AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Oral squamous cell carcinomas: state of the field and emerging directions

Yunhan Tan1,2Zhihan Wang1Mengtong Xu1Bowen Li1Zhao Huang1Siyuan Qin1Edouard C. Nice3Jing Tang4( )Canhua Huang1( )
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
West China Hospital of Stomatology, Sichuan University, Chengdu, China
Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
Department of Radiology, West China Hospital, Sichuan University, Chengdu, China

These authors contributed equally: Yunhan Tan, Zhihan Wang

Show Author Information

Abstract

Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.

References

1

Vigneswaran, N. & Williams, M. D. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac. Surg. Clin. 26, 123–141 (2014).

2

Ng, J. H., Iyer, N. G., Tan, M.-H. & Edgren, G. Changing epidemiology of oral squamous cell carcinoma of the tongue: a global study. Head Neck 39, 297–304 (2017).

3

Mody, M. D., Rocco, J. W., Yom, S. S., Haddad, R. I. & Saba, N. F. Head and neck cancer. Lancet 398, 2289–2299 (2021).

4

Romano, A. et al. Noninvasive imaging methods to improve the diagnosis of oral carcinoma and its precursors: state of the art and proposal of a three-step diagnostic process. Cancers 13, 2864 (2021).

5

Safi, A.-F. et al. Clinicopathological parameters affecting nodal yields in patients with oral squamous cell carcinoma receiving selective neck dissection. J. Cranio-Maxillofac. Surg. 45, 2092–2096 (2017).

6

Linsen, S. S., Gellrich, N.-C. & Krüskemper, G. Age-and localization-dependent functional and psychosocial impairments and health related quality of life six months after OSCC therapy. Oral Oncol. 81, 61–68 (2018).

7

Meier, J. K. et al. Health-related quality of life: a retrospective study on local vs. microvascular reconstruction in patients with oral cancer. BMC Oral Health 19, 1–8 (2019).

8

Maymone, M. B. C. et al. Premalignant and malignant oral mucosal lesions: Clinical and pathological findings. J. Am. Acad. Dermatol. 81, 59–71 (2019).

9

Odell, E., Kujan, O., Warnakulasuriya, S. & Sloan, P. Oral epithelial dysplasia: recognition, grading and clinical significance. Oral Dis. 27, 1947–1976 (2021).

10

Brandizzi, D., Gandolfo, M., Velazco, M. L., Cabrini, R. L. & Lanfranchi, H. Clinical features and evolution of oral cancer: a study of 274 cases in Buenos Aires, Argentina. Med. Oral Patol. Oral Cir. Bucal. 13, E544-8 (2008).

11

Bagan, J., Sarrion, G. & Jimenez, Y. Oral cancer: clinical features. Oral Oncol. 46, 414–417 (2010).

12

Scully, C. & Bagan, J. V. Oral squamous cell carcinoma: overview of current understanding of aetiopathogenesis and clinical implications. Oral Dis. 15, 388–399 (2009).

13

Harada, H. et al. Characteristics of oral squamous cell carcinoma focusing on cases unaffected by smoking and drinking: a multicenter retrospective study. Head Neck 45, 1812–1822 (2023).

14

Omura, K. Current status of oral cancer treatment strategies: surgical treatments for oral squamous cell carcinoma. Int. J. Clin. Oncol. 19, 423–430 (2014).

15

Jerjes, W. et al. Clinicopathological parameters, recurrence, locoregional and distant metastasis in 115 T1-T2 oral squamous cell carcinoma patients. Head Neck Oncol. 2, 1–21 (2010).

16

Warnakulasuriya, S. Oral potentially malignant disorders: A comprehensive review on clinical aspects and management. Oral Oncol. 102, 104550 (2020).

17

Yap, T. et al. Non-invasive screening of a microRNA-based dysregulation signature in oral cancer and oral potentially malignant disorders. Oral Oncol. 96, 113–120 (2019).

18

Chuang, S.-L. et al. Malignant transformation to oral cancer by subtype of oral potentially malignant disorder: a prospective cohort study of Taiwanese nationwide oral cancer screening program. Oral Oncol. 87, 58–63 (2018).

19

Warnakulasuriya, S. Clinical features and presentation of oral potentially malignant disorders. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 125, 582–590 (2018).

20

Dionne, K. R., Warnakulasuriya, S., Binti Zain, R. & Cheong, S. C. Potentially malignant disorders of the oral cavity: Current practice and future directions in the clinic and laboratory. Int. J. Cancer 136, 503–515 (2015).

21

Tarakji, B. Dentists’ perception of oral potentially malignant disorders. Int. Dent. J. 72, 414–419 (2022).

22

Kerr, A. R. & Lodi, G. Management of oral potentially malignant disorders. Oral Dis. 27, 2008–2025 (2021).

23

Mello, F. W. et al. Prevalence of oral potentially malignant disorders: a systematic review and meta‐analysis. J. Oral Pathol. Med. 47, 633–640 (2018).

24

Warnakulasuriya, S., Johnson, N. W. & van der Waal, I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J. Oral Pathol. Med. 36, 575–580 (2007).

25

Villa, A. & Sonis, S. Oral leukoplakia remains a challenging condition. Oral Dis. 24, 179–183 (2018).

26

Holmstrup, P. & Dabelsteen, E. Oral leukoplakia—to treat or not to treat. Oral Dis. 22, 494–497 (2016).

27

Carrard, V. C. & van der Waal, I. A clinical diagnosis of oral leukoplakia; A guide for dentists. Med. Oral Patol. Oral Cir. Bucal 23, e59 (2018).

28

Warnakulasuriya, S. et al. Oral potentially malignant disorders: a consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer. Oral Dis. 27, 1862–1880 (2021).

29

Speight, P. M., Khurram, S. A. & Kujan, O. Oral potentially malignant disorders: risk of progression to malignancy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 125, 612–627 (2018).

30

Pentenero, M., Meleti, M., Vescovi, P. & Gandolfo, S. Oral proliferative verrucous leucoplakia: are there particular features for such an ambiguous entity? A systematic review. Br. J. Dermatol. 170, 1039–1047 (2014).

31

Cabay, R. J., Morton, T. H. Jr & Epstein, J. B. Proliferative verrucous leukoplakia and its progression to oral carcinoma: a review of the literature. J. Oral Pathol. Med. 36, 255–261 (2007).

32

Yang, S.-W., Lee, Y.-S., Chang, L.-C., Hsieh, T.-Y. & Chen, T.-A. Outcome of excision of oral erythroplakia. Br. J. Oral Maxillofac. Surg. 53, 142–147 (2015).

33

Boy, S. C. Leukoplakia and erythroplakia of the oral mucosa—a brief overview. SADJ 67, 558–560 (2012).

34

Holmstrup, P. Oral erythroplakia—what is it? Oral Dis. 24, 138–143 (2018).

35

Yang, S.-W. et al. Clinical characteristics of narrow-band imaging of oral erythroplakia and its correlation with pathology. BMC Cancer 15, 1–8 (2015).

36

Boy, S. C. Leukoplakia and erythroplakia of the oral mucosa-a brief overview: clinical review. SADJ 67, 558–560 (2012).

37

Tilakaratne, W. M., Ekanayaka, R. P. & Warnakulasuriya, S. Oral submucous fibrosis: a historical perspective and a review on etiology and pathogenesis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 122, 178–191 (2016).

38

Qin, X., Ning, Y., Zhou, L. & Zhu, Y. Oral submucous fibrosis: etiological mechanism, malignant transformation, therapeutic approaches and targets. Int. J. Mol. Sci. 24, 4992 (2023).

39

Shen, Y.-W., Shih, Y.-H., Fuh, L.-J. & Shieh, T.-M. Oral submucous fibrosis: a review on biomarkers, pathogenic mechanisms, and treatments. Int. J. Mol. Sci. 21, 7231 (2020).

40

Peng, Q., Li, H., Chen, J., Wang, Y. & Tang, Z. Oral submucous fibrosis in Asian countries. J. Oral Pathol. Med. 49, 294–304 (2020).

