Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Periodontitis is an infectious disease caused by an imbalance between the local microbiota and host immune response. Epidemiologically, periodontitis is closely related to the occurrence, development, and poor prognosis of T2D and is recognized as a potential risk factor for T2D. In recent years, increasing attention has been given to the role of the virulence factors produced by disorders of the subgingival microbiota in the pathological mechanism of T2D, including islet β-cell dysfunction and insulin resistance (IR). However, the related mechanisms have not been well summarized. This review highlights periodontitis-derived virulence factors, reviews how these stimuli directly or indirectly regulate islet β-cell dysfunction. The mechanisms by which IR is induced in insulin-targeting tissues (the liver, visceral adipose tissue, and skeletal muscle) are explained, clarifying the influence of periodontitis on the occurrence and development of T2D. In addition, the positive effects of periodontal therapy on T2D are overviewed. Finally, the limitations and prospects of the current research are discussed. In summary, periodontitis is worthy of attention as a promoting factor of T2D. Understanding on the effect of disseminated periodontitis-derived virulence factors on the T2D-related tissues and cells may provide new treatment options for reducing the risk of T2D associated with periodontitis.
Negrini, T. C., Carlos, I. Z., Duque, C., Caiaffa, K. S. & Arthur, R. A. Interplay among the oral microbiome, oral cavity conditions, the host immune response, diabetes mellitus, and its associated-risk factors-an overview. Front. Oral. Health 2, 697428 (2021).
Genco, R. J. & Sanz, M. Clinical and public health implications of periodontal and systemic diseases: an overview. Periodontology 2000 83, 7–13 (2020).
Xiao, E. et al. Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe 22, 120–128.e124 (2017).
Teles, F., Wang, Y., Hajishengallis, G., Hasturk, H. & Marchesan, J. T. Impact of systemic factors in shaping the periodontal microbiome. Periodontol. 2000 85, 126–160 (2021).
Park, J. H., Kim, S. H., Kim, S. J. & Kim, J. W. Recovery from chronic periodontal disease is associated with lower risk for incident diabetes. J. Clin. Periodontol. 49, 862–871 (2022).
Demmer, R. T. et al. Subgingival microbiota and longitudinal glucose change: the oral infections, glucose intolerance and insulin resistancestudy (ORIGINS). J. Dent. Res. 98, 1488–1496 (2019).
Lamont, R. J., Koo, H. & Hajishengallis, G. The oral microbiota: dynamic communities and host interactions. Nat. Rev. Microbiol. 16, 745–759 (2018).
Nazir, M. A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci. (Qassim) 11, 72–80 (2017).
Peres, M. A. et al. Oral diseases: a global public health challenge. Lancet 394, 249–260 (2019).
George, A. K., Narayan, V., Kurian, N., Joseph, A. E. & Anil, S. A pilot study on glycemia and insulin resistance in patients with severe periodontitis. J. Indian Soc. Periodontol. 25, 393–398 (2021).
Islam, S. K., Seo, M., Lee, Y. S. & Moon, S. S. Association of periodontitis with insulin resistance, β-cell function, and impaired fasting glucose before onset of diabetes. Endocr. J. 62, 981–989 (2015).
Arora, N. et al. Periodontal infection, impaired fasting glucose and impaired glucose tolerance: results from the Continuous National Health and Nutrition Examination Survey 2009-2010. J. Clin. Periodontol. 41, 643–652 (2014).
Solini, A. et al. Periodontitis affects glucoregulatory hormones in severely obese individuals. Int J. Obes. (Lond.) 43, 1125–1129 (2019).
Chiu, S. Y. et al. Temporal sequence of the bidirectional relationship between hyperglycemia and periodontal disease: a community-based study of 5,885 Taiwanese aged 35–44 years (KCIS No. 32). Acta Diabetol. 52, 123–131 (2015).
Lin, S. Y. et al. Association between periodontitis needing surgical treatment and subsequent diabetes risk: a population-based cohort study. J. Periodontol. 85, 779–786 (2014).
Khanuja, P. K., Narula, S. C., Rajput, R., Sharma, R. K. & Tewari, S. Association of periodontal disease with glycemic control in patients with type 2 diabetes in Indian population. Front. Med. 11, 110–119 (2017).
