AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Craniofacial therapy: advanced local therapies from nano-engineered titanium implants to treat craniofacial conditions

Karan Gulati1,Chengye Ding2,3,Tianqi Guo1Houzuo Guo3,4Huajie Yu3,5( )Yan Liu2,3 ( )
The University of Queensland, School of Dentistry, Herston, QLD, Australia
Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing, China
Fourth Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China

These authors contributed equally: Karan Gulati, Chengye Ding.

Show Author Information

Abstract

Nano-engineering-based tissue regeneration and local therapeutic delivery strategies show significant potential to reduce the health and economic burden associated with craniofacial defects, including traumas and tumours. Critical to the success of such nano-engineered non-resorbable craniofacial implants include load-bearing functioning and survival in complex local trauma conditions. Further, race to invade between multiple cells and pathogens is an important criterion that dictates the fate of the implant. In this pioneering review, we compare the therapeutic efficacy of nano-engineered titanium-based craniofacial implants towards maximised local therapy addressing bone formation/resorption, soft-tissue integration, bacterial infection and cancers/tumours. We present the various strategies to engineer titanium-based craniofacial implants in the macro-, micro- and nano-scales, using topographical, chemical, electrochemical, biological and therapeutic modifications. A particular focus is electrochemically anodised titanium implants with controlled nanotopographies that enable tailored and enhanced bioactivity and local therapeutic release. Next, we review the clinical translation challenges associated with such implants. This review will inform the readers of the latest developments and challenges related to therapeutic nano-engineered craniofacial implants.

References

1

Emara, A. & Shah, R. Recent update on craniofacial tissue engineering. J. Tissue Eng. 12, 20417314211003735 (2021).

2

Disease, G. B. D., Injury, I. & Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

3

Abusleme, L. et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 7, 1016–1025 (2013).

4

Peres, M. A. et al. Oral diseases: a global public health challenge. Lancet 394, 249–260 (2019).

5

Chen, M. X., Zhong, Y. J., Dong, Q. Q., Wong, H. M. & Wen, Y. F. Global, regional, and national burden of severe periodontitis, 1990–2019: an analysis of the Global Burden of Disease Study 2019. J. Clin. Periodontol. 48, 1165–1188 (2021).

6

Page, R. C. & Kornman, K. S. The pathogenesis of human periodontitis: an introduction. Periodontol 2000 14, 9–11 (1997).

7

Schwarz, F., Derks, J., Monje, A. & Wang, H. L. Peri-implantitis. J. Periodontol. 89(Suppl 1), S267–S290 (2018).

8

Dreyer, H. et al. Epidemiology and risk factors of peri-implantitis: a systematic review. J. Periodontal. Res. 53, 657–681 (2018).

9

Chen, Z., Wang, Z., Qiu, W. & Fang, F. Overview of antibacterial strategies of dental implant materials for the prevention of peri-implantitis. Bioconjug. Chem. 32, 627–638 (2021).

10

Monje, A., Vera, M., Munoz-Sanz, A., Wang, H. L. & Nart, J. Suppuration as diagnostic criterium of peri-implantitis. J. Periodontol. 92, 216–224 (2021).

11

Romandini, M. et al. Prevalence and risk/protective indicators of peri-implant diseases: A university-representative cross-sectional study. Clin. Oral. Implants Res. 32, 112–122 (2021).

12

Dewan, M. C. et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. https://doi.org/10.3171/2017.10.JNS17352 (2018).

13

Diseases, G. B. D. & Injuries, C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

14

Jiang, J. Y. et al. Traumatic brain injury in China. Lancet Neurol. 18, 286–295 (2019).

15

Maas, A. I. R. et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 16, 987–1048 (2017).

16

Figueiredo, C. P., Teixeira, H. M., Afonso, A. S. & Corte-Real, A. Prevalence of, and disability approaches to, temporomandibular joint trauma: a 17-year cross-sectional study. Dent. Traumatol. 36, 624–631 (2020).

17

Cheong, Y. W. & Lo, L. J. Facial asymmetry: etiology, evaluation, and management. Chang Gung Med. J. 34, 341–351 (2011).

18

Giraddi, G. B., Arora, K. & Sai Anusha, A. J. Distraction osteogenesis in the treatment of temporomandibular joint ankylosis with mandibular micrognathia. Ann. Maxillofac. Surg. 6, 68–74 (2016).

19

Kawecki, F., Clafshenkel, W. P., Fortin, M., Auger, F. A. & Fradette, J. Biomimetic tissue-engineered bone substitutes for maxillofacial and craniofacial repair: the potential of cell sheet technologies. Adv. Health. Mater. 7, e1700919 (2018).

20

Johnson, D. E. et al. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Prim. 6, 92 (2020).

21

Ferlay, J. et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 144, 1941–1953 (2019).

22

Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

23

Menezes, F. D. S., Fernandes, G. A., Antunes, J. L. F., Villa, L. L. & Toporcov, T. N. Global incidence trends in head and neck cancer for HPV-related and -unrelated subsites: A systematic review of population-based studies. Oral Oncol. 115, 105177 (2021).

24

Stein, A. P. et al. Prevalence of human papillomavirus in oropharyngeal cancer: a systematic review. Cancer J. 21, 138–146 (2015).