41

Al‐Hassiny, A. et al. Upregulation of angiogenesis in oral lichen planus. J. Oral Pathol. Med. 47, 173–178 (2018).

42

De Rossi, S. S. & Ciarrocca, K. Oral lichen planus and lichenoid mucositis. Dent. Clin. 58, 299–313 (2014).

43

Aghbari, S. M. H. et al. Malignant transformation of oral lichen planus and oral lichenoid lesions: a meta-analysis of 20095 patient data. Oral Oncol. 68, 92–102 (2017).

44

González‐Moles, M. Á. et al. Worldwide prevalence of oral lichen planus: a systematic review and meta‐analysis. Oral Dis. 27, 813–828 (2021).

45

Nogueira, P. A., Carneiro, S. & Ramos‐e‐Silva, M. Oral lichen planus: an update on its pathogenesis. Int. J. Dermatol. 54, 1005–1010 (2015).

46

Ahmadi, N. et al. Association of PD-L1 expression in oral squamous cell carcinoma with smoking, sex, and p53 expression. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 128, 631–638 (2019).

47

Wang, X., Xu, J., Wang, L., Liu, C. & Wang, H. The role of cigarette smoking and alcohol consumption in the differentiation of oral squamous cell carcinoma for the males in China. J. Cancer Res. Therapeut. 11, 141–145 (2015).

48

Dong, J. & Thrift, A. P. Alcohol, smoking and risk of oesophago-gastric cancer. Best Pract. Res. Clin. Gastroenterol. 31, 509–517 (2017).

49

Matejcic, M., Gunter, M. J. & Ferrari, P. Alcohol metabolism and oesophageal cancer: a systematic review of the evidence. Carcinogenesis 38, 859–872 (2017).

50

Ghantous, Y., Schussel, J. L. & Brait, M. Tobacco and alcohol induced epigenetic changes in oral carcinoma. Curr. Opin. Oncol. 30, 152 (2018).

51

Zhang, P. et al. Molecular mechanisms of malignant transformation of oral submucous fibrosis by different betel quid constituents—does fibroblast senescence play a role? Int. J. Mol. Sci. 23, 1637 (2022).

52

Ko, A. M.-S., Lee, C.-H. & Ko, Y.-C. Betel quid–associated cancer: Prevention strategies and targeted treatment. Cancer Lett. 477, 60–69 (2020).

53

Singh, V. et al. p16 and p53 in HPV‐positive versus HPV‐negative oral squamous cell carcinoma: do pathways differ? J. Oral Pathol. Med. 46, 744–751 (2017).

54

Purwanto, D. J. et al. The prevalence of oral high‐risk HPV infection in Indonesian oral squamous cell carcinoma patients. Oral Dis. 26, 72–80 (2020).

55

Wolfer, S., Foos, T., Kunzler, A., Ernst, C. & Schultze-Mosgau, S. Association of the preoperative body mass index with postoperative complications after treatment of oral squamous cell carcinoma. J. Oral Maxillofac. Surg. 76, 1800–1815 (2018).

56

Eckert, A. W. et al. Clinical relevance of the tumor microenvironment and immune escape of oral squamous cell carcinoma. J. Transl. Med. 14, 1–13 (2016).

57

Ram, H. et al. Oral cancer: risk factors and molecular pathogenesis. J. Maxillofac. Oral Surg. 10, 132–137 (2011).

58

Cheng, T. Chemical evaluation of electronic cigarettes. Tob. Control 23, ii11–ii17 (2014).

59

Boffetta, P. & Hashibe, M. Alcohol and cancer. Lancet Oncol. 7, 149–156 (2006).

60

Jeng, J.-H., Chang, M. C. & Hahn, L. J. Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral Oncol. 37, 477–492 (2001).

61
Lagoa, R. et al. (eds.). Molecular Mechanisms Linking Environmental Toxicants to Cancer Development: Significance for Protective Interventions with Polyphenols (Elsevier, 2020).
62

Rehman, K., Fatima, F., Waheed, I. & Akash, M. S. H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 119, 157–184 (2018).

63

Schiffman, M., Castle, P. E., Jeronimo, J., Rodriguez, A. C. & Wacholder, S. Human papillomavirus and cervical cancer. Lancet 370, 890–907 (2007).

64

Kouketsu, A. et al. Detection of human papillomavirus infection in oral squamous cell carcinoma: a cohort study of Japanese patients. J. Oral Pathol. Med. 45, 565–572 (2016).

65

Feldman, D., Krishnan, A. V., Swami, S., Giovannucci, E. & Feldman, B. J. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer 14, 342–357 (2014).

66

Stechschulte, S. A., Kirsner, R. S. & Federman, D. G. Vitamin D: bone and beyond, rationale and recommendations for supplementation. Am. J. Med. 122, 793–802 (2009).

67

Ribeiro, F. A. P., Noguti, J., Oshima, C. T. F. & Ribeiro, D. A. Effective targeting of the epidermal growth factor receptor (EGFR) for treating oral cancer: a promising approach. Anticancer Res. 34, 1547–1552 (2014).

68

Liu, F. & Millar, S. Wnt/β-catenin signaling in oral tissue development and disease. J. Dent. Res. 89, 318–330 (2010).

69

Huang, J.-S. et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer 16, 1–13 (2016).

70

Ali, J. et al. Genetic etiology of oral cancer. Oral Oncol. 70, 23–28 (2017).

71

Simpson, D. R., Mell, L. K. & Cohen, E. E. W. Targeting the PI3K/AKT/mTOR pathway in squamous cell carcinoma of the head and neck. Oral Oncol. 51, 291–298 (2015).

72

Speight, P. M. et al. Screening for oral cancer—a perspective from the Global Oral Cancer Forum. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 123, 680–687 (2017).

73

Zhang, J. et al. Attenuated TRAF3 fosters activation of alternative NF-κB and reduced expression of antiviral interferon, TP53, and RB to promote HPV-positive head and neck cancers decreased TRAF3 promotes HPV+ HNSCC. Cancer Res. 78, 4613–4626 (2018).

74

Vijayalakshmi, N., Selvaluxmi, G., Majhi, U. & Rajkumar, T. Alterations found in p16/RB/Cyclin D1 pathway in the dysplastic and malignant cervical epithelium. Oncol. Res. 16, 527–533 (2007).

75

Shridhar, K. et al. DNA methylation markers for oral pre-cancer progression: A critical review. Oral Oncol. 53, 1–9 (2016).

76

Wang, Y. et al. The histone demethylase LSD1 is a novel oncogene and therapeutic target in oral cancer. Cancer Lett. 374, 12–21 (2016).

77

Portney, B. A. et al. ZSCAN4 facilitates chromatin remodeling and promotes the cancer stem cell phenotype. Oncogene 39, 4970–4982 (2020).

78

Irimie, A. I. et al. A looking-glass of non-coding RNAs in oral cancer. Int. J. Mol. Sci. 18, 2620 (2017).

79

Elmusrati, A., Wang, J. & Wang, C.-Y. Tumor microenvironment and immune evasion in head and neck squamous cell carcinoma. Int. J. Oral Sci. 13, 1–11 (2021).

80

Haas, L. et al. Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma. Nat. Cancer 2, 693–708 (2021).

81

Teles, F. R., Alawi, F., Castilho, R. M. & Wang, Y. Association or causation? Exploring the oral microbiome and cancer links. J. Dent. Res. 99, 1411–1424 (2020).

82

Salahshourifar, I., Vincent-Chong, V. K., Kallarakkal, T. G. & Zain, R. B. Genomic DNA copy number alterations from precursor oral lesions to oral squamous cell carcinoma. Oral Oncol. 50, 404–412 (2014).

83
Chai, A. W. Y., Lim, K. P. & Cheong, S. C. in Seminars in Cancer Biology. 71–83 (Elsevier, 2020). https://doi.org/10.1016/j.semcancer.2019.09.011.
84

Ishida, K. et al. Current mouse models of oral squamous cell carcinoma: genetic and chemically induced models. Oral Oncol. 73, 16–20 (2017).

