PDF (8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
References
Show full outline
Hide outline
Original Article | Open Access

RANKL+ senescent cells under mechanical stress: a therapeutic target for orthodontic root resorption using senolytics

Yue Zhou1Aki Nishiura1()Hidetoshi Morikuni1Wenqi Deng1Toru Tsujibayashi2Yoshihiro Momota3Yuki Azetsu4Masamichi Takami4Yoshitomo Honda5()Naoyuki Matsumoto1
Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
Department of Physics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
Department of Anesthesiology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawaku, Tokyo, Japan
Department of Oral Anatomy, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
Show Author Information

Abstract

In dentistry, orthodontic root resorption is a long-lasting issue with no effective treatment strategy, and its mechanisms, especially those related to senescent cells, remain largely unknown. Here, we used an orthodontic intrusion tooth movement model with an L-loop in rats to demonstrate that mechanical stress-induced senescent cells aggravate apical root resorption, which was prevented by administering senolytics (a dasatinib and quercetin cocktail). Our results indicated that cementoblasts and periodontal ligament cells underwent cellular senescence (p21+ or p16+) and strongly expressed receptor activator of nuclear factor-kappa B (RANKL) from day three, subsequently inducing tartrate-resistant acid phosphatase (TRAP)-positive odontoclasts and provoking apical root resorption. More p21+ senescent cells expressed RANKL than p16+ senescent cells. We observed only minor changes in the number of RANKL+ non-senescent cells, whereas RANKL+ senescent cells markedly increased from day seven. Intriguingly, we also found cathepsin K+p21+p16+ cells in the root resorption fossa, suggesting senescent odontoclasts. Oral administration of dasatinib and quercetin markedly reduced these senescent cells and TRAP+ cells, eventually alleviating root resorption. Altogether, these results unveil those aberrant stimuli in orthodontic intrusive tooth movement induced RANKL+ early senescent cells, which have a pivotal role in odontoclastogenesis and subsequent root resorption. These findings offer a new therapeutic target to prevent root resorption during orthodontic tooth movement.

References

1

DiBiase, A. T. et al. Effect of supplemental vibrational force on orthodontically induced inflammatory root resorption: a multicenter randomized clinical trial. Am. J. Orthod. Dentofacial Orthop. 150, 918–927 (2016).

2

de Souza, B. D. M. et al. Incidence of root resorption after concussion, subluxation, lateral luxation, intrusion, and extrusion: a systematic review. Clin. Oral. Investig. 24, 1101–1111 (2020).

3

Iglesias-Linares, A. & Hartsfield, J. K. Jr. Cellular and molecular pathways leading to external root resorption. J. Dent. Res. 96, 145–152 (2017).

4

Jiang, H., Kitaura, H., Liu, L., Mizoguchi, I. & Liu, S. The miR-155-5p inhibits osteoclast differentiation through targeting CXCR2 in orthodontic root resorption. J. Periodontal Res. 56, 761–773 (2021).

5

Kamat, M., Puranik, R., Vanaki, S. & Kamat, S. An insight into the regulatory mechanisms of cells involved in resorption of dental hard tissues. J. Oral. Maxillofac Pathol. 17, 228–233 (2013).

6

Boabaid, F., Berry, J. E., Koh, A. J., Somerman, M. J. & McCcauley, L. K. The role of parathyroid hormone-related protein in the regulation of osteoclastogenesis by cementoblasts. J. Periodontol. 75, 1247–1254 (2004).

7

Nakao, A. et al. PTHrP induces Notch signaling in periodontal ligament cells. J. Dent. Res. 88, 551–556 (2009).

8

Lee, S. Y., Yoo, H. I. & Kim, S. H. CCR5-CCL axis in PDL during orthodontic biophysical force application. J. Dent. Res. 94, 1715–1723 (2015).

9

Chen, D. et al. Arctiin abrogates osteoclastogenesis and bone resorption via suppressing RANKL-induced ROS and NFATc1 activation. Pharmacol. Res. 159, 104944 (2020).

10

Zhao, N., Foster, B. L. & Bonewald, L. F. The cementocyte-an osteocyte relative? J. Dent. Res. 95, 734–741 (2016).

11

Fukushima, H., Kajiya, H., Takada, K., Okamoto, F. & Okabe, K. Expression and role of RANKL in periodontal ligament cells during physiological root-resorption in human deciduous teeth. Eur. J. Oral. Sci 111, 346–352 (2003).

12

Zhao, N. et al. Isolation and functional analysis of an immortalized murine cementocyte cell line, IDG-CM6. J. Bone. Miner. Res. 31, 430–442 (2016).

13

Yamamoto, T. et al. Mechanical stress induces expression of cytokines in human periodontal ligament cells. Oral. Dis. 12, 171–175 (2006).

14

Son, G. Y., Yang, Y. M., Park, W. S., Chang, I. & Shin, D. M. Hypotonic stress induces RANKL via transient receptor potential melastatin 3 (TRPM3) and vaniloid 4 (TRPV4) in human PDL cells. J. Dent. Res. 94, 473–481 (2015).