25

Latimer, J. M. et al. Regenerative medicine technologies to treat dental, oral, and craniofacial defects. Front. Bioeng. Biotechnol. 9, 704048 (2021).

26

Zhang, Y., Gulati, K., Li, Z., Di, P. & Liu, Y. Dental implant nano-engineering: advances, limitations and future directions. Nanomaterials 11, 2489 (2021).

27

Rinkel, R. N. et al. Prevalence of swallowing and speech problems in daily life after chemoradiation for head and neck cancer based on cut-off scores of the patient-reported outcome measures SWAL-QOL and SHI. Eur. Arch. Otorhinolaryngol. 273, 1849–1855 (2016).

28

Kraaijenga, S. A. et al. Assessment of voice, speech, and related quality of life in advanced head and neck cancer patients 10-years+ after chemoradiotherapy. Oral Oncol. 55, 24–30 (2016).

29

Mossey, P. A., Little, J., Munger, R. G., Dixon, M. J. & Shaw, W. C. Cleft lip and palate. Lancet 374, 1773–1785 (2009).

30

Timberlake, A. T. et al. Haploinsufficiency of SF3B2 causes craniofacial microsomia. Nat. Commun. 12, 4680 (2021).

31

Ross, M. T. et al. Aesthetic reconstruction of microtia: a review of current techniques and new 3D printing approaches. Virtual Phys. Prototyp. 13, 117–130 (2018).

32

Wilkie, A. O. & Morriss-Kay, G. M. Genetics of craniofacial development and malformation. Nat. Rev. Genet. 2, 458–468 (2001).

33

Teven, C. M., Fisher, S., Ameer, G. A., He, T. C. & Reid, R. R. Biomimetic approaches to complex craniofacial defects. Ann. Maxillofac. Surg. 5, 4–13 (2015).

34

Ward, B. B., Brown, S. E. & Krebsbach, P. H. Bioengineering strategies for regeneration of craniofacial bone: a review of emerging technologies. Oral. Dis. 16, 709–716 (2010).

35
Kalluri, L. & Duan, Y. in Advances in Dental Implantology using Nanomaterials and Allied Technology Applications (eds R. S. Chaughule & R. Dashaputra) p. 137-152 (Springer International Publishing, 2021).
36

Wang, X. et al. Restoration of a critical mandibular bone defect using human alveolar bone-derived stem cells and porous nano-HA/collagen/PLA scaffold. Stem Cells Int. 2016, 8741641 (2016).

37

Jakoi, A. M., Iorio, J. A. & Cahill, P. J. Autologous bone graft harvesting: a review of grafts and surgical techniques. Musculoskelet. Surg. 99, 171–178 (2015).

38

Thimmappa, B. & Girod, S. C. Principles of implant-based reconstruction and rehabilitation of craniofacial defects. Craniomaxillofac. Trauma Reconstr. 3, 33–40 (2010).

39

Berglundh, T., Persson, L. & Klinge, B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J. Clin. Periodontol. 29(Suppl 3), 197–212 (2002).

40

Elani, H. W., Starr, J. R., Da Silva, J. D. & Gallucci, G. O. Trends in dental implant use in the U.S., 1999–2016, and projections to 2026. J. Dent. Res. 97, 1424–1430 (2018).

41

Kolk, A. et al. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials. J. Craniomaxillofac Surg. 40, 706–718 (2012).

42

Zhu, M. et al. The synergy of topographical micropatterning and TaTaCu bilayered thin film on titanium implants enables dual-functions of enhanced osteogenesis and anti-infection. Adv. Healthc. Mater. 10, e2002020 (2021).

43

Li, J. et al. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods. ACS Nano 11, 11250–11263 (2017).

44

Sumner, D. R. & Galante, J. O. Determinants of stress shielding: design versus materials versus interface. Clin. Orthop. Relat. Res. 202–212 (1992).

45

Subbiahdoss, G., Kuijer, R., Grijpma, D. W., van der Mei, H. C. & Busscher, H. J. Microbial biofilm growth vs. tissue integration: “the race for the surface” experimentally studied. Acta Biomater. 5, 1399–1404 (2009).

46

Jiang, C. et al. miR-146a protects against staphylococcus aureus-induced osteomyelitis by regulating inflammation and osteogenesis. ACS Infect. Dis. 8, 918–927 (2022).

47

Schwarz, F., Derks, J., Monje, A. & Wang, H. L. Peri-implantitis. J. Clin. Periodontol. 45(Suppl 20), S246–S266 (2018).

48

Wu, H., Moser, C., Wang, H. Z., Hoiby, N. & Song, Z. J. Strategies for combating bacterial biofilm infections. Int J. Oral. Sci. 7, 1–7 (2015).

49

Jayasree, A., Ivanovski, S. & Gulati, K. ON or OFF: triggered therapies from anodized nano-engineered titanium implants. J. Control Release 333, 521–535 (2021).

50

Kavanagh, N. et al. Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00084-17 (2018).

51

Gristina, A. G. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237, 1588–1595 (1987).

52

Guo, T. et al. Race to invade: understanding soft tissue integration at the transmucosal region of titanium dental implants. Dent. Mater. 37, 816–831 (2021).