85

Fadlullah, M. Z. H. et al. Genetically-defined novel oral squamous cell carcinoma cell lines for the development of molecular therapies. Oncotarget 7, 27802 (2016).

86

Gillison, M. L. et al. Human papillomavirus and the landscape of secondary genetic alterations in oral cancers. Genome Res. 29, 1–17 (2019).

87

Li, Q., Tie, Y., Alu, A., Ma, X. & Shi, H. Targeted therapy for head and neck cancer: Signaling pathways and clinical studies. Signal. Transduct. Target. Ther. 8, 31 (2023).

88

Chung, C. H. et al. Genomic alterations in human epidermal growth factor receptor 2 (HER2/ERBB2) in head and neck squamous cell carcinoma. Head Neck 39, E15–E19 (2017).

89

Concha-Benavente, F. et al. Identification of the cell-intrinsic and-extrinsic pathways downstream of EGFR and IFNγ that induce PD-L1 expression in head and neck cancer. Cancer Res. 76, 1031–1043 (2016).

90

Alsahafi, E. et al. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis. 10, 540 (2019).

91

Laimer, K. et al. High EGFR expression predicts poor prognosis in patients with squamous cell carcinoma of the oral cavity and oropharynx: a TMA-based immunohistochemical analysis. Oral Oncol. 43, 193–198 (2007).

92
Solomon, B., Young, R. J. & Rischin, D. in Seminars in Cancer Biology. 228–240 (Elsevier, 2018). https://doi.org/10.1016/j.semcancer.2018.01.008.
93

Szturz, P. & Vermorken, J. B. Management of recurrent and metastatic oral cavity cancer: Raising the bar a step higher. Oral Oncol. 101, 104492 (2020).

94

Brand, T. M. et al. Nuclear EGFR as a molecular target in cancer. Radiother. Oncol. 108, 370–377 (2013).

95

Vouri, M. et al. Axl-EGFR receptor tyrosine kinase hetero-interaction provides EGFR with access to pro-invasive signalling in cancer cells. Oncogenesis 5, e266–e266 (2016).

96

Su, W. et al. Hsa_circ_0005379 regulates malignant behavior of oral squamous cell carcinoma through the EGFR pathway. BMC Cancer 19, 1–13 (2019).

97

Liang, J., Liu, J., Deng, Z., Liu, Z. & Liang, L. DLX6 promotes cell proliferation and survival in oral squamous cell carcinoma. Oral Dis. 28, 87–96 (2022).

98

Jin, H., Zhang, L., Wang, S. & Qian, L. BST2 promotes growth and induces gefitinib resistance in oral squamous cell carcinoma via regulating the EGFR pathway. Arch. Med. Sci. 17, 1772 (2021).

99

Cochicho, D. et al. PIK3CA gene mutations in HNSCC: systematic review and correlations with HPV status and patient survival. Cancers 14, 1286 (2022).

100

Kang, H., Kiess, A. & Chung, C. H. Emerging biomarkers in head and neck cancer in the era of genomics. Nat. Rev. Clin. Oncol. 12, 11–26 (2015).

101

Peng, C.-H. et al. Somatic copy number alterations detected by ultra-deep targeted sequencing predict prognosis in oral cavity squamous cell carcinoma. Oncotarget 6, 19891 (2015).

102

Marquard, F. E. & Jücker, M. PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer. Biochem. Pharmacol. 172, 113729 (2020).

103

Ghafouri-Fard, S. et al. Role of PI3K/AKT pathway in squamous cell carcinoma with an especial focus on head and neck cancers. Cancer Cell Int. 22, 1–27 (2022).

104

Cully, M., You, H., Levine, A. J. & Mak, T. W. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat. Rev. Cancer 6, 184–192 (2006).

105

Ito, K. et al. Inhibition of Nox1 induces apoptosis by attenuating the AKT signaling pathway in oral squamous cell carcinoma cell lines. Oncol. Rep. 36, 2991–2998 (2016).

106

Kupferman, M. E. & Myers, J. N. Molecular biology of oral cavity squamous cell carcinoma. Otolaryngol. Clin. North Am. 39, 229–247 (2006).

107

Zhou, Q. et al. ATP promotes oral squamous cell carcinoma cell invasion and migration by activating the PI3K/AKT pathway via the P2Y2-Src-EGFR axis. ACS Omega 7, 39760–39771 (2022).

108

Wang, J. et al. The circEPSTI1/mir-942-5p/LTBP2 axis regulates the progression of OSCC in the background of OSF via EMT and the PI3K/Akt/mTOR pathway. Cell Death Dis. 11, 682 (2020).

109

Zhang, X. et al. ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics 10, 12044 (2020).

110

Wang, H. et al. Elevated expression of zinc finger protein 703 promotes cell proliferation and metastasis through PI3K/AKT/GSK-3β signalling in oral squamous cell carcinoma. Cell. Physiol. Biochem. 44, 920–934 (2017).

111

Zhang, H., Sun, J.-D., Yan, L. & Zhao, X.-P. PDGF-D/PDGFRβ promotes tongue squamous carcinoma cell (TSCC) progression via activating p38/AKT/ERK/EMT signal pathway. Biochem. Biophys. Res. Commun. 478, 845–851 (2016).

112

Jiang, X. et al. Elevated autocrine chemokine ligand 18 expression promotes oral cancer cell growth and invasion via Akt activation. Oncotarget 7, 16262 (2016).

113

Li, P., Xiao, L. Y. & Tan, H. Muc-1 promotes migration and invasion of oral squamous cell carcinoma cells via PI3K-Akt signaling. Int. J. Clin. Exp. Pathol. 8, 10365 (2015).

114

Yang, H. et al. FoxM1 promotes epithelial–mesenchymal transition, invasion, and migration of tongue squamous cell carcinoma cells through a c-Met/AKT-dependent positive feedback loop. Anti-Cancer Drugs 29, 216 (2018).

115

Hu, X., Li, J., Fu, M., Zhao, X. & Wang, W. The JAK/STAT signaling pathway: from bench to clinic. Signal. Transduct. Target. Ther. 6, 402 (2021).

116

Geiger, J. L., Grandis, J. R. & Bauman, J. E. The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncol. 56, 84–92 (2016).

117

Avalle, L. et al. STAT3 localizes to the ER, acting as a gatekeeper for ER-mitochondrion Ca2+ fluxes and apoptotic responses. Cell Death Differ. 26, 932–942 (2019).

118

Bu, L. L. et al. STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC. J. Dent. Res. 96, 1027–1034 (2017).

119

Yu, H., Lee, H., Herrmann, A., Buettner, R. & Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer 14, 736–746 (2014).

120

Tan, J., Xiang, L. & Xu, G. LncRNA MEG3 suppresses migration and promotes apoptosis by sponging miR‐548d‐3p to modulate JAK–STAT pathway in oral squamous cell carcinoma. IUBMB Life 71, 882–890 (2019).

121

Zhang, X. et al. Long non-coding RNA P4713 contributes to the malignant phenotypes of oral squamous cell carcinoma by activating the JAK/STAT3 pathway. Int. J. Clin. Exp. Pathol. 10, 10947 (2017).

122

Cho, Y. A. et al. Alteration status and prognostic value of MET in head and neck squamous cell carcinoma. J. Cancer 7, 2197 (2016).

123

Seiwert, T. Y. et al. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 69, 3021–3031 (2009).

124

Hartmann, S., Bhola, N. E. & Grandis, J. R. HGF/Met signaling in head and neck cancer: impact on the tumor microenvironment. Clin. Cancer Res. 22, 4005–4013 (2016).

125

Moosavi, F., Giovannetti, E., Saso, L. & Firuzi, O. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Crit. Rev. Clin. Lab. Sci. 56, 533–566 (2019).

126

Knowles, L. M. et al. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin. Cancer Res. 15, 3740–3750 (2009).

127

Szturz, P. et al. Understanding c-MET signalling in squamous cell carcinoma of the head & neck. Crit. Rev. Oncol./Hematol. 111, 39–51 (2017).