Allen, E. M., Matthews, J. B., DJ, O. H., Griffiths, H. R. & Chapple, I. L. Oxidative and inflammatory status in Type 2 diabetes patients with periodontitis. J. Clin. Periodontol. 38, 894–901 (2011).
Vadakkekuttical, R. J., Kaushik, P. C., Mammen, J. & George, J. M. Does periodontal inflammation affect glycosylated haemoglobin level in otherwise systemically healthy individuals?—a hospital based study. Singap. Dent. J. 38, 55–61 (2017).
Wu, H. Q. et al. Association between retinopathy, nephropathy, and periodontitis in type 2 diabetic patients: a meta-analysis. Int J. Ophthalmol. 14, 141–147 (2021).
Song, S. J., Lee, S. S., Han, K. & Park, J. B. Periodontitis is associated with diabetic retinopathy in non-obese adults. Endocrine 56, 82–89 (2017).
Zhang, X. et al. Relationship between periodontitis and microangiopathy in type 2 diabetes mellitus: a meta-analysis. J. Periodontal Res. 56, 1019–1027 (2021).
Demmer, R. T., Papapanou, P. N., Jacobs, D. R. Jr. & Desvarieux, M. Evaluating clinical periodontal measures as surrogates for bacterial exposure: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). BMC Med. Res. Methodol. 10, 2 (2010).
Demmer, R. T. et al. Periodontal bacteria and prediabetes prevalence in ORIGINS: the oral infections, glucose intolerance, and insulin resistance study. J. Dent. Res. 94, 201s–211s (2015).
Demmer, R. T. et al. The subgingival microbiome, systemic inflammation and insulin resistance: the oral infections, glucose intolerance and insulin resistance study. J. Clin. Periodontol. 44, 255–265 (2017).
Komazaki, R. et al. Periodontal pathogenic bacteria, aggregatibacter actinomycetemcomitans affect non-alcoholic fatty liver disease by altering gut microbiota and glucose metabolism. Sci. Rep. 7, 13950 (2017).
Ilievski, V. et al. Identification of a periodontal pathogen and bihormonal cells in pancreatic islets of humans and a mouse model of periodontitis. Sci. Rep. 10, 9976 (2020).
Seyama, M. et al. Outer membrane vesicles of Porphyromonas gingivalis attenuate insulin sensitivity by delivering gingipains to the liver. Biochim Biophys. Acta Mol. Basis Dis. 1866, 165731 (2020).
Ishikawa, M. et al. Oral Porphyromonas gingivalis translocates to the liver and regulates hepatic glycogen synthesis through the Akt/GSK-3beta signaling pathway. Biochim. Biophys. Acta 1832, 2035–2043 (2013).
Blasco-Baque, V. et al. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut 66, 872–885 (2017).
Tang, B., Yan, C., Shen, X. & Li, Y. The bidirectional biological interplay between microbiome and viruses in periodontitis and type-2 diabetes mellitus. Front. Immunol. 13, 885029 (2022).
Xu, W., Zhou, W., Wang, H. & Liang, S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Adv. Protein Chem. Struct. Biol. 120, 45–84 (2020).
Bhat, U. G., Ilievski, V., Unterman, T. G. & Watanabe, K. Porphyromonas gingivalis lipopolysaccharide upregulates insulin secretion from pancreatic beta cell line MIN6. J. Periodontol. 85, 1629–1636 (2014).
Ding, L. Y. et al. Porphyromonas gingivalis-derived lipopolysaccharide causes excessive hepatic lipid accumulation via activating NF-kappaB and JNK signaling pathways. Oral. Dis. 25, 1789–1797 (2019).
Huang, Y. et al. Periodontitis contributes to adipose tissue inflammation through the NF-<kappa>B, JNK and ERK pathways to promote insulin resistance in a rat model. Microbes Infect. 18, 804–812 (2016).
Lunar Silva, I. & Cascales, E. Molecular strategies underlying porphyromonas gingivalis virulence. J. Mol. Biol. 433, 166836 (2021).
Xie, H. Biogenesis and function of Porphyromonas gingivalis outer membrane vesicles. Fut. Microbiol. 10, 1517–1527 (2015).
Okamura, H. et al. Outer membrane vesicles of Porphyromonas gingivalis: novel communication tool and strategy. Jpn Dent. Sci. Rev. 57, 138–146 (2021).
