAzyme libraries. Nano Lett. 12, 6049–6054 (2012).

26

Liu, Z., Li, Y., Tian, C. & Mao, C. A smart DNA tetrahedron that isothermally assembles or dissociates in response to the solution pH value changes. Biomacromolecules 14, 1711–1714 (2013).

27

Idili, A., Vallee-Belisle, A. & Ricci, F. Programmable pH-triggered DNA nanoswitches. J. Am. Chem. Soc. 136, 5836–5839 (2014).

28

Yao, D. et al. A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles. Chem. Commun. 52, 7556–7559 (2016).

29

Porchetta, A., Vallee-Belisle, A., Plaxco, K. W. & Ricci, F. Allosterically tunable, DNA-based switches triggered by heavy metals. J. Am. Chem. Soc. 135, 13238–13241 (2013).

30

Aizen, R. et al. G-quadruplex-stimulated optical and electrocatalytic DNA switches. Small 11, 3654–3658 (2015).

31

Ge, B., Huang, Y. C., Sen, D. & Yu, H. Z. A robust electronic switch made of immobilized duplex/quadruplex. DNA. Angew. Chem. Int. Ed. Engl. 49, 9965–9967 (2010).

32

Xu, W., Deng, R., Wang, L. & Li, J. Multiresponsive rolling circle amplification for DNA logic gates mediated by endonuclease. Anal. Chem. 86, 7813–7818 (2014).

33

Banerjee, A. et al. Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. Angew. Chem. Int. Ed. Engl. 52, 6854–6857 (2013).

34

Pei, H. et al. Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. Angew. Chem. Int Ed. Engl. 51, 9020–9024 (2012).

35

Zhu, J., Li, T., Zhang, L., Dong, S. & Wang, E. G-quadruplex DNAzyme based molecular catalytic beacon for label-free colorimetric logic gates. Biomaterials 32, 7318–7324 (2011).

36

Lo, P. K. et al. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat. Chem. 2, 319–328 (2010).

37

Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

38

Goodman, R. P. et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat. Nanotechnol. 3, 93–96 (2008).

39

Wang, Y., Santos, A., Evdokiou, A. & Losic, D. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. J. Mater. Chem. B 3, 7153–7172 (2015).

40

Khanna, P., Ong, C., Bay, B. H. & Baeg, G. H. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials (Basel) 5, 1163–1180 (2015).

41

Fischer, H. C. & Chan, W. C. Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotechnol. 18, 565–571 (2007).

42

Inal, S., Rivnay, J., Suiu, A. O., Malliaras, G. G. & McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res. 51, 1368–1376 (2018).

43

Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

44

Seeman, N. C. An overview of structural DNA nanotechnology. Mol. Biotechnol. 37, 246–257 (2007).

45

He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).

46

Wang, F., Lu, C. H. & Willner, I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem. Rev. 114, 2881–2941 (2014).

47

Dunn, M. R., Jimenez, R. M. & Chaput, J. C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 1, 0076 (2017).

48

Yang, D. et al. DNA materials: bridging nanotechnology and biotechnology. Acc. Chem. Res. 47, 1902–1911 (2014).

49

Liang, H. et al. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res. 47, 1891–1901 (2014).

50

Goodman, R. P., Berry, R. M. & Turberfield, A. J. The single-step synthesis of a DNA tetrahedron. Chem. Commun. 12, 1372–1373 (2004).

51

Liang, L. et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed. Engl. 53, 7745–7750 (2014).

52

Lin, S. et al. Tetrahedral DNA nanomaterial regulates the biological behaviors of adipose-derived stem cells via DNA methylation on Dlg3. ACS Appl. Mater. Interfaces 10, 32017–32025 (2018).

53

Peng, Q. et al. Understanding the biomedical effects of the self-assembled tetrahedral DNA nanostructure on living cells. ACS Appl. Mater. Interfaces 8, 12733–12739 (2016).

54

Shi, S. et al. Self-assembled tetrahedral DNA nanostructures promote adipose-derived stem cell migration via lncRNA XLOC 010623 and RHOA/ROCK2 signal pathway. ACS Appl. Mater. Interfaces 8, 19353–19363 (2016).

55

Shi, S. et al. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes. Chem. Commun. 54, 1327–1330 (2018).