128

Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

129

Huang, W.-C. et al. A novel miR-365-3p/EHF/keratin 16 axis promotes oral squamous cell carcinoma metastasis, cancer stemness and drug resistance via enhancing β5-integrin/c-met signaling pathway. J. Exp. Clin. Cancer Res. 38, 1–17 (2019).

130

Alamoud, K. A. & Kukuruzinska, M. A. Emerging insights into Wnt/β-catenin signaling in head and neck cancer. J. Dent. Res. 97, 665–673 (2018).

131

Moon, J. H., Lee, S. H. & Lim, Y. C. Wnt/β-catenin/Slug pathway contributes to tumor invasion and lymph node metastasis in head and neck squamous cell carcinoma. Clin. Exp. Metastasis 38, 163–174 (2021).

132

Xie, J. et al. Cancer‐associated fibroblasts secrete hypoxia‐induced serglycin to promote head and neck squamous cell carcinoma tumor cell growth in vitro and in vivo by activating the Wnt/β-catenin pathway. Cell. Oncol. 44, 661–671 (2021).

133

Hiremath, I. S. et al. The multidimensional role of the Wnt/β‐catenin signaling pathway in human malignancies. J. Cell. Physiol. 237, 199–238 (2022).

134

Chamoli, A. et al. Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics. Oral Oncol. 121, 105451 (2021).

135

Wang, X. et al. Histone methyltransferase KMT2D cooperates with MEF2A to promote the stem-like properties of oral squamous cell carcinoma. Cell Biosci. 12, 1–13 (2022).

136

Qiao, C., Qiao, T., Yang, S., Liu, L. & Zheng, M. SNHG17/miR-384/ELF1 axis promotes cell growth by transcriptional regulation of CTNNB1 to activate Wnt/β-catenin pathway in oral squamous cell carcinoma. Cancer Gene Ther. 29, 122–132 (2022).

137

Huang, G. et al. Glycolysis-Related Gene Analyses Indicate That DEPDC1 Promotes the Malignant Progression of Oral Squamous Cell Carcinoma via the WNT/β-Catenin Signaling Pathway. Int. J. Mol. Sci. 24, 1992 (2023).

138

Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576 (2015).

139

Tsuchiya, R. et al. Expression of adenomatous polyposis coli (APC) in tumorigenesis of human oral squamous cell carcinoma. Oral Oncol. 40, 932–940 (2004).

140

Shiah, S.-G. et al. Downregulated miR329 and miR410 promote the proliferation and invasion of oral squamous cell carcinoma by targeting Wnt-7bmiR329 and miR410 regulate Wnt–β-Catenin signaling pathway. Cancer Res. 74, 7560–7572 (2014).

141

Xie, H. et al. WNT7A promotes EGF-induced migration of oral squamous cell carcinoma cells by activating β-catenin/MMP9-mediated signaling. Front. Pharmacol. 11, 98 (2020).

142

Chiba, T. et al. MALT1 inhibition of oral carcinoma cell invasion and ERK/MAPK activation. J. Dent. Res. 95, 446–452 (2016).

143

Rezatabar, S. et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J. Cell. Physiol. 234, 14951–14965 (2019).

144

Peng, Q. et al. Mitogen-activated protein kinase signaling pathway in oral cancer. Oncol. Lett. 15, 1379–1388 (2018).

145

Tao, Y. et al. SH3-domain binding protein 1 in the tumor microenvironment promotes hepatocellular carcinoma metastasis through WAVE2 pathway. Oncotarget 7, 18356 (2016).

146

Shimizu, T. et al. Annexin A10 in human oral cancer: biomarker for tumoral growth via G1/S transition by targeting MAPK signaling pathways. PLoS ONE 7, e45510 (2012).

147

Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129 (2010).

148

Sigismund, S., Avanzato, D. & Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 12, 3–20 (2018).

149

Hu, W. et al. Extracellular vesicles-released parathyroid hormone-related protein from Lewis lung carcinoma induces lipolysis and adipose tissue browning in cancer cachexia. Cell Death Dis. 12, 1–14 (2021).

150

Carbone, C. et al. Angiopoietin-like proteins in angiogenesis, inflammation and cancer. Int. J. Mol. Sci. 19, 431 (2018).

151

Wang, S. et al. Quaking 5 suppresses TGF‐β‐induced EMT and cell invasion in lung adenocarcinoma. EMBO Rep. 22, e52079 (2021).

152

Artemenko, M., Zhong, S. S. W., To, S. K. Y. & Wong, A. S. T. p70 S6 kinase as a therapeutic target in cancers: More than just an mTOR effector. Cancer Lett. 535, 215593 (2022).

153

Kim, M. P. & Lozano, G. Mutant p53 partners in crime. Cell Death Differ. 25, 161–168 (2018).

154

Lindemann, A., Takahashi, H., Patel, A. A., Osman, A. A. & Myers, J. N. Targeting the DNA damage response in OSCC with TP 53 mutations. J. Dent. Res. 97, 635–644 (2018).

155

Ara, N., Atique, M., Ahmed, S. & Ali Bukhari, S. G. Frequency of p53 gene mutation and protein expression in oral squamous cell carcinoma. J. Coll. Phys. Surg. Pak. 24, 749–753 (2014).

156

Castellsagué, X. et al. HPV involvement in head and neck cancers: comprehensive assessment of biomarkers in 3680 patients. J. Natl Cancer Inst. 108, djv403 (2016).

157

Yang, L. et al. The expression and correlation of iNOS and p53 in oral squamous cell carcinoma. BioMed. Res. Int. 2015, 637853 (2015).

158

Yang, X.-H. et al. p53-positive expression in dysplastic surgical margins is a predictor of tumor recurrence in patients with early oral squamous cell carcinoma. Cancer Manag. Res. 11, 1465 (2019).

159

Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154–1157 (2011).

160

Hang, W. et al. Piperlongumine and p53-reactivator APR-246 selectively induce cell death in HNSCC by targeting GSTP1. Oncogene 37, 3384–3398 (2018).

161

Jun, H. J. et al. A PDGFRα-driven mouse model of glioblastoma reveals a stathmin1-mediated mechanism of sensitivity to vinblastine. Nat. Commun. 9, 1–13 (2018).

162

Cierpikowski, P., Lis-Nawara, A., Gajdzis, P. & Bar, J. PDGFRα/HER2 and PDGFRα/p53 co-expression in oral squamous cell carcinoma. Anticancer Res. 38, 795–802 (2018).

163

Gipson, B. J., Robbins, H. A., Fakhry, C. & D’Souza, G. Sensitivity and specificity of oral HPV detection for HPV-positive head and neck cancer. Oral Oncol. 77, 52–56 (2018).

164

Soni, S. et al. Alterations of rb pathway components are frequent events in patients with oral epithelial dysplasia and predict clinical outcome in patients with squamous cell carcinoma. Oncology 68, 314–325 (2005).

165

Rayess, H., Wang, M. B. & Srivatsan, E. S. Cellular senescence and tumor suppressor gene p16. Int. J. Cancer 130, 1715–1725 (2012).

166

Nemes, J. A., Deli, L., Nemes, Z. & Márton, I. J. Expression of p16INK4A, p53, and Rb proteins are independent from the presence of human papillomavirus genes in oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 102, 344–352 (2006).

167

Salehinejad, J. et al. Immunohistochemical expression of p16 protein in oral squamous cell carcinoma and lichen planus. Ann. Diagn. Pathol. 18, 210–213 (2014).

168

Suzuki, H., Sugimura, H. & Hashimoto, K. p16INK4A in oral squamous cell carcinomas—a correlation with biological behaviors: immunohistochemical and FISH analysis. J. Oral Maxillofac. Surg. 64, 1617–1623 (2006).

169

Hanken, H. et al. CCND1 amplification and cyclin D1 immunohistochemical expression in head and neck squamous cell carcinomas. Clin. Oral Investig. 18, 269–276 (2014).

170

Monteiro, L. S. et al. Prognostic significance of cyclins A2, B1, D1, and E1 and CCND1 numerical aberrations in oral squamous cell carcinomas. Anal. Cell. Pathol. 2018, 7253510 (2018).