Belibasakis, G. N. et al. Virulence and pathogenicity properties of aggregatibacter actinomycetemcomitans. Pathogens (Basel, Switzerland) 8, 222 (2019).
Furugen, R., Hayashida, H., Yoshii, Y. & Saito, T. Neutrophil-derived resistin release induced by aggregatibacter actinomycetemcomitans. FEMS Microbiol. Lett. 321, 175–182 (2011).
Issaranggun Na Ayuthaya, B., Everts, V. & Pavasant, P. The immunopathogenic and immunomodulatory effects of interleukin-12 in periodontal disease. Eur. J. Oral. Sci. 126, 75–83 (2018).
Minty, M. et al. Oral microbiota-induced periodontitis: a new risk factor of metabolic diseases. Rev. Endocr. Metab. Disord. 20, 449–459 (2019).
Amano, A. Molecular interaction of Porphyromonas gingivalis with host cells: implication for the microbial pathogenesis of periodontal disease. J. Periodontol. 74, 90–96 (2003).
Bae, H. et al. Angiopoietin-2-integrin α5β1 signaling enhances vascular fatty acid transport and prevents ectopic lipid-induced insulin resistance. Nat. Commun. 11, 2980 (2020).
Nemoto, T. K. & Ohara Nemoto, Y. Dipeptidyl-peptidases: Key enzymes producing entry forms of extracellular proteins in asaccharolytic periodontopathic bacterium Porphyromonas gingivalis. Mol. Oral. Microbiol 36, 145–156 (2021).
Ohara-Nemoto, Y. et al. Degradation of incretins and modulation of blood glucose levels by periodontopathic bacterial dipeptidyl peptidase 4. Infect. Immun. 85, e00277–e00317 (2017).
Mirzaei, R. et al. Identification of proteins derived from Listeria monocytogenes inducing human dendritic cell maturation. Tumour Biol. 37, 10893–10907 (2016).
Lockhart, P. B. et al. Bacteremia associated with toothbrushing and dental extraction. Circulation 117, 3118–3125 (2008).
Carrion, J. et al. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential. J. Immunol. 189, 3178–3187 (2012).
Loos, B. G. Systemic markers of inflammation in periodontitis. J. Periodontol. 76, 2106–2115 (2005).
Castillo, D. M. et al. Detection of specific periodontal microorganisms from bacteraemia samples after periodontal therapy using molecular-based diagnostics. J. Clin. Periodontol. 38, 418–427 (2011).
Pietiäinen, M., Liljestrand, J. M., Kopra, E. & Pussinen, P. J. Mediators between oral dysbiosis and cardiovascular diseases. Eur. J. Oral. Sci. 126, 26–36 (2018).
Ilievski, V. et al. Oral application of a periodontal pathogen impacts SerpinE1 expression and pancreatic islet architecture in prediabetes. J. Periodontal Res. 52, 1032–1041 (2017).
Ramenzoni, L. L. et al. Bacterial supernatants elevate glucose-dependent insulin secretion in rat pancreatic INS-1 line and islet beta-cells via PI3K/AKT signaling. Mol. Cell Biochem 452, 17–27 (2019).
Aramata, S., Han, S. I., Yasuda, K. & Kataoka, K. Synergistic activation of the insulin gene promoter by the beta-cell enriched transcription factors MafA, Beta2, and Pdx1. Biochim. Biophys. Acta 1730, 41–46 (2005).
Arous, C., Ferreira, P. G., Dermitzakis, E. T. & Halban, P. A. Short term exposure of beta cells to low concentrations of interleukin-1beta improves insulin secretion through focal adhesion and actin remodeling and regulation of gene expression. J. Biol. Chem. 290, 6653–6669 (2015).
Geng, L. et al. β-Klotho promotes glycolysis and glucose-stimulated insulin secretion via GP130. Nat. Metab. 4, 608–626 (2022).
Nakayama, M. et al. Porphyromonas gingivalis Gingipains induce Cyclooxygenase-2 expression and Prostaglandin E(2) production via ERK1/2-activated AP-1 (c-Jun/c-Fos) and IKK/NF-κB p65 cascades. J. Immunol. 208, 1146–1154 (2022).