53

Gulati, K., Hamlet, S. M. & Ivanovski, S. Tailoring the immuno-responsiveness of anodized nano-engineered titanium implants. J. Mater. Chem. B 6, 2677–2689 (2018).

54

Julier, Z., Park, A. J., Briquez, P. S. & Martino, M. M. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 53, 13–28 (2017).

55

Toben, D. et al. Fracture healing is accelerated in the absence of the adaptive immune system. J. Bone Miner. Res. 26, 113–124 (2011).

56

Zhu, G. et al. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact. Mater. 6, 4110–4140 (2021).

57

Monteiro, N. O. et al. Biomimetic surface topography as a potential modulator of macrophages inflammatory response to biomaterials. Biomater. Adv. 141, 213128 (2022).

58

Bai, L. et al. A micro/nano-biomimetic coating on titanium orchestrates osteo/angio-genesis and osteoimmunomodulation for advanced osseointegration. Biomaterials 278, 121162 (2021).

59

Wang, H., Wu, C., Tong, X. & Chen, S. A biomimetic metal-organic framework nanosystem modulates immunosuppressive tumor microenvironment metabolism to amplify immunotherapy. J. Control. Release 353, 727–737 (2023).

60

Johnson, A. P. et al. Bioinspired and biomimetic micro- and nanostructures in biomedicine. J. Control. Release 343, 724–754 (2022).

61

Unadkat, H. V. et al. An algorithm-based topographical biomaterials library to instruct cell fate. Proc. Natl Acad. Sci. USA 108, 16565–16570 (2011).

62

Cho, Y. D., Kim, W. J., Kim, S., Ku, Y. & Ryoo, H. M. Surface topography of titanium affects their osteogenic potential through DNA methylation. Int. J. Mol. Sci. 22 https://doi.org/10.3390/ijms22052406 (2021).

63

Liu, X. et al. Synergistic effect of surface chemistry and surface topography gradient on osteogenic/adipogenic differentiation of hMSCs. ACS Appl Mater. Interfaces 13, 30306–30316 (2021).

64

Zhu, Y. et al. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. Sci. Adv. https://doi.org/10.1126/sciadv.abf6654 (2021).

65

Chopra, D., Jayasree, A., Guo, T., Gulati, K. & Ivanovski, S. Advancing dental implants: Bioactive and therapeutic modifications of zirconia. Bioact. Mater. 13, 161–178 (2022).

66

Chopra, D., Gulati, K. & Ivanovski, S. Bed of nails: bioinspired nano-texturing towards antibacterial and bioactivity functions. Mater. Today Adv. 12, 100176 (2021).

67

Buser, D. et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J. Biomed. Mater. Res. 25, 889–902 (1991).

68
Souza, J. C. M. et al. in Nanostructured Biomaterials for Cranio-Maxillofacial and Oral Applications (eds J. C. M. Souza, D. Hotza, B. Henriques, & A. R. Boccaccini) p. 13–40 (Elsevier, 2018).
69

Ercan, E., Arin, T., Kara, L., Çandirli, C. & Uysal, C. Effects of Er,Cr:YSGG laser irradiation on the surface characteristics of titanium discs: an in vitro study. Lasers Med. Sci. 29, 875–880 (2014).

70

Hallgren, C., Reimers, H., Chakarov, D., Gold, J. & Wennerberg, A. An in vivo study of bone response to implants topographically modified by laser micromachining. Biomaterials 24, 701–710 (2003).

71

Faeda, R. S., Spin-Neto, R., Marcantonio, E., Guastaldi, A. C. & Marcantonio, E. Jr Laser ablation in titanium implants followed by biomimetic hydroxyapatite coating: Histomorphometric study in rabbits. Microsc. Res. Tech. 75, 940–948 (2012).

72

Brånemark, R., Emanuelsson, L., Palmquist, A. & Thomsen, P. Bone response to laser-induced micro- and nano-size titanium surface features. Nanomed. Nanotechnol. Biol. Med. 7, 220–227 (2011).

73

Oh, S.-H., Finõnes, R. R., Daraio, C., Chen, L.-H. & Jin, S. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26, 4938–4943 (2005).

74

Křenek, T. et al. Micro/nano-structured titanium surfaces modified by NaOH–CaCl2-heat-water treatment: biomimetic calcium phosphate deposition and hMSCs behavior. Mater. Chem. Phys. 272, 124896 (2021).

75

Liu, W. et al. The response of macrophages and their osteogenic potential modulated by micro/nano-structured Ti surfaces. Colloids Surf. B Biointerfaces 205, 111848 (2021).

76

Areva, S. et al. Sol-Gel-derived TiO2–SiO2 implant coatings for direct tissue attachment. Part II: evaluation of cell response. J. Mater. Sci. Mater. Med. 18, 1633–1642 (2007).

77

Greer, A. I. M. et al. Nanopatterned titanium implants accelerate bone formation in vivo. ACS Appl Mater. Interfaces 12, 33541–33549 (2020).

78

Guo, T., Oztug, N. A. K., Han, P., Ivanovski, S. & Gulati, K. Old is gold: electrolyte aging influences the topography, chemistry, and bioactivity of anodized TiO2 nanopores. ACS Appl. Mater. Interfaces 13, 7897–7912 (2021).