56

Li, J. et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5, 8783–8789 (2011).

57

Zhang, Y. et al. Multitargeted antisense oligonucleotide delivery by a framework nucleic acid for inhibiting biofilm formation and virulence. Nano-Micro Lett. 12, 13 (2020).

58

Li, Q. et al. Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug delivery. ACS Appl. Mater. Interfaces 9, 36695–36701 (2017).

59

Xiao, D. et al. Tetrahedral framework nucleic acids loaded with aptamer AS1411 for siRNA delivery and gene silencing in malignant melanoma. ACS Appl. Mater. Interfaces 13, 6109–6118 (2021).

60

Shi, S. et al. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res. 8, 6 (2020).

61

Mei, Z. A. et al. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact. Mater. 8, 368–380 (2021).

62

Li, D. et al. Delivery of MiR335-5p-pendant tetrahedron DNA nanostructures using an injectable heparin lithium hydrogel for challenging bone defects in steroid-associated osteonecrosis. Adv. Healthc. Mater. 11, e2101412 (2022).

63

Li, S. et al. Bioswitchable delivery of microRNA by framework nucleic acids: application to bone regeneration. Small 17, e2104359 (2021).

64

Meng, L. et al. Tetrahedral DNA nanostructure-delivered DNAzyme for gene silencing to suppress cell growth. ACS Appl. Mater. Interfaces 11, 6850–6857 (2019).

65

Lin, M. et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem. Int. Ed. Engl. 54, 2151–2155 (2015).

66

Wiraja, C. et al. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat. Commun. 10, 1147 (2019).

67

Chen, X. et al. Size-independent transmembrane transporting of single tetrahedral DNA nanostructures. Glob. Chall. 4, 1900075 (2020).

68

Shi, S. et al. Biological effect of differently sized tetrahedral framework nucleic acids: endocytosis, proliferation, migration, and biodistribution. ACS Appl. Mater. Interfaces 13, 57067–57074 (2021).

69

Zhilei et al. Concept and development of framework nucleic acids. J. Am. Chem. Soc. 140, 17808–17819 (2018).

70

Veneziano, R. et al. Designer nanoscale DNA assemblies programmed from the top down. Science 352, 1534 (2016).

71

Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

72

Ko, S. H., Liu, H., Chen, Y. & Mao, C. DNA nanotubes as combinatorial vehicles for cellular delivery. Biomacromolecules 9, 3039 (2008).

73

Walsh, A. S., Yin, H., Erben, C. M., Wood, M. J. & Turberfield, A. J. DNA cage delivery to mammalian cells. ACS Nano 5, 5427–5432 (2011).

74

Ding, H. et al. DNA nanostructure-programmed like-charge attraction at the cell-membrane interface. ACS Cent. Sci. 4, 1344–1351 (2018).

75

Tian, T. et al. Proteomic exploration of endocytosis of framework nucleic acids. Small 17, e2100837 (2021).

76

Fu, W. et al. Therapeutic siCCR2 loaded by tetrahedral framework DNA nanorobotics in therapy for intracranial hemorrhage. Adv. Funct. Mater. 31, https://doi.org/10.1002/adfm.202101435 (2021).

77

Zhu, J. et al. Antiepilepticus effects of tetrahedral framework nucleic acid via inhibition of gliosis-induced downregulation of glutamine synthetase and increased AMPAR internalization in the postsynaptic membrane. Nano Lett. 22, 2381–2390 (2022).

78

Hao et al. Innenrücktitelbild: reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. Angew. Chem. 124, 9321–9321 (2012).

79

Lin, M., Ping, S., Zhou, G., Zuo, X. & Fan, C. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat. Protoc. 11, 1244–1263 (2016).

80

Shao, X. et al. Tetrahedral DNA nanostructure: a potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small 13, 1602770 (2017).

81

Ma, W. et al. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl. Mater. Interfaces 10, 7892–7900 (2018).

82

Zhou, M. et al. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions. Bioact. Mater. 6, 1676–1688 (2021).

83

Gao, Y., Zhang, T., Zhu, J., Xiao, D. & Cai, X. Effects of tetrahedral framework nucleic acids on myoblasts activity and skeletal muscle regeneration. Mater. Chem. Front. 4, 2731–43 (2020).