15

Yamaguchi, M. et al. Caspase-mediated apoptosis by compressive force induces RANKL in cementoblasts. Int. J. Oral Health Sci 16, 31–38 (2018).

16

Diercke, K., Kohl, A., Lux, C. J. & Erber, R. IL-1β and compressive forces lead to a significant induction of RANKL-expression in primary human cementoblasts. J. Orofac. Orthop. 73, 397–412 (2012).

17

Tanaka, T., Morioka, T., Ayasaka, N., Iijima, T. & Kondo, T. Endocytosis in odontoclasts and osteoclasts using microperoxidase as a tracer. J. Dent. Res. 69, 883–889 (1990).

18

da Silva, L. A. B. et al. Effect of root surface treatment with denusomab after delayed tooth replantation. Clin. Oral Investig. 25, 1255–1264 (2021).

19

Levin, L., Bryson, E. C., Caplan, D. & Trope, M. Effect of topical alendronate on root resorption of dried replanted dog teeth. Dent. Traumatol 17, 120–126 (2001).

20

Di Micco, R., Krizhanovsky, V. & Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell. Biol. 22, 75–95 (2021).

21

Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

22

Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

23

Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell. 48, 158–167 (2012).

24

Tiwari, V. & Wilson, D. M. 3rd DNA damage and associated DNA repair defects in disease and premature aging. Am. J. Hum. Genet. 105, 237–257 (2019).

25

Wang, L. et al. FBW7 mediates senescence and pulmonary fibrosis through telomere uncapping. Cell. Metab. 32, 860–877.e869 (2020).

26

Bae, W. J., Park, J. S., Kang, S. K., Kwon, I. K. & Kim, E. C. Effects of melatonin and its underlying mechanism on ethanol-stimulated senescence and osteoclastic differentiation in human periodontal ligament cells and cementoblasts. Int. J. Mol. Sci. 19, 1742 (2018).

27

Liu, H. et al. Compressive force-induced LincRNA-p21 inhibits mineralization of cementoblasts by impeding autophagy. Faseb.J. 36, e22120 (2022).

28

Campaner, S. et al. Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat. Cell. Biol. 12, 54–59 (2010).

29

Chen, L. et al. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell 18, e12951 (2019).

30

Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397–408 (2015).

31

Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).

32

Yin, Y., Chen, H., Wang, Y., Zhang, L. & Wang, X. Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J. Extracell. Vesicles 10, e12154 (2021).

33

Yan, C., Xu, Z. & Huang, W. Cellular senescence affects cardiac regeneration and repair in ischemic heart disease. Aging Dis. 12, 552–569 (2021).

34

Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

35

Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22, 719–728 (2019).

36

Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

37

Honda, Y. et al. Augmentation of bone regeneration by depletion of stress-induced senescent cells using catechin and senolytics. Int. J. Mol. Sci. 21, 4213 (2020).

38

Kirkland, J. L. & Tchkonia, T. Senolytic drugs: from discovery to translation. J. Intern. Med. 288, 518–536 (2020).

39

Partridge, L., Fuentealba, M. & Kennedy, B. K. The quest to slow ageing through drug discovery. Nat. Rev. Drug Discov. 19, 513–532 (2020).

40

Yao, W. et al. Combined effect of TNF-α and cyclic stretching on gene and protein expression associated with mineral metabolism in cementoblasts. Arch. Oral Biol. 73, 88–93 (2017).

41

Ullrich, N. et al. The role of mechanotransduction versus hypoxia during simulated orthodontic compressive strain-an in vitro study of human periodontal ligament fibroblasts. Int. J. Oral Sci. 11, 33 (2019).

42

Wei, T., Xie, Y., Wen, X., Zhao, N. & Shen, G. Establishment of in vitro three-dimensional cementocyte differentiation scaffolds to study orthodontic root resorption. Exp. Ther. Med. 20, 3174–3184 (2020).

43

Imber, J. C. et al. Immunohistochemical evaluation of periodontal regeneration using a porous collagen scaffold. Int. J. Mol. Sci. 22, 10915 (2021).

44

Nuñez, J., Sanz, M., Hoz-Rodríguez, L., Zeichner-David, M. & Arzate, H. Human cementoblasts express enamel-associated molecules in vitro and in vivo. J. Periodontal Res. 45, 809–814 (2010).

45

BarKana, I., Narayanan, A. S., Grosskop, A., Savion, N. & Pitaru, S. Cementum attachment protein enriches putative cementoblastic populations on root surfaces in vitro. J. Dent. Res. 79, 1482–1488 (2000).

46

Saito, M. et al. Expression of cementum-derived attachment protein in bovine tooth germ during cementogenesis. Bone 29, 242–248 (2001).