171

Ramos-García, P. et al. Clinicopathological significance of tumor cyclin D1 expression in oral cancer. Arch. Oral Biol. 99, 177–182 (2019).

172

Ramos-García, P. et al. Asymmetrical proliferative pattern loss linked to cyclin D1 overexpression in adjacent non-tumour epithelium in oral squamous cell carcinoma. Arch. Oral Biol. 97, 12–17 (2019).

173

Ramos‐García, P., Bravo, M., González‐Ruiz, L. & González‐Moles, M. Á. Significance of cytoplasmic cyclin D1 expression in oral oncogenesis. Oral Dis. 24, 98–102 (2018).

174

Jayasurya, R. et al. Phenotypic alterations in Rb pathway have more prognostic influence than p53 pathway proteins in oral carcinoma. Mod. Pathol. 18, 1056–1066 (2005).

175

Ramos-Garcia, P. et al. Prognostic and clinicopathological significance of cyclin D1 expression in oral squamous cell carcinoma: a systematic review and meta-analysis. Oral Oncol. 83, 96–106 (2018).

176

Buchkovich, K., Duffy, L. A. & Harlow, E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58, 1097–1105 (1989).

177

Sun, W. et al. Activation of the NOTCH Pathway in Head and Neck CancerNOTCH in Head and Neck Cancer. Cancer Res. 74, 1091–1104 (2014).

178

Yap, L. F. et al. The opposing roles of NOTCH signalling in head and neck cancer: a mini review. Oral Dis. 21, 850–857 (2015).

179

Kałafut, J. et al. Shooting at moving and hidden targets—tumour cell plasticity and the notch signalling pathway in head and neck squamous cell carcinomas. Cancers 13, 6219 (2021).

180

Grilli, G. et al. Impact of notch signaling on the prognosis of patients with head and neck squamous cell carcinoma. Oral Oncol. 110, 105003 (2020).

181

D’assoro, A. B., Leon-Ferre, R., Braune, E.-B. & Lendahl, U. Roles of notch signaling in the tumor microenvironment. Int. J. Mol. Sci. 23, 6241 (2022).

182

Nowell, C. S. & Radtke, F. Notch as a tumour suppressor. Nat. Rev. Cancer 17, 145–159 (2017).

183

Ishida, T., Hijioka, H., Kume, K., Miyawaki, A. & Nakamura, N. Notch signaling induces EMT in OSCC cell lines in a hypoxic environment. Oncol. Lett. 6, 1201–1206 (2013).

184

Song, X. et al. Common and complex Notch1 mutations in chinese oral squamous cell carcinoma complexity of notch1 mutations in Chinese OSCC. Clin. Cancer Res. 20, 701–710 (2014).

185

Kwon, C. et al. Notch post-translationally regulates β-catenin protein in stem and progenitor cells. Nat. Cell Biol. 13, 1244–1251 (2011).

186

Lee, S. H. et al. Notch1 signaling contributes to stemness in head and neck squamous cell carcinoma. Lab. Investig. 96, 508–516 (2016).

187

Nyman, P. E., Buehler, D. & Lambert, P. F. Loss of function of canonical notch signaling drives head and neck carcinogenesis effects of loss of function of Notch in HNSCC. Clin. Cancer Res. 24, 6308–6318 (2018).

188

Kozakiewicz, P. & Grzybowska‑Szatkowska, L. Application of molecular targeted therapies in the treatment of head and neck squamous cell carcinoma. Oncol. Lett. 15, 7497–7505 (2018).

189

Zhao, Y.-Y., Yu, G.-T., Xiao, T. & Hu, J. The Notch signaling pathway in head and neck squamous cell carcinoma: a meta-analysis. Adv. Clin. Exp. Med. 26, 881–887 (2017).

190

Castilho, R. M., Squarize, C. H. & Almeida, L. O. Epigenetic modifications and head and neck cancer: implications for tumor progression and resistance to therapy. Int. J. Mol. Sci. 18, 1506 (2017).

191

Hema, K. N., Smitha, T., Sheethal, H. S. & Mirnalini, S. A. Epigenetics in oral squamous cell carcinoma. J. Oral Maxillofac. Pathol. 21, 252 (2017).

192

Bais, M. V. Impact of epigenetic regulation on head and neck squamous cell carcinoma. J. Dent. Res. 98, 268–276 (2019).

193

D’Souza, W. & Saranath, D. Clinical implications of epigenetic regulation in oral cancer. Oral Oncol. 51, 1061–1068 (2015).

194

Irimie, A. I. et al. Current insights into oral cancer epigenetics. Int. J. Mol. Sci. 19, 670 (2018).

195

Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

196

Basu, B. et al. Genome-wide DNA methylation profile identified a unique set of differentially methylated immune genes in oral squamous cell carcinoma patients in India. Clin. Epigenet. 9, 1–15 (2017).

197

Guerrero-Preston, R. et al. Global DNA methylation: a common early event in oral cancer cases with exposure to environmental carcinogens or viral agents. P R Health Sci. J. 28, 24–29 (2009).

198

Supic, G., Kozomara, R., Jovic, N., Zeljic, K. & Magic, Z. Prognostic significance of tumor-related genes hypermethylation detected in cancer-free surgical margins of oral squamous cell carcinomas. Oral Oncol. 47, 702–708 (2011).

199

Towle, R. et al. Global analysis of DNA methylation changes during progression of oral cancer. Oral Oncol. 49, 1033–1042 (2013).

200

Gasche, J. A. & Goel, A. Epigenetic mechanisms in oral carcinogenesis. Fut. Oncol. 8, 1407–1425 (2012).

201

Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

202

Feinberg, A. P. & Vogelstein, B. Hypomethylation of ras oncogenes in primary human cancers. Biochem. Biophys. Res. Commun. 111, 47–54 (1983).

203

Mascolo, M. et al. Epigenetic disregulation in oral cancer. Int. J. Mol. Sci. 13, 2331–2353 (2012).

204

Schussel, J. et al. EDNRB and DCC salivary rinse hypermethylation has a similar performance as expert clinical examination in discrimination of oral cancer/dysplasia versus benign lesions EDNRB and DCC methylation distinguish oral malignant lesion. Clin. Cancer Res. 19, 3268–3275 (2013).

205

Shaw, R. J. et al. Promoter methylation of P16, RARβ, E-cadherin, cyclin A1 and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing. Br. J. Cancer 94, 561–568 (2006).

206

Lin, R.-K. et al. The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J. Clin. Investig. 120, 521–532 (2010).

207

Breitling, L. P., Yang, R., Korn, B., Burwinkel, B. & Brenner, H. Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am. J. Hum. Genet. 88, 450–457 (2011).

208

Jayaprakash, C., Radhakrishnan, R., Ray, S. & Satyamoorthy, K. Promoter methylation of MGMT in oral carcinoma: A population-based study and meta-analysis. Arch. Oral Biol. 80, 197–208 (2017).

209

Guerrero-Preston, R. et al. NID2 and HOXA9 promoter hypermethylation as biomarkers for prevention and early detection in oral cavity squamous cell carcinoma tissues and saliva differential methylation and oncogenic pathways in OSCC. Cancer Prev. Res. 4, 1061–1072 (2011).

210

Yeh, K.-T. et al. Epigenetic changes of tumor suppressor genes, P15, P16, VHL and P53 in oral cancer. Oncol. Rep. 10, 659–663 (2003).

211

Mendonsa, A. M., Na, T.-Y. & Gumbiner, B. M. E-cadherin in contact inhibition and cancer. Oncogene 37, 4769–4780 (2018).

212
Álvarez-Garcia, V., Tawil, Y., Wise, H. M. & Leslie, N. R. in Seminars in Cancer Biology. 66–79 (Elsevier, 2019). https://doi.org/10.1016/j.semcancer.2019.02.001.
213

Flanagan, D. J. et al. NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature 594, 430–435 (2021).

214

Repenning, A. et al. PRMT1 promotes the tumor suppressor function of p14ARF and is indicative for pancreatic cancer prognosis. EMBO J. 40, e106777 (2021).