79

Martinez-Marquez, D., Gulati, K., Carty, C. P., Stewart, R. A. & Ivanovski, S. Determining the relative importance of titania nanotubes characteristics on bone implant surface performance: a quality by design study with a fuzzy approach. Mater. Sci. Eng. C 114, 110995 (2020).

80

Gulati, K., Martinez, R. D. O., Czerwiński, M. & Michalska-Domańska, M. Understanding the influence of electrolyte aging in electrochemical anodization of titanium. Adv. Colloid Interface Sci. 302, 102615 (2022).

81

Gulati, K., Li, T. & Ivanovski, S. Consume or conserve: microroughness of titanium implants toward fabrication of dual micro–nanotopography. ACS Biomater. Sci. Eng. 4, 3125–3131 (2018).

82

Liu, Z. & Misra, M. Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 4, 2196–2200 (2010).

83

Gulati, K., Santos, A., Findlay, D. & Losic, D. Optimizing anodization conditions for the growth of titania nanotubes on curved surfaces. J. Phys. Chem. C 119, 16033–16045 (2015).

84

Ji, W. et al. Local delivery of small and large biomolecules in craniomaxillofacial bone. Adv. Drug Deliv. Rev. 64, 1152–1164 (2012).

85

Luginbuehl, V., Meinel, L., Merkle, H. P. & Gander, B. Localized delivery of growth factors for bone repair. Eur. J. Pharm Biopharm 58, 197–208 (2004).

86

Cooper, L. F. Biologic determinants of bone formation for osseointegration: Clues for future clinical improvements. J. Prosthet. Dent. 80, 439–449 (1998).

87

Retzepi, M. & Donos, N. The effect of diabetes mellitus on osseous healing. Clin. Oral. Implants Res. 21, 673–681 (2010).

88

Lee, R. S. B., Hamlet, S. M. & Ivanovski, S. The influence of titanium surface characteristics on macrophage phenotype polarization during osseous healing in type I diabetic rats: a pilot study. Clin. Oral. Implants Res. 28, e159–e168 (2017).

89

Vo, T. N., Kasper, F. K. & Mikos, A. G. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv. Drug Deliv. Rev. 64, 1292–1309 (2012).

90

Mishra, R. et al. Growth factor dose tuning for bone progenitor cell proliferation and differentiation on resorbable poly(propylene fumarate) scaffolds. Tissue Eng. Part C Methods 22, 904–913 (2016).

91

Brigaud, I. et al. Synergistic effects of BMP-2, BMP-6 or BMP-7 with human plasma fibronectin onto hydroxyapatite coatings: a comparative study. Acta Biomater. 55, 481–492 (2017).

92

Pagni, G. et al. Bone repair cells for craniofacial regeneration. Adv. Drug Deliv. Rev. 64, 1310–1319 (2012).

93

Guo, T. et al. Orchestrating soft tissue integration at the transmucosal region of titanium implants. Acta Biomater. 124, 33–49 (2021).

94

Gulati, K., Maher, S., Findlay, D. M. & Losic, D. Titania nanotubes for orchestrating osteogenesis at the bone–implant interface. Nanomedicine 11, 1847–1864 (2016).

95

Puleo, D. A., Kissling, R. A. & Sheu, M. S. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials 23, 2079–2087 (2002).

96

Kang, J. et al. Immobilization of bone morphogenetic protein on DOPA- or dopamine-treated titanium surfaces to enhance osseointegration. Biomed. Res. Int. 2013, 265980 (2013).

97

Guang, M. et al. Effects of vascular endothelial growth factor on osteoblasts around dental implants in vitro and in vivo. J. Oral. Sci. 59, 215–223 (2017).

98

Hu, X. et al. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. Biomaterials 31, 8854–8863 (2010).

99

Izquierdo-Barba, I. et al. Synergistic effect of Si-hydroxyapatite coating and VEGF adsorption on Ti6Al4V-ELI scaffolds for bone regeneration in an osteoporotic bone environment. Acta Biomater. 83, 456–466 (2019).

100

Keceli, H. G. et al. Dual delivery of platelet-derived growth factor and bone morphogenetic factor-6 on titanium surface to enhance the early period of implant osseointegration. J. Periodontal. Res. 55, 694–704 (2020).

101

Al-Hezaimi, K., Nevins, M., Kim, S.-W., Fateh, A. & Kim, D. M. Efficacy of growth factor in promoting early osseointegration. J. Oral Implantol. 40, 543–548 (2014).

102

Cakir, S. et al. Histological evaluation of the effects of growth factors in a fibrin network on bone regeneration. J. Craniofacial Surg. 30, 1078–1084 (2019).

103

Mijiritsky, E. et al. Use of PRP, PRF and CGF in periodontal regeneration and facial rejuvenation-A narrative review. Biology https://doi.org/10.3390/biology10040317 (2021).

104

Kim, T.-H., Kim, S.-H., Sándor, G. K. & Kim, Y.-D. Comparison of platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factor (CGF) in rabbit-skull defect healing. Arch. Oral Biol. 59, 550–558 (2014).

105

Liao, H., Marra, K. & Rubin, J. P. Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review. Tissue Eng. Part B Rev. 20, 267–276 (2014).

106

Guo, T., Gulati, K., Shen, Z., Han, P. & Fan, Z. Therapeutic outcomes of non-grafted and platelet concentrations-grafted transcrestal maxillary sinus elevation (TSFE): a systematic review and meta-analysis. Sci. Rep. 10, 5935 (2020).