Nussbaum, G., Ben-Adi, S., Genzler, T., Sela, M. & Rosen, G. Involvement of Toll-like receptors 2 and 4 in the innate immune response to Treponema denticola and its outer sheath components. Infect. Immun. 77, 3939–3947 (2009).
Ateia, I. M. et al. Treponema denticola increases MMP-2 expression and activation in the periodontium via reversible DNA and histone modifications. Cell. Microbiol. https://doi.org/10.1111/cmi.12815 (2018).
Liu, S. L. et al. ERRα promotes pancreatic cancer progression by enhancing the transcription of PAI1 and activating the MEK/ERK pathway. Am. J. Cancer Res. 10, 3622–3643 (2020).
Ikushima, Y. M. et al. MEK/ERK signaling in β-cells bifunctionally regulates β-cell mass and glucose-stimulated insulin secretion response to maintain glucose homeostasis. Diabetes 70, 1519–1535 (2021).
Liu, J. et al. Porphyromonas gingivalis promotes the cell cycle and inflammatory cytokine production in periodontal ligament fibroblasts. Arch. oral. Biol. 60, 1153–1161 (2015).
Wang, P. et al. Diabetes mellitus-advances and challenges in human β-cell proliferation. Nat. Rev. Endocrinol. 11, 201–212 (2015).
Spijker, H. S. et al. Loss of β-Cell identity occurs in Type 2 diabetes and is associated with Islet amyloid deposits. Diabetes 64, 2928–2938 (2015).
Christensen, A. A. & Gannon, M. The beta cell in Type 2 diabetes. Curr. Diab Rep. 19, 81 (2019).
Yin, L. & Chung, W. O. Epigenetic regulation of human beta-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol. 4, 409–419 (2011).
Diomede, F. et al. Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells: role of epigenetic modifications to the inflammation. Eur. J. Histochem. 61, 2826 (2017).
Bramswig, N. C. et al. Epigenomic plasticity enables human pancreatic α to β cell reprogramming. J. Clin. Investig. 123, 1275–1284 (2013).
Dhawan, S., Georgia, S., Tschen, S. I., Fan, G. & Bhushan, A. Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx. Dev. Cell 20, 419–429 (2011).
Huang, Y. et al. lncRNA Gm10451 regulates PTIP to facilitate iPSCs-derived β-like cell differentiation by targeting miR-338-3p as a ceRNA. Biomaterials 216, 119266 (2019).
Sánchez-Hernández, P. E. et al. IL-12 and IL-18 levels in serum and gingival tissue in aggressive and chronic periodontitis. Oral. Dis. 17, 522–529 (2011).
Liu, Y. & Zhang, Q. Periodontitis aggravated pancreatic β-cell dysfunction in diabetic mice through interleukin-12 regulation on Klotho. J. Diabetes Investig. 7, 303–311 (2016).
Guo, S. et al. Inactivation of specific β cell transcription factors in type 2 diabetes. J. Clin. Investig. 123, 3305–3316 (2013).
Zhang, F. et al. Signal-regulated protein kinases/protein kinase B-p53-BH3-interacting domain death agonist pathway regulates Gingipain-induced apoptosis in osteoblasts. J. Periodontol. 88, e200–e210 (2017).
Lv, Y. T. et al. Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) influences adipocytes injuries through triggering XBP1 and activating mitochondria-mediated apoptosis. Adipocyte 10, 28–37 (2021).
Tomita, T. Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosn. J. Basic Med. Sci. 16, 162–179 (2016).
Fleetwood, A. J. et al. Metabolic remodeling, inflammasome activation, and pyroptosis in macrophages stimulated by porphyromonas gingivalis and its outer membrane vesicles. Front Cell Infect. Microbiol 7, 351 (2017).
Park, Y. J. et al. Dual role of interleukin-1β in islet amyloid formation and its β-cell toxicity: Implications for type 2 diabetes and islet transplantation. Diabetes Obes. Metab. 19, 682–694 (2017).
Takamura, H., Yoshida, K., Okamura, H., Fujiwara, N. & Ozaki, K. Porphyromonas gingivalis attenuates the insulin-induced phosphorylation and translocation of forkhead box protein O1 in human hepatocytes. Arch. oral. Biol. 69, 19–24 (2016).