215

Olesen, T. B. et al. Prevalence of human papillomavirus DNA and p16INK4a in penile cancer and penile intraepithelial neoplasia: a systematic review and meta-analysis. Lancet Oncol. 20, 145–158 (2019).

216

Du, F. et al. miR-137 alleviates doxorubicin resistance in breast cancer through inhibition of epithelial-mesenchymal transition by targeting DUSP4. Cell Death Dis. 10, 1–10 (2019).

217

Khordadmehr, M., Shahbazi, R., Sadreddini, S. & Baradaran, B. miR‐193: a new weapon against cancer. J. Cell. Physiol. 234, 16861–16872 (2019).

218

Flausino, C. S., Daniel, F. I. & Modolo, F. DNA methylation in oral squamous cell carcinoma: from its role in carcinogenesis to potential inhibitor drugs. Crit. Rev. Oncol./Hematol. 164, 103399 (2021).

219

Nikitakis, N. G. et al. Molecular markers associated with development and progression of potentially premalignant oral epithelial lesions: Current knowledge and future implications. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 125, 650–669 (2018).

220

Daniel, F. I., Rivero, E. R. C., Modolo, F., Lopes, T. G. & Salum, F. G. Immunohistochemical expression of DNA methyltransferases 1, 3a and 3b in oral leukoplakias and squamous cell carcinomas. Arch. Oral Biol. 55, 1024–1030 (2010).

221

Baba, S. et al. Global DNA hypomethylation suppresses squamous carcinogenesis in the tongue and esophagus. Cancer Sci. 100, 1186–1191 (2009).

222

Supic, G., Kozomara, R., Zeljic, K., Jovic, N. & Magic, Z. Prognostic value of the DNMTs mRNA expression and genetic polymorphisms on the clinical outcome in oral cancer patients. Clin. Oral Investig. 21, 173–182 (2017).

223

Seitz, H. K. & Stickel, F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat. Rev. Cancer 7, 599–612 (2007).

224

Wu, C.-S. et al. ASC contributes to metastasis of oral cavity squamous cell carcinoma. Oncotarget 7, 50074 (2016).

225

Ling, Y. et al. Roles of CEACAM1 in cell communication and signaling of lung cancer and other diseases. Cancer Metastasis Rev. 34, 347–357 (2015).

226

Wu, B., Xiong, X., Jia, J. & Zhang, W.-F. MicroRNAs: new actors in the oral cancer scene. Oral Oncol. 47, 314–319 (2011).

227

Facompre, N. D., Harmeyer, K. H. & Basu, D. Regulation of oncogenic PI3-kinase signaling by JARID1B. Oncotarget 8, 7218 (2017).

228

Urosevic, J. et al. Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and PTHLH. Nat. Cell Biol. 16, 685–694 (2014).

229

Li, Y. & Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6, a026831 (2016).

230

Almeida, L. O. et al. NFκB mediates cisplatin resistance through histone modifications in head and neck squamous cell carcinoma (HNSCC). FEBS Open Bio. 4, 96–104 (2014).

231

Almeida, L. O. et al. Unlocking the chromatin of adenoid cystic carcinomas using HDAC inhibitors sensitize cancer stem cells to cisplatin and induces tumor senescence. Stem Cell Res. 21, 94–105 (2017).

232

Guimarães, D. M. et al. Sensitizing mucoepidermoid carcinomas to chemotherapy by targeted disruption of cancer stem cells. Oncotarget 7, 42447 (2016).

233

Webber, L. P. et al. Hypoacetylation of acetyl‐histone H3 (H3K9ac) as marker of poor prognosis in oral cancer. Histopathology 71, 278–286 (2017).

234

Chen, Y.-W., Kao, S.-Y., Wang, H.-J. & Yang, M.-H. Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer 119, 4259–4267 (2013).

235

Witt, O., Deubzer, H. E., Milde, T. & Oehme, I. HDAC family: What are the cancer relevant targets? Cancer Lett. 277, 8–21 (2009).

236

Rastogi, B. et al. Overexpression of HDAC9 promotes oral squamous cell carcinoma growth, regulates cell cycle progression, and inhibits apoptosis. Mol. Cell. Biochem. 415, 183–196 (2016).

237

Kumar, B., Yadav, A., Lang, J. C., Teknos, T. N. & Kumar, P. Suberoylanilide hydroxamic acid (SAHA) reverses chemoresistance in head and neck cancer cells by targeting cancer stem cells via the downregulation of nanog. Genes Cancer 6, 169 (2015).

238
Lv, Y. et al. Histone deacetylase 1 regulates the malignancy of oral cancer cells via miR-154-5p/PCNA axis. Biol. Chem. 401, 1273–1281 (2020). 1437-4315.
239

Chang, H.-H. et al. Histone deacetylase 2 expression predicts poorer prognosis in oral cancer patients. Oral Oncol. 45, 610–614 (2009).

240

Kumar, R., Li, D.-Q., Müller, S. & Knapp, S. Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 35, 4423–4436 (2016).

241

Panchal, O. et al. SATB1 as oncogenic driver and potential therapeutic target in head & neck squamous cell carcinoma (HNSCC). Sci. Rep. 10, 1–13 (2020).

242

Vitale, I., Manic, G., Maria, R., de, Kroemer, G. & Galluzzi, L. DNA damage in stem cells. Mol. Cell 66, 306–319 (2017).

243

Hung, M. H. et al. Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nat. Commun. 12, 1–15 (2021).

244

Aydin, Ö. Z., Vermeulen, W. & Lans, H. ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle 13, 3016–3025 (2014).

245

Fang, F.-M. et al. Overexpression of a chromatin remodeling factor, RSF-1/HBXAP, correlates with aggressive oral squamous cell carcinoma. Am. J. Pathol. 178, 2407–2415 (2011).

246

D’ANGELO, B., Benedetti, E., Cimini, A. & Giordano, A. MicroRNAs: a puzzling tool in cancer diagnostics and therapy. Anticancer Res. 36, 5571–5575 (2016).

247

Deng, M. et al. TET-mediated sequestration of miR-26 drives EZH2 expression and gastric carcinogenesis. Cancer Res. 77, 6069–6082 (2017).

248

Zhang, W. et al. miR-137 is a tumor suppressor in endometrial cancer and is repressed by DNA hypermethylation. Lab. Investig. 98, 1397–1407 (2018).

249

Viticchiè, G. et al. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle 10, 1121–1131 (2011).

250

Jia, L.-F. et al. miR-29b suppresses proliferation, migration, and invasion of tongue squamous cell carcinoma through PTEN–AKT signaling pathway by targeting Sp1. Oral Oncol. 50, 1062–1071 (2014).

251

Esquela-Kerscher, A. & Slack, F. J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006).

252

Kanlikilicer, P. et al. Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine 38, 100–112 (2018).

253

Sakha, S., Muramatsu, T., Ueda, K. & Inazawa, J. Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Sci. Rep. 6, 1–11 (2016).

254

Liu, C.-J. et al. Increase of microRNA miR‐31 level in plasma could be a potential marker of oral cancer. Oral Dis. 16, 360–364 (2010).

255

Liu, C.-J., Lin, S.-C., Yang, C.-C., Cheng, H.-W. & Chang, K.-W. Exploiting salivary miR‐31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck 34, 219–224 (2012).

256

Rezaei, T. et al. microRNA-181 serves as a dual-role regulator in the development of human cancers. Free Radic. Biol. Med. 152, 432–454 (2020).

257

Shin, K.-H. et al. miR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras. Biochem. Biophys. Res. Commun. 404, 896–902 (2011).

258

Chang, C.-C. et al. MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma. Oral Oncol. 49, 923–931 (2013).

259

Chen, Y.-F. et al. MicroRNA-211 enhances the oncogenicity of carcinogen-induced oral carcinoma by repressing TCF12 and increasing antioxidant activity miR-211-TCF12-FAM213A activation in OSCC. Cancer Res. 76, 4872–4886 (2016).

260
Chen, S., Thorne, R. F., Zhang, X. D., Wu, M. & Liu, L. in Seminars in Cancer Biology. 72–83 (Elsevier, 2021). https://doi.org/10.1016/j.semcancer.2020.09.002.
261

Ayers, D. & Vandesompele, J. Influence of microRNAs and long non-coding RNAs in cancer chemoresistance. Genes 8, 95 (2017).