84

Zhu, J. et al. Tetrahedral framework nucleic acids promote scarless healing of cutaneous wounds via the AKT-signaling pathway. Signal Transduct. Target Ther. 5, 120 (2020).

85

Ma, W. et al. DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Prolif. 51, e12503 (2018).

86

Zhao, D. et al. Angiogenic aptamer-modified tetrahedral framework nucleic acid promotes angiogenesis in vitro and in vivo. ACS Appl. Mater. Interfaces 13, 29439–29449 (2021).

87

Liu, N. et al. Tetrahedral framework nucleic acids promote corneal epithelial wound healing in vitro and in vivo. Small 15, e1901907 (2019).

88

Shi, S. et al. Modulation of chondrocyte motility by tetrahedral DNA nanostructures. Cell Prolif. 50, e12368 (2017).

89

Lfa, B. et al. Tetrahedral framework nucleic acids promote the biological functions and related mechanism of synovium-derived mesenchymal stem cells and show improved articular cartilage regeneration activity in situ—ScienceDirect. Bioact. Mater. 9, 411–427 (2021).

90

Yao, Y. et al. Tetrahedral framework nucleic acids facilitate neurorestoration of facial nerves by activating the NGF/PI3K/AKT pathway. Nanoscale 13, 15598–15610 (2021).

91

Ma, W. et al. Enhanced neural regeneration with a concomitant treatment of framework nucleic acid and stem cells in spinal cord injury. ACS Appl. Mater. Interfaces 12, 2095–2106 (2020).

92

Gao, S. et al. Tetrahedral framework nucleic acids reestablish immune tolerance and restore saliva secretion in a sjogren’s syndrome mouse model. ACS Appl. Mater. Interfaces 13, 42543–42553 (2021).

93

Zhou, M. et al. A DNA nanostructure-based neuroprotectant against neuronal apoptosis via inhibiting toll-like receptor 2 signaling pathway in acute ischemic stroke. ACS Nano 16, 1456–1470 (2022).

94

Shao, X. R. et al. Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/beta-catenin signaling pathway. Nanomedicine 13, 1809–1819 (2017).

95

Zhou, M. et al. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomedicine 14, 1227–1236 (2018).

96

Xu, Z., Song, Y. & Wang, F. Rational design of genetically encoded reporter genes for optical imaging of apoptosis. Apoptosis 25, 459–473 (2020).

97

Zhang, M. et al. Cardioprotection of tetrahedral DNA nanostructures in myocardial ischemia-reperfusion injury. ACS Appl. Mater. Interfaces 11, 30631–30639 (2019).

98

Qin, X. et al. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. Nanoscale 11, 20667–20675 (2019).

99

Shi, S., Tian, T., Li, Y., Xiao, D. & Lin, Y. Tetrahedral framework nucleic acid inhibits chondrocyte apoptosis and oxidative stress through activation of autophagy. ACS Appl. Mater Interfaces 12, 56782–56791 (2020).

100

Li, Y. et al. Tetrahedral framework nucleic acids ameliorate insulin resistance in type 2 diabetes mellitus via the PI3K/Akt pathway. ACS Appl. Mater. Interfaces 13, 40354–40364 (2021).

101

Wang, Y. et al. Tetrahedral framework nucleic acids can alleviate taurocholate-induced severe acute pancreatitis and its subsequent multiorgan injury in mice. Nano Lett. 22, 1759–1768 (2022).

102

Shao, X. et al. Neuroprotective effect of tetrahedral DNA nanostructures in a cell model of Alzheimer’s disease. ACS Appl. Mater. Interfaces 10, 23682–23692 (2018).

103

Shao, X. et al. Treatment of Alzheimer’s disease with framework nucleic acids. Cell Prolif. 53, e12787 (2020).

104

Chen, R. et al. Treatment effect of DNA framework nucleic acids on diffuse microvascular endothelial cell injury after subarachnoid hemorrhage. Cell Prolif. 55, e13206 (2022).

105

Zhang, T., Tian, T. & Lin, Y. Functionalizing framework nucleic-acid-based nanostructures for biomedical application. Adv. Mater. e2107820, https://doi.org/10.1002/adma.202107820 (2021).