Casteels, T. et al. An inhibitor-mediated beta-cell dedifferentiation model reveals distinct roles for FoxO1 in glucagon repression and insulin maturation. Mol. Metab. 54, 101329 (2021).
Wang, L. et al. GCN5L1 modulates cross-talk between mitochondria and cell signaling to regulate FoxO1 stability and gluconeogenesis. Nat. Commun. 8, 523 (2017).
Arimatsu, K. et al. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Sci. Rep. 4, 4828 (2014).
Itabe, H., Yamaguchi, T., Nimura, S. & Sasabe, N. Perilipins: a diversity of intracellular lipid droplet proteins. Lipids Health Dis. 16, 83 (2017).
Agrawal, M. et al. Fat storage-inducing transmembrane protein 2 (FIT2) is less abundant in type 2 diabetes, and regulates triglyceride accumulation and insulin sensitivity in adipocytes. FASEB J. 33, 430–440 (2019).
Ren, X., Chen, N., Chen, Y., Liu, W. & Hu, Y. TRB3 stimulates SIRT1 degradation and induces insulin resistance by lipotoxicity via COP1. Exp. Cell Res. 382, 111428 (2019).
Nagasaki, A. et al. Odontogenic infection by Porphyromonas gingivalis exacerbates fibrosis in NASH via hepatic stellate cell activation. Sci. Rep. 10, 4134 (2020).
Ni, J. et al. Influence of periodontitis and scaling and root planing on insulin resistance and hepatic CD36 in obese rats. J. Periodontol. 89, 476–485 (2018).
Wu, C. et al. Changes in expression of the membrane receptors CD14, MHC-Ⅱ, SR-A, and TLR4 in tissue-specific monocytes/macrophages following porphyromonas gingivalis-LPS stimulation. Inflammation 41, 418–431 (2018).
Ilievski, V. et al. TLR4 expression by liver resident cells mediates the development of glucose intolerance and insulin resistance in experimental periodontitis. PloS One 10, e0136502 (2015).
Jager, J., Aparicio-Vergara, M. & Aouadi, M. Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells. J. Intern. Med. 280, 209–220 (2016).
Henkel, J., Neuschäfer-Rube, F., Pathe-Neuschäfer-Rube, A. & Püschel, G. P. Aggravation by prostaglandin E2 of interleukin-6-dependent insulin resistance in hepatocytes. Hepatology 50, 781–790 (2009).
Henkel, J. et al. Oncostatin M produced in Kupffer cells in response to PGE2: possible contributor to hepatic insulin resistance and steatosis. Lab. Investig. 91, 1107–1117 (2011).
Girard, J. Glucagon, a key factor in the pathophysiology of type 2 diabetes. Biochimie 143, 33–36 (2017).
Petersen, M. C. & Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 98, 2133–2223 (2018).
Zhu, C. et al. The therapeutic role of baicalein in combating experimental periodontitis with diabetes via Nrf2 antioxidant signaling pathway. J. Periodontal Res. 55, 381–391 (2020).
Le Sage, F., Meilhac, O. & Gonthier, M. P. Porphyromonas gingivalis lipopolysaccharide induces pro-inflammatory adipokine secretion and oxidative stress by regulating Toll-like receptor-mediated signaling pathways and redox enzymes in adipocytes. Mol. Cell. Endocrinol. 446, 102–110 (2017).
Singh, S. P., Huck, O., Abraham, N. G. & Amar, S. Kavain reduces porphyromonas gingivalis-induced adipocyte inflammation: role of PGC-1alpha signaling. J. Immunol. 201, 1491–1499 (2018).
Yaribeygi, H., Farrokhi, F. R., Butler, A. E. & Sahebkar, A. Insulin resistance: review of the underlying molecular mechanisms. J. Cell Physiol. 234, 8152–8161 (2019).
Hurrle, S. & Hsu, W. H. The etiology of oxidative stress in insulin resistance. Biomed. J. 40, 257–262 (2017).
Nakajima, M. et al. Brazilian propolis mitigates impaired glucose and lipid metabolism in experimental periodontitis in mice. BMC Complement. Altern. Med. 16, 329 (2016).
Issa, N. et al. Cytokines promote lipolysis in 3T3-L1 adipocytes through induction of NADPH oxidase 3 expression and superoxide production. J. Lipid Res. 59, 2321–2328 (2018).