107

Coussens, A. K. et al. Unravelling the molecular control of calvarial suture fusion in children with craniosynostosis. BMC Genomics 8, 1–25 (2007).

108

Senarath-Yapa, K. et al. Craniosynostosis. Organogenesis 8, 103–113 (2012).

109

Mooney, M. P., Moursi, A. M., Opperman, L. A. & Siegel, M. I. Cytokine therapy for craniosynostosis. Expert Opin. Biol. Ther. 4, 279–299 (2004).

110

Maxson, R. & Ishii, M. The Bmp pathway in skull vault development. Front Oral. Biol. 12, 197–208 (2008).

111

Dwivedi, P. et al. Regulation of bone morphogenetic protein signalling and osteogenesis by glypicans in human cranial suture cells. Bone 2, S243 (2011).

112

Springer, I. N. et al. Craniectomy and noggin application in an infant model. J. Cranio-Maxillofac. Surg. 35, 177–184 (2007).

113

Bariana, M. et al. Biological response of human suture mesenchymal cells to Titania nanotube-based implants for advanced craniosynostosis therapy. Colloids Surf. B Biointerfaces 150, 59–67 (2017).

114

Bariana, M. et al. Glypican-based drug releasing titania implants to regulate BMP2 bioactivity as a potential approach for craniosynostosis therapy. Nanomedicine 14, 2365–2374 (2018).

115

Bariana, M., Kaidonis, J. A., Losic, D., Ranjitkar, S. & Anderson, P. J. Titania nanotube-based protein delivery system to inhibit cranial bone regeneration in Crouzon model of craniosynostosis. Int. J. Nanomed. 14, 6313–6324 (2019).

116

Tenenbaum, H. et al. Long-term prospective cohort study on dental implants: clinical and microbiological parameters. Clin. Oral. Implants Res. 28, 86–94 (2017).

117

Hamlet, S., Alfarsi, M., George, R. & Ivanovski, S. The effect of hydrophilic titanium surface modification on macrophage inflammatory cytokine gene expression. Clin. Oral. Implants Res. 23, 584–590 (2012).

118

Fabbri, G. & Sorrentino, R. A biologically driven concept to design the emergence profile around dental implants: surgical and prosthetic considerations to optimize hard and soft tissue integration. Int. J. Periodontics Restor. Dent. 41, 913–921 (2021).

119

Petrini, M. et al. Influence of nano, micro, and macro topography of dental implant surfaces on human gingival fibroblasts. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22189871 (2021).

120

Zhou, P. et al. Screening the optimal hierarchical micro/nano pattern design for the neck and body surface of titanium implants. Colloids Surf. B Biointerfaces 178, 515–524 (2019).

121

Berglundh, T., Abrahamsson, I., Welander, M., Lang, N. P. & Lindhe, J. Morphogenesis of the peri-implant mucosa: an experimental study in dogs. Clin. Oral. Implants Res. 18, 1–8 (2007).

122

Tomasi, C. et al. Morphogenesis of peri-implant mucosa revisited: an experimental study in humans. Clin. Oral. Implants Res. 25, 997–1003 (2014).

123

Nevins, M., Nevins, M. L., Camelo, M., Boyesen, J. L. & Kim, D. M. Human histologic evidence of a connective tissue attachment to a dental implant. Int. J. Periodontics Restor. Dent. 28, 111–121 (2008).

124

Al Rezk, F., Trimpou, G., Lauer, H. C., Weigl, P. & Krockow, N. Response of soft tissue to different abutment materials with different surface topographies: a review of the literature. Gen. Dent. 66, 18–25 (2018).

125

Schmidt, K. E. et al. Influence of different instrumentation modalities on the surface characteristics and biofilm formation on dental implant neck, in vitro. Clin. Oral. Implants Res. 28, 483–490 (2017).

126

Zhao, B. et al. Soft tissue integration versus early biofilm formation on different dental implant materials. Dent. Mater. 30, 716–727 (2014).

127

Gineviciute, E., Alkimavicius, J., Andrijauskas, R., Sakalauskas, D. & Linkeviciene, L. Comparison of different cleaning procedures to decontaminate zirconium oxide surface after polishing. Int. J. Prosthodont. https://doi.org/10.11607/ijp.6896 (2021).

128

Miyata, K. & Takebe, J. Anodized-hydrothermally treated titanium with a nanotopographic surface structure regulates integrin-alpha6beta4 and laminin-5 gene expression in adherent murine gingival epithelial cells. J. Prosthodont. Res. 57, 99–108 (2013).

129

Puckett, S. D., Lee, P. P., Ciombor, D. M., Aaron, R. K. & Webster, T. J. Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices. Acta Biomater. 6, 2352–2362 (2010).

130

Takebe, J., Miyata, K., Miura, S. & Ito, S. Effects of the nanotopographic surface structure of commercially pure titanium following anodization-hydrothermal treatment on gene expression and adhesion in gingival epithelial cells. Mater. Sci. Eng. C Mater. Biol. Appl. 42, 273–279 (2014).