106

Zhu, D. et al. Encoding DNA frameworks for amplified multiplexed imaging of intracellular microRNAs. Anal. Chem. 93, 2226–2234 (2021).

107

Xu, X. et al. G4-tetra DNA duplex induce lung cancer cell apoptosis in A549 cells. Nanoscale Res Lett. 11, 437 (2016).

108

He, Y., Lv, C., Hou, X. & Wu, L. Mono-dispersed nano-hydroxyapatite based MRI probe with tetrahedral DNA nanostructures modification for in vitro tumor cell imaging. Anal. Chim. Acta 1138, 141–149 (2020).

109

Wang, Q. et al. Targeting drug delivery and efficient lysosomal escape for chemo-photodynamic cancer therapy by a peptide/DNA nanocomplex. J. Mater. Chem. B 10, 438–449 (2022).

110
Ma, W., Zhan, Y., Zhang, Y., Shao, X. & Lin, Y. J. N. L. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. 19, 4505-4517 (2019).
111

Ma, W. et al. Biomimetic nanoerythrosome-coated aptamer-DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer. Adv. Mater. e2109609, https://doi.org/10.1002/adma.202109609 (2022).

112

Shi, S. et al. Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel Nanoconjugates that can pass the blood brain barrier. Nanomedicine 21, 102061 (2019).

113

Wei, M. et al. Tetrahedral DNA nanostructures functionalized by multivalent microRNA132 antisense oligonucleotides promote the differentiation of mouse embryonic stem cells into dopaminergic neurons—ScienceDirect. Nanomedicine 34, 102375 (2021).

114

Zhang, X. et al. DNA nanorobot delivers antisense oligonucleotides silencing c-met gene expression for cancer therapy. J. Biomed. Nanotechnol. 15, 1948–1959 (2019).

115

He, P. et al. Many birds, one stone: a smart nanodevice for ratiometric dual-spectrum assay of intracellular MicroRNA and multimodal synergetic cancer therapy. ACS Nano 15, 6961–6976 (2021).

116

Hui, X. et al. Infrared plasmonic biosensor with tetrahedral DNA nanostructure as carriers for label-free and ultrasensitive detection of miR-155. Adv. Sci. 8, 2100583 (2021).

117

Zhang, C. et al. Enhancing antitumor efficacy of nucleoside analog 5-fluorodeoxyuridine on HER2-overexpressing breast cancer by affibody-engineered DNA nanoparticle. Int. J. Nanomed. 15, 885–900 (2020).

118

Liang, Z., Ou, D., Sun, D., Tong, Y. & Chen, Z. Ultrasensitive biosensor for microRNA-155 using synergistically catalytic nanoprobe coupled with improved cascade strand displacement reaction. Biosens. Bioelectron. 146, 111744 (2019).

119

Zhu, C., Yang, J., Zheng, J., Chen, S. & Yang, R. New triplex-functionalized DNA tetrahedral nanoprobe for imaging of intracellular pH and tumor-related mRNA. Anal. Chem. 91, 15599–15607 (2019).

120

Zhang, B. et al. Facilitating in situ tumor imaging with a tetrahedral DNA framework-enhanced hybridization chain reaction. Probe 32, 2109728 (2022).

121

Qin, X. et al. Tetrahedral framework nucleic acids-based delivery of microRNA-155 inhibits choroidal neovascularization by regulating the polarization of macrophages. Bioact. Mater. 14, 134–144 (2022).

122

Song, G. et al. Tetrahedral framework nucleic acid delivered RNA therapeutics significantly attenuate pancreatic cancer progression via inhibition of CTR1-dependent copper absorption. ACS Appl. Mater. Interfaces 13, 46334–46342 (2021).

123

Dong, H. et al. Improved antiviral activity of classical swine fever virus-targeted siRNA by tetrahedral framework nucleic acid-enhanced delivery. ACS Appl. Mater. Interfaces 13, 29416–29423 (2021).

124

Kim, K. R., Jegal, H., Kim, J. & Ahn, D. R. A self-assembled DNA tetrahedron as a carrier for in vivo liver-specific delivery of siRNA. Biomater. Sci. 8, 586–590 (2020).

125

Hyukjin Lee, A. K. R. L.-J. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2013).