Le Sage, F., Meilhac, O. & Gonthier, M. P. Anti-inflammatory and antioxidant effects of polyphenols extracted from Antirhea borbonica medicinal plant on adipocytes exposed to Porphyromonas gingivalis and Escherichia coli lipopolysaccharides. Pharm. Res. 119, 303–312 (2017).
Su, Y. et al. Periodontitis as a novel contributor of adipose tissue inflammation promotes insulin resistance in a rat model. J. Periodontol. 84, 1617–1626 (2013).
Martinez-Herrera, M. et al. Levels of serum retinol-binding protein 4 before and after non-surgical periodontal treatment in lean and obese subjects: an interventional study. J. Clin. Periodontol. 45, 336–344 (2018).
Kahn, B. B. Adipose tissue, inter-organ communication, and the path to Type 2 diabetes: the 2016 banting medal for scientific achievement lecture. Diabetes 68, 3–14 (2019).
Ahmed, B., Sultana, R. & Greene, M. W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 137, 111315 (2021).
Wu, H. & Ballantyne, C. M. Metabolic inflammation and insulin resistance in obesity. Circ. Res. 126, 1549–1564 (2020).
Laiglesia, L. M. et al. Maresin 1 inhibits TNF-alpha-induced lipolysis and autophagy in 3T3-L1 adipocytes. J. Cell Physiol. 233, 2238–2246 (2018).
Jian, M., Kwan, J. S., Bunting, M., Ng, R. C. & Chan, K. H. Adiponectin suppresses amyloid-beta oligomer (AbetaO)-induced inflammatory response of microglia via AdipoR1-AMPK-NF-kappaB signaling pathway. J. Neuroinflammation 16, 110 (2019).
Priyanka, A. et al. Bilobalide abates inflammation, insulin resistance and secretion of angiogenic factors induced by hypoxia in 3T3-L1 adipocytes by controlling NF-κB and JNK activation. Int. Immunopharmacol. 42, 209–217 (2017).
Janani, C. & Ranjitha Kumari, B. D. PPAR gamma gene-a review. Diabetes Metab. Syndr. 9, 46–50 (2015).
Fruhbeck, G. Intracellular signalling pathways activated by leptin. Biochem J. 393, 7–20 (2006).
Taylor, E. B. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin. Sci. 135, 731–752 (2021).
Palanivel, R., Maida, A., Liu, Y. & Sweeney, G. Regulation of insulin signalling, glucose uptake and metabolism in rat skeletal muscle cells upon prolonged exposure to resistin. Diabetologia 49, 183–190 (2006).
Huang, X. & Yang, Z. Resistin’s, obesity and insulin resistance: the continuing disconnect between rodents and humans. J. Endocrinol. Invest 39, 607–615 (2016).
Merz, K. E. & Thurmond, D. C. Role of skeletal muscle in insulin resistance and glucose uptake. Compr. Physiol. 10, 785–809 (2020).
Colombo, N. H. et al. Periodontal disease decreases insulin sensitivity and insulin signaling. J. Periodontol. 83, 864–870 (2012).
Son, M. & Wu, J. Egg white hydrolysate and peptide reverse insulin resistance associated with tumor necrosis factor-alpha (TNF-alpha) stimulated mitogen-activated protein kinase (MAPK) pathway in skeletal muscle cells. Eur. J. Nutr. 58, 1961–1969 (2019).
Mattera, M. S. et al. Maternal periodontitis decreases plasma membrane GLUT4 content in skeletal muscle of adult offspring. Life Sci. 148, 194–200 (2016).
Mattera, M. et al. Effect of maternal periodontitis on GLUT4 and inflammatory pathway in adult offspring. J. Periodontol. 90, 884–893 (2019).
Nishihara, R. et al. The effect of Porphyromonas gingivalis infection on cytokine levels in type 2 diabetic mice. J. periodontal Res. 44, 305–310 (2009).
Nicholson, T., Church, C., Baker, D. J. & Jones, S. W. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. J. Inflamm. 15, 9 (2018).
Pereira, S., Cline, D. L., Glavas, M. M., Covey, S. D. & Kieffer, T. J. Tissue-specific effects of leptin on glucose and lipid metabolism. Endocr. Rev. 42, 1–28 (2021).