131

Xu, R. et al. Micro-/nano-topography of selective laser melting titanium enhances adhesion and proliferation and regulates adhesion-related gene expressions of human gingival fibroblasts and human gingival epithelial cells. Int. J. Nanomed. 13, 5045 (2018).

132

Pokrowiecki, R., Palka, K. & Mielczarek, A. Nanomaterials in dentistry: a cornerstone or a black box? Nanomedicine 13, 639–667 (2018).

133

Li, T., Gulati, K., Wang, N., Zhang, Z. & Ivanovski, S. Understanding and augmenting the stability of therapeutic nanotubes on anodized titanium implants. Mater. Sci. Eng. C Mater. Biol. Appl. 88, 182–195 (2018).

134

Gulati, K., Moon, H. J., Li, T., Sudheesh Kumar, P. T. & Ivanovski, S. Titania nanopores with dual micro-/nano-topography for selective cellular bioactivity. Mater. Sci. Eng. C Mater. Biol. Appl. 91, 624–630 (2018).

135

Gulati, K., Moon, H. J., Kumar, P. T. S., Han, P. & Ivanovski, S. Anodized anisotropic titanium surfaces for enhanced guidance of gingival fibroblasts. Mater. Sci. Eng. C Mater. Biol. Appl. 112, 110860 (2020).

136

Liu, X. et al. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts. Int. J. Nanomed. 9, 1185 (2014).

137

Ma, Q., Mei, S., Ji, K., Zhang, Y. & Chu, P. K. Immobilization of Ag nanoparticles/FGF-2 on a modified titanium implant surface and improved human gingival fibroblasts behavior. J. Biomed. Mater. Res. Part A 98A, 274–286 (2011).

138

Wei, H. et al. Increased fibroblast functionality on CNN2-loaded titania nanotubes. Int. J. Nanomed. 7, 1091 (2012).

139

Zhang, E. et al. Antibacterial metals and alloys for potential biomedical implants. Bioact. Mater. 6, 2569–2612 (2021).

140

Chopra, D., Gulati, K. & Ivanovski, S. Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants. Acta Biomater. 127, 80–101 (2021).

141

Filipović, U., Dahmane, R. G., Ghannouchi, S., Zore, A. & Bohinc, K. Bacterial adhesion on orthopedic implants. Adv. Colloid Interface Sci. 283, 102228 (2020).

142

Linklater, D. P. et al. Mechano-bactericidal actions of nanostructured surfaces. Nat. Rev. Microbiol. 19, 8–22 (2021).

143

Li, X. Bactericidal mechanism of nanopatterned surfaces. Phys. Chem. Chem. Phys. 18, 1311–1316 (2016).

144

zhang, X. et al. Chemical stability, antibacterial and osteogenic activities study of strontium-silver co-substituted fluorohydroxyapatite nanopillars: a potential multifunctional biological coating. Ceram. Int. 46, 27758–27773 (2020).

145

Hizal, F. et al. Impact of 3D hierarchical nanostructures on the antibacterial efficacy of a bacteria-triggered self-defensive antibiotic coating. ACS Appl. Mater. Interfaces 7, 20304–20313 (2015).

146

Gulati, K. et al. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater. 8, 449–456 (2012).

147

Popat, K. C., Eltgroth, M., LaTempa, T. J., Grimes, C. A. & Desai, T. A. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28, 4880–4888 (2007).

148

Ma, M. et al. Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections. J. Biomed. Mater. Res. Part A 100A, 278–285 (2012).

149

Ungureanu, C. et al. Enhancing antimicrobial activity of TiO2/Ti by torularhodin bioinspired surface modification. Bioelectrochemistry 107, 14–24 (2016).

150

Gunputh, U. F., Le, H., Handy, R. D. & Tredwin, C. Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants. Mater. Sci. Eng. C. 91, 638–644 (2018).

151

Sun, L. et al. Decreased porphyromonas gingivalis adhesion and improved biocompatibility on tetracycline-loaded TiO2 nanotubes: an in vitro study. Int. J. Nanomed. 13, 6769 (2018).

152

Ma, M. et al. Local delivery of antimicrobial peptides using self‐organized TiO2 nanotube arrays for peri‐implant infections. J. Biomed. Mater. Res. Part A 100, 278–285 (2012).

153

Li, T. et al. Antibacterial activity and cytocompatibility of an implant coating consisting of TiO2 nanotubes combined with a GL13K antimicrobial peptide. Int. J. Nanomed. 12, 2995 (2017).

154

Zhang, Y., Zhang, L., Li, B. & Han, Y. Enhancement in sustained release of antimicrobial peptide from dual-diameter-structured TiO2 nanotubes for long-lasting antibacterial activity and cytocompatibility. ACS Appl. Mater. Interfaces 9, 9449–9461 (2017).

155

Ding, X., Zhang, Y., Ling, J. & Lin, C. Rapid mussel-inspired synthesis of PDA-Zn-Ag nanofilms on TiO2 nanotubes for optimizing the antibacterial activity and biocompatibility by doping polydopamine with zinc at a higher temperature. Colloids Surf. B Biointerfaces 171, 101–109 (2018).

156

Mokhtari, H., Ghasemi, Z., Kharaziha, M., Karimzadeh, F. & Alihosseini, F. Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: Structural and biological properties. Appl. Surf. Sci. 441, 138–149 (2018).