126

Zhang, Y. et al. Inhibiting methicillin-resistant staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett. 18, 5652–5659 (2018).

127

Kim, K. R. et al. Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem. Commun. 49, 2010–2012 (2013).

128

Liu, M. et al. Aptamer-targeted DNA nanostructures with doxorubicin to treat protein tyrosine kinase 7-positive tumours. Cell Prolif. 52, e12511 (2019).

129

Han, X. et al. Multivalent aptamer-modified tetrahedral DNA nanocage demonstrates high selectivity and safety for anti-tumor therapy. Nanoscale 11, 339–347 (2018).

130

Li, Y. et al. Ultrasmall nanostructured drug based pH-sensitive liposome for effective treatment of drug-resistant tumor. J. Nanobiotechnol. 17, 117 (2019).

131

Yan, J. et al. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. J. Mater. Chem. B 8, 492–503 (2020).

132

Mi, X., Li, H., Tan, R., Feng, B. & Tu, Y. The TDs/aptamer cTnI biosensors based on HCR and Au/Ti3C2-MXene amplification for screening serious patient in COVID-19 pandemic. Biosens. Bioelectron. 192, 113482 (2021).

133

Wu, T. et al. A nanobody-conjugated DNA nanoplatform for targeted platinum-drug delivery. Angew. Chem. Int. Ed. Engl. 58, 14224–14228 (2019).

134

Zhang, J. et al. A camptothecin-grafted DNA tetrahedron as a precise nanomedicine to inhibit tumor growth. Angew. Chem. Int. Ed. Engl. 58, 13794–13798 (2019).

135

Zhang, M. et al. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact. Mater. 8, 368–380 (2022).

136

Li, Y. et al. Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: from innate to adaptive immunity. Nanomicro Lett. 13, 86 (2021).

137

Huang, Y., Huang, W., Chan, L., Zhou, B. & Chen, T. A multifunctional DNA origami as carrier of metal complexes to achieve enhanced tumoral delivery and nullified systemic toxicity. Biomaterials 103, 183–196 (2016).

138

Ozhalici-Unal, H. & Armitage, B. A. Fluorescent DNA nanotags based on a self-assembled DNA tetrahedron. ACS Nano 3, 425–433 (2009).

139

Ding, Y., Liu, X., Zhu, J., Wang, L. & Jiang, W. Quantitative single-molecule detection of protein based on DNA tetrahedron fluorescent nanolabels. Talanta 125, 393–399 (2014).

140

Erben, C. M., Goodman, R. P. & Turberfield, A. J. Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem. Int. Ed. Engl. 45, 7414–7417 (2006).

141

Li, D., Li, X., Yang, F., Yuan, R. & Xiang, Y. Targeted delivery of DNA framework-encapsulated native therapeutic protein into cancer cells. ACS Appl Mater. Interfaces 12, 54489–54496 (2020).

142

Tian, T. et al. A framework nucleic acid based robotic nanobee for active targeting therapy. Adv. Funct. Mater. 31, 2007342 (2020).

143

Tian, T. et al. Synthesis of an ethyleneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle. Nanoscale 9, 18402–18412 (2017).

144

Ge, Y. et al. PEGylated protamine-based adsorbing improves the biological properties and stability of tetrahedral framework nucleic acids. ACS Appl. Mater. Interfaces 11, 27588–27597 (2019).

145

Cortez, M. A. et al. The synthesis of cyclic poly(ethylene imine) and exact linear analogues: an evaluation of gene delivery comparing polymer architectures. J. Am. Chem. Soc. 137, 6541–6549 (2015).

146

Yiqiao, T., Yanyu, H., Pan, G. & Tianfeng, C. Nucleus-targeted DNA tetrahedron as a nanocarrier of metal complexes for enhanced glioma therapy. Chem Commun. 54, 10.1039.C1038CC04021D (2018).

147

Zhang, Q., Lin, S., Wang, L., Peng, S. & Lin, Y. Tetrahedral framework nucleic acids act as antioxidants in acute kidney injury treatment. Chem. Eng. J. 413, 127426 (2020).

148

Yamada, S., Behfar, A. & Terzic, A. Regenerative medicine clinical readiness. Regen. Med. 16, 309–322 (2021).