Sáinz, N., Barrenetxe, J., Moreno-Aliaga, M. J. & Martínez, J. A. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metab. Clin. Exp. 64, 35–46 (2015).
Jørgensen, S. B. et al. Oligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting GLUT4 translocation. Am. J. Physiol. Endocrinol. Metab. 297, E57–E66 (2009).
Li, F. et al. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Gowth Factor Rev. 33, 73–82 (2017).
Kim, K. M., Jang, H. C. & Lim, S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J. Intern. Med. 31, 643–650 (2016).
Abdul-Ghani, M. A. & DeFronzo, R. A. Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol. 2010, 476279 (2010).
Morozumi, T. et al. Increased systemic levels of inflammatory mediators following one-stage full-mouth scaling and root planing. J. Periodontal Res. 53, 536–544 (2018).
Md Tahir, K. et al. Impact of non-surgical periodontal therapy on serum Resistin and periodontal pathogen in periodontitis patients with obesity. BMC Oral. Health 20, 52 (2020).
Yashima, A. et al. Biological responses following one-stage full-mouth scaling and root planing with and without azithromycin: Multicenter randomized trial. J. Periodontal Res. 54, 709–719 (2019).
Rams, T. E. & Slots, J. Antimicrobial chemotherapy for recalcitrant severe human periodontitis. Antibiotics (Basel, Switzerland) 12, 265 (2023).
Montero, E. et al. Impact of periodontal therapy on systemic markers of inflammation in patients with metabolic syndrome: a randomized clinical trial. Diabetes, Obes. Metab. 22, 2120–2132 (2020).
Czesnikiewicz-Guzik, M. et al. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur. Heart J. 40, 3459–3470 (2019).
Wanichkittikul, N., Laohapand, P., Mansa-Nguan, C. & Thanakun, S. Periodontal treatment improves serum levels of leptin, adiponectin, and C-reactive protein in Thai patients with overweight or obesity. Int J. Dent. 2021, 6660097 (2021).
Ahuja, C. R., Kolte, A. P., Kolte, R. A., Gupta, M. & Chari, S. Effect of non-surgical periodontal treatment on gingival crevicular fluid and serum leptin levels in periodontally healthy chronic periodontitis and chronic periodontitis patients with type 2 diabetes mellitus. J. Investig. Clin. Dent. 10, e12420 (2019).
Suresh, S. et al. Effect of nonsurgical periodontal therapy on plasma-reactive oxygen metabolite and gingival crevicular fluid resistin and serum resistin levels in obese and normal weight individuals with chronic periodontitis. J. Indian Soc. Periodontol. 22, 310–316 (2018).
Suvan, J. et al. Effect of treatment of periodontitis on incretin axis in obese and nonobese individuals: a cohort study. J. Clin. Endocrinol. Metab. 106, e74–e82 (2021).
Mammen, J., Vadakkekuttical, R. J., George, J. M., Kaziyarakath, J. A. & Radhakrishnan, C. Effect of non-surgical periodontal therapy on insulin resistance in patients with type Ⅱ diabetes mellitus and chronic periodontitis, as assessed by C-peptide and the Homeostasis Assessment Index. J. Investig. Clin. Dent. https://doi.org/10.1111/jicd.12221 (2017).
Stratton, I. M. et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321, 405–412 (2000).
Tonetti, M. S. & Chapple, I. L. Biological approaches to the development of novel periodontal therapies-consensus of the Seventh European Workshop on Periodontology. J. Clin. Periodontol. 38, 114–118 (2011).
Ling, M. R., Chapple, I. L. & Matthews, J. B. Peripheral blood neutrophil cytokine hyper-reactivity in chronic periodontitis. Innate Immun. 21, 714–725 (2015).
Yamazaki, K. et al. Oral pathobiont-induced changes in gut microbiota aggravate the pathology of nonalcoholic fatty liver disease in mice. Front. Immunol. 12, 766170 (2021).
Engevik, M. A. et al. Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation. mBio 12, e02706–e02720 (2021).
Koliarakis, I. et al. Oral bacteria and intestinal dysbiosis in colorectal cancer. Int. J. Mol. Sci. 20, 4146 (2019).
189
Views
0
Downloads
15
Crossref
14
Web of Science
13
Scopus
0
CSCD
Altmetrics
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.