47

De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

48

Wang, X. et al. Enhancement of bone-forming ability on beta-tricalcium phosphate by modulating cellular senescence mechanisms using senolytics. Int. J. Mol. Sci. 22, 12415 (2021).

49

Waldo, C. M. & Rothblatt, J. M. Histologic response to tooth movement in the laboratory rat; procedure and preliminary observations. J. Dent. Res. 33, 481–486 (1954).

50

Shirazi, M., Nilforoushan, D., Alghasi, H. & Dehpour, A. R. The role of nitric oxide in orthodontic tooth movement in rats. Angle Orthod 72, 211–215 (2002).

51

Matsuda, Y. et al. RANKL and OPG expression: Jiggling force affects root resorption in rats. Angle Orthod 87, 41–48 (2017).

52

Wang, H. et al. Mechanisms of sphingosine-1-phosphate (S1P) signaling on excessive stress-induced root resorption during orthodontic molar intrusion. Clin. Oral. Investig. 26, 1003–1016 (2022).

53

Ramirez-Echave, J. I. et al. Histologic evaluation of root response to intrusion in mandibular teeth in beagle dogs. Am. J. Orthod. Dentofacial Orthop. 139, 60–69 (2011).

54

Dermaut, L. R. & De Munck, A. Apical root resorption of upper incisors caused by intrusive tooth movement: a radiographic study. Am. J. Orthod. Dentofacial Orthop. 90, 321–326 (1986).

55

Costopoulos, G. & Nanda, R. An evaluation of root resorption incident to orthodontic intrusion. Am. J. Orthod. Dentofacial Orthop. 109, 543–548 (1996).

56

Faltin, R. M., Faltin, K., Sander, F. G. & Arana-Chavez, V. E. Ultrastructure of cementum and periodontal ligament after continuous intrusion in humans: a transmission electron microscopy study. Eur. J. Orthod. 23, 35–49 (2001).

57

Brezniak, N. & Wasserstein, A. Orthodontically induced inflammatory root resorption. Part Ⅰ: The basic science aspects. Angle Orthod 72, 175–179 (2002).

58

Lopatiene, K. & Dumbravaite, A. Risk factors of root resorption after orthodontic treatment. Stomatologija 10, 89–95 (2008).

59

Boyce, B. F. Advances in the regulation of osteoclasts and osteoclast functions. J. Dent. Res. 92, 860–867 (2013).

60

Walker, C. G., Ito, Y., Dangaria, S., Luan, X. & Diekwisch, T. G. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model. Eur. J. Oral. Sci 116, 312–318 (2008).

61

van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

62

Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409–419 (2010).

63

Id Boufker, H. et al. The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts. BMC Cancer 10, 298 (2010).

64

Araujo, J. C. et al. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation. Cancer Biol. Ther. 8, 2153–2159 (2009).

65

Vandyke, K. et al. The tyrosine kinase inhibitor dasatinib dysregulates bone remodeling through inhibition of osteoclasts in vivo. J. Bone Miner. Res. 25, 1759–1770 (2010).

66

Chang, S. H. et al. Excessive mechanical loading promotes osteoarthritis through the gremlin-1-NF-κB pathway. Nat. Commun. 10, 1442 (2019).

67

Zampetaki, A., Zhang, Z., Hu, Y. & Xu, Q. Biomechanical stress induces IL-6 expression in smooth muscle cells via Ras/Rac1-p38 MAPK-NF-kappaB signaling pathways. Am. J. Physiol. Heart. Circ. Physiol. 288, H2946–H2954 (2005).

68

Feng, C. et al. Cyclic mechanical tension reinforces DNA damage and activates the p53-p21-Rb pathway to induce premature senescence of nucleus pulposus cells. Int. J. Mol. Med. 41, 3316–3326 (2018).

69

Lee, N. K. et al. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106, 852–859 (2005).

70

Okahashi, N. et al. Osteoclast differentiation is associated with transient upregulation of cyclin-dependent kinase inhibitors p21(WAF1/CIP1) and p27(KIP1). J. Cell. Biochem. 80, 339–345 (2001).

71

Marques, L. S., Chaves, K. C., Rey, A. C., Pereira, L. J. & Ruellas, A. C. Severe root resorption and orthodontic treatment: clinical implications after 25 years of follow-up. Am. J. Orthod. Dentofacial Orthop. 139, S166–S169 (2011).

72

Amaro, E. R. S. et al. Estrogen protects dental roots from orthodontic-induced inflammatory resorption. Arch Oral Biol 117, 104820 (2020).

73

Kawamoto, T. & Kawamoto, K. Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using Kawamot’s film method (2012). Methods Mol. Biol 1130, 149–164 (2014).

International Journal of Oral Science
Article number: 20
Cite this article:
Zhou Y, Nishiura A, Morikuni H, et al. RANKL+ senescent cells under mechanical stress: a therapeutic target for orthodontic root resorption using senolytics. International Journal of Oral Science, 2023, 15: 20. https://doi.org/10.1038/s41368-023-00228-1
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return