149

Liu, X. L. et al. Magnetic nanomaterials for advanced regenerative medicine: the promise and challenges. Adv. Mater. 31, e1804922 (2019).

150

Gao, Y., Lim, J., Teoh, S. H. & Xu, C. Emerging translational research on magnetic nanoparticles for regenerative medicine. Chem. Soc. Rev. 44, 6306–6329 (2015).

151

Cesani, M. F. et al. Growth of functional cranial components in rats submitted to intergenerational undernutrition. J. Anat. 209, 137–147 (2006).

152

Giannoudis, P. V., Dinopoulos, H. & Tsiridis, E. Bone substitutes: an update. Injury 36(Suppl 3), S20–S27 (2005).

153

Alam, M. I., Asahina, I., Seto, I., Oda, M. & Enomoto, S. Prefabricated vascularized bone flap: a tissue transformation technique for bone reconstruction. Plast. Reconstr. Surg. 108, 952–958 (2001).

154

Jiang, X. et al. Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials 30, 4522–4532 (2009).

155

Tan, J. et al. Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis. Bone Res. 3, 15003 (2015).

156

Li, J. et al. Repair of infected bone defect with clindamycin-tetrahedral DNA nanostructure complex-loaded 3D bioprinted hybrid scaffold. Chem. Eng. J. 435, 134855 (2022).

157

She, S. et al. PSMP/MSMP promotes hepatic fibrosis through CCR2 and represents a novel therapeutic target. J. Hepatol. 72, 506–518 (2020).

158

Jensen, J. et al. Functionalization of polycaprolactone scaffolds with hyaluronic acid and beta-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Eng. 21, 729–739 (2015).

159

Zhou, M. et al. Effect of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Cell Prolif. 52, e12566 (2019).

160

Singh, M. & Gonegandla, G. S. Bisphosphonate-induced osteonecrosis of the jaws (BIONJ). J. Oral. Maxil. Surg. 19, 162–167 (2020).

161

Cui, W. et al. Preventive effect of tetrahedral framework nucleic acids on bisphosphonate-related osteonecrosis of the jaw. Nanoscale 12, 17196–17202 (2020).

162

Zhao, D. et al. Tetrahedral framework nucleic acid promotes the treatment of bisphosphonate-related osteonecrosis of the jaws by promoting angiogenesis and M2 polarization. ACS Appl. Mater. Interfaces 12, 44508–44522 (2020).

163

Li, G., Zhou, T., Lin, S., Shi, S. & Lin, Y. Nanomaterials for craniofacial and dental tissue engineering. J. Dent. Res. 96, 725–732 (2017).

164

Li, R. et al. Peripheral nerve injuries treatment: a systematic review. Cell Biochem. Biophys. 68, 449–454 (2014).

165

Cardone, M. Prospects for gene therapy in inherited neurodegenerative diseases. Curr. Opin. Neurol. 20, 151–158 (2007).

166

Kim, S. U., Lee, H. J. & Kim, Y. B. Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology 33, 491–504 (2013).

167

Li, P. et al. Fate of immortalized human neuronal progenitor cells transplanted in rat spinal cord. Arch. Neurol. 62, 223–229 (2005).

168

Wong, C. T., Ahmad, E., Li, H. & Crawford, D. A. Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders. Cell Commun. Signal 12, 19 (2014).

169

Wong, C. T. et al. Prostaglandin E2 promotes neural proliferation and differentiation and regulates Wnt target gene expression. J. Neurosci. Res. 94, 759–775 (2016).

170

Ma, W. et al. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Prolif. 51, e12503 (2018).

171

Forman, M. S., Trojanowski, J. Q. & Lee, V. M. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med. 10, 1055–1063 (2004).

172

Cavallucci, V., D’Amelio, M. & Cecconi, F. Abeta toxicity in Alzheimer’s disease. Mol. Neurobiol. 45, 366–378 (2012).

173

Gilbert, J. et al. beta-Amyloid triggers aberrant over-scaling of homeostatic synaptic plasticity. Acta Neuropathol. Com. 4, 131 (2016).

174

Esteban, J. A. Living with the enemy: a physiological role for the beta-amyloid peptide. Trends Neurosci. 27, 1–3 (2004).