262

Hebert, C., Norris, K., Scheper, M. A., Nikitakis, N. & Sauk, J. J. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol. Cancer 6, 1–11 (2007).

263

Sun, L. et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene 31, 432–445 (2012).

264

Chen, Q., Qin, R., Fang, Y. & Li, H. Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cell. Physiol. Biochem. 36, 956–965 (2015).

265

Komatsu, S. et al. Plasma microRNA profiles: identification of miR-23a as a novel biomarker for chemoresistance in esophageal squamous cell carcinoma. Oncotarget 7, 62034 (2016).

266

Meng, X. et al. The role of non‐coding RNAs in drug resistance of oral squamous cell carcinoma and therapeutic potential. Cancer Commun. 41, 981–1006 (2021).

267

Liu, J. et al. ZBTB7A, a miR-144-3p targeted gene, accelerates bladder cancer progression via downregulating HIC1 expression. Cancer Cell Int. 22, 1–14 (2022).

268

Yeh, L.-Y., Chou, C.-H., Liu, C.-J., Lin, S.-C. & Chang, K.-W. miR-372 enhances tumorigenesis and drug resistance in oral carcinoma by targeting ZBTB7A transcription factor. Cancer Res. 78, 479 (2018).

269

Feller, L., Altini, M. & Lemmer, J. Inflammation in the context of oral cancer. Oral Oncol. 49, 887–892 (2013).

270

Niu, X., Yang, B., Liu, F. & Fang, Q. LncRNA HOXA11-AS promotes OSCC progression by sponging miR-98-5p to upregulate YBX2 expression. Biomed. Pharmacother. 121, 109623 (2020).

271

Xu, C., He, T., Li, Z., Liu, H. & Ding, B. Regulation of HOXA11-AS/miR-214-3p/EZH2 axis on the growth, migration and invasion of glioma cells. Biomed. Pharmacother. 95, 1504–1513 (2017).

272

Geng, Y., Jiang, J. & Wu, C. Function and clinical significance of circRNAs in solid tumors. J. Hematol. Oncol. 11, 1–20 (2018).

273

Chatterjee, R. et al. Pathophysiological relationship between hypoxia associated oxidative stress, Epithelial-mesenchymal transition, stemness acquisition and alteration of Shh/Gli-1 axis during oral sub-mucous fibrosis and oral squamous cell carcinoma. Eur. J. Cell Biol. 100, 151146 (2021).

274

Li, Z. et al. The Hippo transducer TAZ promotes epithelial to mesenchymal transition and cancer stem cell maintenance in oral cancer. Mol. Oncol. 9, 1091–1105 (2015).

275

Biddle, A., Gammon, L., Liang, X., Costea, D. E. & Mackenzie, I. C. Phenotypic plasticity determines cancer stem cell therapeutic resistance in oral squamous cell carcinoma. EBioMedicine 4, 138–145 (2016).

276

Vig, N., Mackenzie, I. C. & Biddle, A. Phenotypic plasticity and epithelial‐to‐mesenchymal transition in the behaviour and therapeutic response of oral squamous cell carcinoma. J. Oral Pathol. Med. 44, 649–655 (2015).

277

Liu, S., Liu, D., Li, J., Zhang, D. & Chen, Q. Regulatory T cells in oral squamous cell carcinoma. J. Oral Pathol. Med. 45, 635–639 (2016).

278

Gaur, P., Singh, A. K., Shukla, N. K. & Das, S. N. Inter-relation of Th1, Th2, Th17 and Treg cytokines in oral cancer patients and their clinical significance. Hum. Immunol. 75, 330–337 (2014).

279

Schwarz, S., Butz, M., Morsczeck, C., Reichert, T. E. & Driemel, O. Increased number of CD25+ FoxP3+ regulatory T cells in oral squamous cell carcinomas detected by chromogenic immunohistochemical double staining. J. Oral Pathol. Med. 37, 485–489 (2008).

280

Duray, A., Demoulin, S., Hubert, P., Delvenne, P. & Saussez, S. Immune suppression in head and neck cancers: a review. Clin. Dev. Immunol. 2010, 701657 (2010).

281
Whiteside, T. L. in Seminars in Cancer Biology. 3–15 (Elsevier, 2021). https://doi.org/10.1016/j.semcancer.2005.07.008.
282

Sathiyasekar, A. C., Chandrasekar, P., Pakash, A., Kumar, K. G. & Jaishlal, M. S. Overview of immunology of oral squamous cell carcinoma. J. Pharm. Bioallied Sci. 8, S8 (2016).

283

Caponio, V. C. A., Zhurakivska, K., Lo Muzio, L., Troiano, G. & Cirillo, N. The immune cells in the development of oral squamous cell carcinoma. Cancers 15, 3779 (2023).

284
Ling, D. C., Bakkenist, C. J., Ferris, R. L. & Clump, D. A. in Seminars in Radiation Oncology. 12–16 (Elsevier, 2018). https://doi.org/10.1016/j.semradonc.2017.08.009.
285

de Ruiter, E. J., Ooft, M. L., Devriese, L. A. & Willems, S. M. The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology 6, e1356148 (2017).

286

Zitvogel, L. & Kroemer, G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology 1, 1223–1225 (2012).

287

Alsahafi, E. et al. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis. 10, 1–17 (2019).

288

Lythgoe, M. P., Liu, D. S. K., Annels, N. E., Krell, J. & Frampton, A. E. Gene of the month: Lymphocyte-activation gene 3 (LAG-3). J. Clin. Pathol. 74, 543–547 (2021).

289

Zhou, K. et al. Immunosuppression of human adipose-derived stem cells on T cell subsets via the reduction of NF-kappaB activation mediated by PD-L1/PD-1 and Gal-9/TIM-3 pathways. Stem Cells Dev. 27, 1191–1202 (2018).

290

Zhou, X. et al. The novel non‐immunological role and underlying mechanisms of B7‐H3 in tumorigenesis. J. Cell. Physiol. 234, 21785–21795 (2019).

291

Davis, R. J., van Waes, C. & Allen, C. T. Overcoming barriers to effective immunotherapy: MDSCs, TAMs, and Tregs as mediators of the immunosuppressive microenvironment in head and neck cancer. Oral Oncol. 58, 59–70 (2016).

292

Wolf, G. T. et al. Novel neoadjuvant immunotherapy regimen safety and survival in head and neck squamous cell cancer. Head Neck 33, 1666–1674 (2011).

293

Furquim, C. P., Pivovar, A., Amenábar, J. M., Bonfim, C. & Torres-Pereira, C. C. Oral cancer in Fanconi anemia: Review of 121 cases. Crit. Rev. Oncol./Hematol. 125, 35–40 (2018).

294

Alter, B. P. et al. Squamous cell carcinomas in patients with Fanconi anemia and dyskeratosis congenita: a search for human papillomavirus. Int. J. Cancer 133, 1513–1515 (2013).

295

Amenábar, J. M., Torres‐Pereira, C. C., Tang, K. D. & Punyadeera, C. Two enemies, one fight: an update of oral cancer in patients with Fanconi anemia. Cancer 125, 3936–3946 (2019).

296

Bongiorno, M., Rivard, S., Hammer, D. & Kentosh, J. Malignant transformation of oral leukoplakia in a patient with dyskeratosis congenita. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 124, e239–e242 (2017).

297

Horton, J. D., Knochelmann, H. M., Day, T. A., Paulos, C. M. & Neskey, D. M. Immune evasion by head and neck cancer: foundations for combination therapy. Trends Cancer 5, 208–232 (2019).

298

Wang, L. et al. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway. Oncotarget 8, 76116 (2017).

299

Zhang, D. et al. Cancer‐associated fibroblasts promote tumor progression by lncRNA‐mediated RUNX2/GDF10 signaling in oral squamous cell carcinoma. Mol. Oncol. 16, 780–794 (2022).