157

Jia, Z. et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials 75, 203–222 (2016).

158

Kumeria, T. et al. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Colloids Surf. B Biointerfaces 130, 255–263 (2015).

159

Fathi, M., Akbari, B. & Taheriazam, A. Antibiotics drug release controlling and osteoblast adhesion from Titania nanotubes arrays using silk fibroin coating. Mater. Sci. Eng. C 103, 109743 (2019).

160

Chen, X. et al. Dual action antibacterial TiO2 nanotubes incorporated with silver nanoparticles and coated with a quaternary ammonium salt (QAS). Surf. Coat. Technol. 216, 158–165 (2013).

161

Das, K., Bose, S., Bandyopadhyay, A., Karandikar, B. & Gibbins, B. L. Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants. J. Biomed. Mater. Res. Part B: Appl. Biomater. 87, 455–460 (2008).

162

Hajjaji, A. et al. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity. Colloids Surf. B Biointerfaces 170, 92–98 (2018).

163

Gao, A. et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials 35, 4223–4235 (2014).

164

Mirzaee, M., Vaezi, M. & Palizdar, Y. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid. Mater. Sci. Eng. C 69, 675–684 (2016).

165

Xu, W. et al. TiO2 nanotubes modified with Au nanoparticles for visible-light enhanced antibacterial and anti-inflammatory capabilities. J. Electroanal. Chem. 842, 66–73 (2019).

166

Wang, G. et al. Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. ACS Appl. Mater. Interfaces 8, 24509–24516 (2016).

167

Roguska, A. et al. Metal TiO2 nanotube layers for the treatment of dental implant infections. ACS Appl. Mater. Interfaces 10, 17089–17099 (2018).

168

Xiang, Y. et al. Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes. Mater. Sci. Eng. C 85, 214–224 (2018).

169

Dong, J., Fang, D., Zhang, L., Shan, Q. & Huang, Y. Gallium-doped titania nanotubes elicit anti-bacterial efficacy in vivo against Escherichia coli and Staphylococcus aureus biofilm. Mater. 5, 100209 (2019).

170

Jayasree, A., Gómez-Cerezo, M. N., Verron, E., Ivanovski, S. & Gulati, K. Gallium-doped dual micro-nano titanium dental implants towards soft-tissue integration and bactericidal functions. Mater. Today Adv. 16, 100297 (2022).

171

Gulati, K., Scimeca, J.-C., Ivanovski, S. & Verron, E. Double-edged sword: Therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discov. Today 26, 2734–2742 (2021).

172
Myers, J. & Hanna, E. Cancer of the Head and Neck. (Lippincott Williams & Wilkins, 2016).
173
Lentsch, E. J. & Myers J. N. Cancer of the Head and Neck (eds Myers, E. N., Suen, J. Y., Myers, J. N. & Hanna, E. Y.) 5–28 (Saunders, 2003).
174

El-Sayed, I. H. Nanotechnology in head and neck cancer: the race is on. Curr. Oncol. Rep. 12, 121–128 (2010).

175

Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2, 681–693 (2007).

176

Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

177

Ravindran, R. Nano technology in cancer diagnosis and treatment: an overview. Oral. Maxillofac. Pathol. 2, 6 (2011).

178

Everts, M. & Curiel, D. T. Transductional targeting of adenoviral cancer gene therapy. Curr. Gene Ther. 4, 337–346 (2004).

179

Sundelacruz, S. & Kaplan, D. L. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin. Cell Dev. Biol. 20, 646–655 (2009).

180

Azzazy, H. M., Mansour, M. M. & Kazmierczak, S. C. From diagnostics to therapy: prospects of quantum dots. Clin. Biochem. 40, 917–927 (2007).

181

El-Sayed, I. H., Huang, X. & El-Sayed, M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006).

182
Gulati, K., Atkins, G. J., Findlay, D. M. & Losic, D. Biosensing and Nanomedicine VI. Vol. 8812, p. 28–33 (SPIE, 2013).
183

Kaur, G. et al. Titanium wire implants with nanotube arrays: a study model for localized cancer treatment. Biomaterials 101, 176–188 (2016).

184

Heidari Khoee, M., Khoee, S. & Lotfi, M. Synthesis of titanium dioxide nanotubes with liposomal covers for carrying and extended release of 5-FU as anticancer drug in the treatment of HeLa cells. Anal. Biochem. 572, 16–24 (2019).

185

Gulla, S. et al. Titanium dioxide nanotubes conjugated with quercetin function as an effective anticancer agent by inducing apoptosis in melanoma cells. J. Nanostruct. Chem. 11, 721–734 (2021).

186

Zandvakili, A. et al. Investigating cytotoxicity effect of Ag- deposited, doped and coated titanium dioxide nanotubes on breast cancer cells. Mater. Today Commun. 32, 103915 (2022).

187

Saji, V. S. et al. Localized drug delivery of selenium (Se) using nanoporous anodic aluminium oxide for bone implants. J. Mater. Chem. B 3, 7090–7098 (2015).

188

Chen, X. et al. Fabrication of selenium-deposited and chitosan-coated titania nanotubes with anticancer and antibacterial properties. Colloids Surf. B Biointerfaces 103, 149–157 (2013).