175

Cui, W. et al. Neuroprotective and neurotherapeutic effects of tetrahedral framework nucleic acids on parkinson’s disease in vitro. ACS Appl. Mater. Interfaces 11, 32787–32797 (2019).

176

Cui, W. et al. Treating LRRK2‐related Parkinson’s disease by inhibiting the mTOR signaling pathway to restore autophagy. Adv. Funct. Mater. 31, 2105152 (2021).

177

Li, J. et al. The neuroprotective effect of MicroRNA‐22‐3p modified tetrahedral framework nucleic acids on damaged retinal neurons via TrkB/BDNF signaling pathway. Adv. Funct. Mater. 31, 2104141 (2021).

178

Katan, M. & Luft, A. Global burden of stroke. Semin Neurol. 38, 208–211 (2018).

179

Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).

180

Fattah, A. Y. et al. Facial nerve grading instruments: systematic review of the literature and suggestion for uniformity. Plast. Reconstr. Surg. 135, 569–579 (2015).

181

Qin, J. et al. Concentrated growth factor increases Schwann cell proliferation and neurotrophic factor secretion and promotes functional nerve recovery in vivo. Int. J. Mol. Med. 37, 493–500 (2016).

182

Tang, Y. et al. Corrigendum to ‘Phosphorylation inhibition of protein-tyrosine phosphatase 1B tyrosine-152 induces bone regeneration coupled with angiogenesis for bone tissue engineering. Bioact. Mater. 6, 3192–3193 (2021).

183

Goonoo, N. Vascularization and angiogenesis in electrospun tissue engineered constructs: towards the creation of long-term functional networks. Biomed. Phys. Eng. Express 4, 032001 (2018).

184

Lin, S. et al. Antioxidative and angiogenesis-promoting effects of tetrahedral framework nucleic acids in diabetic wound healing with activation of the Akt/Nrf2/HO-1 pathway. ACS Appl. Mater. Interfaces 12, 11397–11408 (2020).

185

Ge, Y. et al. Tetrahedral framework nucleic acids connected with MicroRNA-126 mimics for applications in vascular inflammation, remodeling, and homeostasis. ACS Appl. Mater. Interfaces 14, 19091–19103 (2022).

186

Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr266 (2014).

187

Singer, A. J. & Clark, R. A. Cutaneous wound healing. N. Engl. J. Med. 341, 738–746 (1999).

188

Reinke, J. M. & Sorg, H. Wound repair and regeneration. Eur. Surg. Res 49, 35–43 (2012).

189

Mao, C. et al. The clearance effect of tetrahedral DNA nanostructures on senescent human dermal fibroblasts. ACS Appl Mater. Interfaces 11, 1942–1950 (2019).

190

Larjava, H. et al. Exploring scarless healing of oral soft tissues. J. Can. Dent. Assoc. 77, b18 (2011).

191

Zhu, T., Park, H. C., Son, K. M. & Yang, H. C. Effects of dimethyloxalylglycine on wound healing of palatal mucosa in a rat model. BMC Oral. health 15, 60 (2015).

192

Kuperman, S. et al. Examination of the therapeutic potential of mouse oral mucosa stem cells in a wound-healing diabetic mice model. Int. J. Environ. Res. Public Health. 17, 4854 (2020).

193

Tao, Z., Shi, A. & Zhao, J. Epidemiological perspectives of diabetes. Cell Biochem. Biophys. 73, 181–185 (2015).

194

Patel, S., Srivastava, S., Singh, M. R. & Singh, D. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed. Pharmacother. 112, 108615 (2019).

195

Garcia-Prat, L. et al. Autophagy maintains stemness by preventing senescence. Nature 529, 37–42 (2016).

196

Jana, S., Levengood, S. K. & Zhang, M. Anisotropic materials for skeletal-muscle-tissue engineering. Adv. Mater. 28, 10588–10612 (2016).

197

Gao, Y. Effects of the tetrahedral framework nucleic acids on the skeletal muscle regeneration in vitro and in vivo. Mater. Chem. Front. 4, 2731–2743 (2020).

198

Pihlstrom, B. L., Michalowicz, B. S. & Johnson, N. W. Periodontal diseases. Lancet 366, 1809–1820 (2005).

199

Yamada, H., Nakajima, T., Domon, H., Honda, T. & Yamazaki, K. Endoplasmic reticulum stress response and bone loss in experimental periodontitis in mice. J. Periodontal Res. 50, 500–508 (2015).

200

Hajishengallis, G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15, 30–44 (2015).

201

Kassebaum, N. J. et al. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J. Dent. Res. 93, 1045–1053 (2014).

202

Yu, Y. et al. Effects of short-term inflammatory and/or hypoxic pretreatments on periodontal ligament stem cells: in vitro and in vivo studies. Cell Tissue Res. 366, 311–328 (2016).

203

Nunez, J. et al. 17beta-estradiol promotes cementoblast proliferation and cementum formation in experimental periodontitis. J. Periodontol. 81, 1064–1074 (2010).

204

Veerapandian, M. & Yun, K. Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl. Microbiol. Biotechnol. 90, 1655–1667 (2011).

205

Sun, Y., Meng, L., Zhang, Y., Zhao, D. & Lin, Y. The application of nucleic acids and nucleic acid materials in antimicrobial research. Curr. Stem Cell Res. Ther. 16, 66–73 (2021).

206

Sun, Y. et al. Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli). Bioact. Mater. 6, 2281–2290 (2021).

207

Sun, Y. et al. Tetrahedral framework nucleic acids loading ampicillin improve the drug susceptibility against methicillin-resistant Staphylococcus aureus. ACS Appl. Mater. Interfaces 12, 36957–36966 (2020).

208

Nordstrom, R. & Malmsten, M. Delivery systems for antimicrobial peptides. Adv. Colloid Interface Sci. 242, 17–34 (2017).

209

Ciumac, D., Gong, H., Hu, X. & Lu, J. R. Membrane targeting cationic antimicrobial peptides. J. Colloid Interface Sci. 537, 163–185 (2019).

210

Lam, S. J. et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 1, 16162 (2016).

211

Liu, Y. et al. Tetrahedral framework nucleic acids deliver antimicrobial peptides with improved effects and less susceptibility to bacterial degradation. Nano Lett. 20, 3602–3610 (2020).

212

Armitage, G. C. & Robertson, P. B. The biology, prevention, diagnosis and treatment of periodontal diseases: scientific advances in the United States. J. Am. Dent. Assoc. 140(Suppl 1), 36S–43S (2009).

213

Xie, X. et al. Potent anti-angiogenesis and anti-tumour activity of pegaptanib-loaded tetrahedral DNA nanostructure. Cell Prolif. 52, e12662 (2019).

214

Kim, K. R. et al. Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. J. Controlled Release. 243, 121–131 (2016).

215

Zhan, Y. et al. DNA-based nanomedicine with targeting and enhancement of therapeutic efficacy of breast cancer cells. ACS Appl. Mater. Interfaces 11, 15354–15365 (2019).

216

Xia, Z. et al. Tumor-penetrating peptide-modified DNA tetrahedron for targeting drug delivery. Biochemistry 55, 1326–1331 (2016).

217

Shah, M. et al. A rapamycin-binding protein polymer nanoparticle shows potent therapeutic activity in suppressing autoimmune dacryoadenitis in a mouse model of Sjogren’s syndrome. J. Controlled Release. 171, 269–279 (2013).

218

Tinazzi, E. et al. Plant-derived chimeric virus particles for the diagnosis of primary sjogren syndrome. Front. Plant Sci. 6, 1080 (2015).

219

Gao, S. et al. Tetrahedral framework nucleic acids induce immune tolerance and prevent the onset of type 1 diabetes. Nano Lett. 21, 4437–4446 (2021).

220

Barr, J. Y., Wang, X., Kreiger, P. A. & Lieberman, S. M. Salivary-gland-protective regulatory T-cell dysfunction underlies female-specific sialadenitis in the non-obese diabetic mouse model of Sjogren syndrome. Immunology 155, 225–237 (2018).

International Journal of Oral Science
Article number: 51
Cite this article:
Lin Y, Li Q, Wang L, et al. Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation. International Journal of Oral Science, 2022, 14: 51. https://doi.org/10.1038/s41368-022-00199-9

131

Views

0

Downloads

33

Crossref

28

Web of Science

30

Scopus

Altmetrics

Accepted: 19 August 2022
Published: 31 October 2022
© The Author(s) 2022

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return