189

Bilek, O., Fohlerova, Z. & Hubalek, J. Enhanced antibacterial and anticancer properties of Se-NPs decorated TiO2 nanotube film. PLoS ONE 14, e0214066 (2019).

190

J, B. Nanocell destruction of inoperable tumors. Lancet Oncol. 4, 1 (2003).

191

Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

192

Loo, C., Lowery, A., Halas, N., West, J. & Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005).

193

Schwartz, J. A. et al. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res. 69, 1659–1667 (2009).

194

Barton, J. K. et al. Nanoshells as an optical coherence tomography contrast agent. SPIE 5316, 7 (2004).

195

Kalbacova, M., Macak, J. M., Schmidt-Stein, F., Mierke, C. T. & Schmuki, P. TiO2 nanotubes: photocatalyst for cancer cell killing. Phys. Status Solidi (RRL) – Rapid Res. Lett. 2, 194–196 (2008).

196

Shrestha, N. K. et al. Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew. Chem. Int. Ed. 48, 969–972 (2009).

197

Kwak, B. et al. Selective isolation of magnetic nanoparticle-mediated heterogeneity subpopulation of circulating tumor cells using magnetic gradient based microfluidic system. Biosens. Bioelectron. 88, 153–158 (2017).

198

Jain, K. K. Advances in the field of nanooncology. BMC Med. 8, 83 (2010).

199

Danila, D. C. et al. Clinical validity of detecting circulating tumor cells by adnatest assay compared with direct detection of tumor mrna in stabilized whole blood, as a biomarker predicting overall survival for metastatic castration-resistant prostate cancer patients. Cancer J. 22, 315–320 (2016).

200

Hasanzadeh Kafshgari, M. et al. Anodic titanium dioxide nanotubes for magnetically guided therapeutic delivery. Sci. Rep. 9, 13439 (2019).

201

Chen, Q. T. Metallic implant biomaterials. Mater. Sci. Eng. R. 87, 57 (2015).

202

Warheit, D. B., Brock, W. J., Lee, K. P., Webb, T. R. & Reed, K. L. Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Toxicol. Sci. 88, 514–524 (2005).

203

Warheit, D. B., Webb, T. R., Sayes, C. M., Colvin, V. L. & Reed, K. L. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol. Sci. 91, 227–236 (2006).

204

Shukla, R. K. et al. TiO(2) nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology 7, 48–60 (2013).

205

Hu, M. & Palic, D. Role of MicroRNAs in regulation of DNA damage in monocytes exposed to polystyrene and TiO2 nanoparticles. Toxicol. Rep. 7, 743–751 (2020).

206

Ling, C. et al. Genotoxicity evaluation of titanium dioxide nanoparticles in vitro: a systematic review of the literature and meta-analysis. Biol. Trace Elem. Res. 199, 2057–2076 (2021).

207

Valdiglesias, V. et al. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem. Toxicol. 57, 352–361 (2013).

208

Feschet-Chassor, E. R. et al. Tunable functionality and toxicity studies of titanium dioxide nanotube layers. Thin Solid Films 519, 5 (2011).

209

Xia, T. K. et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stess properties. ACS Nano 2, 4 (2008).

210

Guo, T., Ivanovski, S. & Gulati, K. Fresh or aged: short time anodization of titanium to understand the influence of electrolyte aging on titania nanopores. J. Mater. Sci. Technol. 119, 245–256 (2022).

211

Chopra, D., Guo, T., Ivanovski, S. & Gulati, K. Single-step nano-engineering of multiple micro-rough metals via anodization. Nano Res. 16, 1320–1329 (2023).

212

Guo, T., Oztug, N. A. K., Han, P., Ivanovski, S. & Gulati, K. Influence of sterilization on the performance of anodized nanoporous titanium implants. Mater. Sci. Eng. C 130, 112429 (2021).

213

Li, T., Gulati, K., Wang, N., Zhang, Z. & Ivanovski, S. Bridging the gap: optimized fabrication of robust titania nanostructures on complex implant geometries towards clinical translation. J. Colloid Interface Sci. 529, 452–463 (2018).

214

Gulati, K., Johnson, L., Karunagaran, R., Findlay, D. & Losic, D. In situ transformation of chitosan films into microtubular structures on the surface of nanoengineered titanium implants. Biomacromolecules 17, 1261–1271 (2016).

215

Rahman, S. et al. Drug diffusion, integration, and stability of nanoengineered drug-releasing implants in bone ex-vivo. J. Biomed. Mater. Res. Part A 104, 714–725 (2016).

216

Gulati, K., Zhang, Y., Di, P., Liu, Y. & Ivanovski, S. Research to clinics: clinical translation considerations for anodized nano-engineered titanium implants. ACS Biomater. Sci. Eng. 8, 4077–4091 (2022).

International Journal of Oral Science
Article number: 15
Cite this article:
Gulati K, Ding C, Guo T, et al. Craniofacial therapy: advanced local therapies from nano-engineered titanium implants to treat craniofacial conditions. International Journal of Oral Science, 2023, 15: 15. https://doi.org/10.1038/s41368-023-00220-9

158

Views

0

Downloads

10

Crossref

10

Web of Science

9

Scopus

Altmetrics

Received: 21 November 2022
Revised: 05 February 2023
Accepted: 28 February 2023
Published: 29 March 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return