300

Prime, S. S. et al. Fibroblast activation and senescence in oral cancer. J. Oral Pathol. Med. 46, 82–88 (2017).

301

Tan, M. L., Parkinson, E. K., Yap, L. F. & Paterson, I. C. Autophagy is deregulated in cancer-associated fibroblasts from oral cancer and is stimulated during the induction of fibroblast senescence by TGF-β1. Sci. Rep. 11, 584 (2021).

302

Hassona, Y., Cirillo, N., Heesom, K., Parkinson, E. K. & Prime, S. S. Senescent cancer-associated fibroblasts secrete active MMP-2 that promotes keratinocyte dis-cohesion and invasion. Br. J. Cancer 111, 1230–1237 (2014).

303

Bijai, L. K. & Muthukrishnan, A. Potential role of fibroblast senescence in malignant transformation of oral submucous fibrosis. Oral Oncol. 127, 105810 (2022).

304

Kim, E. K., Moon, S., Kim, D. K., Zhang, X. & Kim, J. CXCL1 induces senescence of cancer-associated fibroblasts via autocrine loops in oral squamous cell carcinoma. PLoS ONE 13, e0188847 (2018).

305

Lu, Y. et al. Peroxiredoxin1 knockdown inhibits oral carcinogenesis via inducing cell senescence dependent on mitophagy. OncoTargets Ther. 14, 239–251 (2021).

306

Chen, Y. et al. Tumor-associated macrophages: an accomplice in solid tumor progression. J. Biomed. Sci. 26, 1–13 (2019).

307

Yang, Q. et al. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharmaceut. Sin. B 10, 2156–2170 (2020).

308

Goswami, K. K. et al. Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell. Immunol. 316, 1–10 (2017).

309

Jiang, C., Yuan, F., Wang, J. & Wu, L. Oral squamous cell carcinoma suppressed antitumor immunity through induction of PD-L1 expression on tumor-associated macrophages. Immunobiology 222, 651–657 (2017).

310

Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models CSF1R blockade improves checkpoint immunotherapy. Cancer Res. 74, 5057–5069 (2014).

311

Chen, J. et al. Suppression of T cells by myeloid-derived suppressor cells in cancer. Hum. Immunol. 78, 113–119 (2017).

312

Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

313

Groth, C. et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer 120, 16–25 (2019).

314

Qu, P., Wang, L. & Lin, P. C. Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Lett. 380, 253–256 (2016).

315

Pyzer, A. R., Cole, L., Rosenblatt, J. & Avigan, D. E. Myeloid‐derived suppressor cells as effectors of immune suppression in cancer. Int. J. Cancer 139, 1915–1926 (2016).

316

Aggarwal, S., Sharma, S. C. & N Das, S. Dynamics of regulatory T cells (Tregs) in patients with oral squamous cell carcinoma. J. Surg. Oncol. 116, 1103–1113 (2017).

317

Munn, D. H. & Bronte, V. Immune suppressive mechanisms in the tumor microenvironment. Curr. Opin. Immunol. 39, 1–6 (2016).

318

Ni, X. et al. YAP is essential for treg-mediated suppression of antitumor immunity. Cancer Discov. 8, 1026–1043 (2018).

319

Meng, X. et al. Regulatory T cells in cardiovascular diseases. Nat. Rev. Cardiol. 13, 167–179 (2016).

320

Miyara, M. & Sakaguchi, S. Natural regulatory T cells: mechanisms of suppression. Trends Mol. Med. 13, 108–116 (2007).

321

Ohue, Y. & Nishikawa, H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 110, 2080–2089 (2019).

322

Li, C., Jiang, P., Wei, S., Xu, X. & Wang, J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer 19, 1–23 (2020).

323

Fuse, H. et al. Enhanced expression of PD-L1 in oral squamous cell carcinoma-derived CD11b+ Gr-1+ cells and its contribution to immunosuppressive activity. Oral Oncol. 59, 20–29 (2016).

324

Wynn, T. A. Type 2 cytokines: mechanisms and therapeutic strategies. Nat. Rev. Immunol. 15, 271–282 (2015).

325

Joseph, J. P., Harishankar, M. K., Pillai, A. A. & Devi, A. Hypoxia induced EMT: a review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol. 80, 23–32 (2018).

326

Kumar, A. & Deep, G. Hypoxia in tumor microenvironment regulates exosome biogenesis: Molecular mechanisms and translational opportunities. Cancer Lett. 479, 23–30 (2020).

327

Muz, B., de La Puente, P., Azab, F. & Kareem Azab, A. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 3, 83–92 (2015).

328

Bhandari, V. et al. Molecular landmarks of tumor hypoxia across cancer types. Nat. Genet. 51, 308–318 (2019).

329

Eltzschig, H. K. & Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665 (2011).

330

Pérez-Sayáns, M. et al. Hypoxia-inducible factors in OSCC. Cancer Lett. 313, 1–8 (2011).

331

Lipkowitz, S. & Weissman, A. M. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat. Rev. Cancer 11, 629–643 (2011).

332

Corn, P. G., McDonald, E. R., Herman, J. G. & El-Deiry, W. S. Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel–Lindau protein. Nat. Genet. 35, 229–237 (2003).

333

Greer, S. N., Metcalf, J. L., Wang, Y. & Ohh, M. The updated biology of hypoxia‐inducible factor. EMBO J. 31, 2448–2460 (2012).

334

Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F. & Maity, A. Regulation of glut1 mRNA by hypoxia-inducible factor-1: interaction between H-ras and hypoxia. J. Biol. Chem. 276, 9519–9525 (2001).

335

Gammon, L. & Mackenzie, I. C. Roles of hypoxia, stem cells and epithelial–mesenchymal transition in the spread and treatment resistance of head and neck cancer. J. Oral Pathol. Med. 45, 77–82 (2016).

336

Koukourakis, M. I. et al. Hypoxia-regulated carbonic anhydrase-9 (CA9) relates to poor vascularization and resistance of squamous cell head and neck cancer to chemoradiotherapy. Clin. Cancer Res. 7, 3399–3403 (2001).

337

Tsai, Y.-P. & Wu, K.-J. Hypoxia-regulated target genes implicated in tumor metastasis. J. Biomed. Sci. 19, 1–7 (2012).

338

Duan, Y. et al. Hypoxia induced Bcl-2/Twist1 complex promotes tumor cell invasion in oral squamous cell carcinoma. Oncotarget 8, 7729 (2017).

339

Amelio, I. et al. p53 mutants cooperate with HIF-1 in transcriptional regulation of extracellular matrix components to promote tumor progression. Proc. Natl Acad. Sci. USA 115, E10869–E10878 (2018).

340

Amelio, I. & Melino, G. The p53 family and the hypoxia-inducible factors (HIFs): determinants of cancer progression. Trends Biochem. Sci. 40, 425–434 (2015).

341

Domingos, P. L. B. et al. Hypoxia reduces the E-cadherin expression and increases OSCC cell migration regardless of the E-cadherin methylation profile. Pathol. Res. Pract. 213, 496–501 (2017).

342

Qin, Q., Xu, Y., He, T., Qin, C. & Xu, J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 22, 90–106 (2012).

343

Zheng, Y., Ni, Y., Huang, X., Wang, Z. & Han, W. E. Overexpression of HIF-1α indicates a poor prognosis in tongue carcinoma and may be associated with tumour metastasis. Oncol. Lett. 5, 1285–1289 (2013).

344

Xie, L. et al. Association between dietary nitrate and nitrite intake and site-specific cancer risk: evidence from observational studies. Oncotarget 7, 56915 (2016).

345

Nair, U., Bartsch, H. & Nair, J. Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: a review of agents and causative mechanisms. Mutagenesis 19, 251–262 (2004).

346

Jing, X. et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18, 1–15 (2019).

347

Banerjee, S. et al. Microbial signatures associated with oropharyngeal and oral squamous cell carcinomas. Sci. Rep. 7, 1–20 (2017).

348

Perera, M., Al-Hebshi, N. N., Speicher, D. J., Perera, I. & Johnson, N. W. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria. J. Oral Microbiol. 8, 32762 (2016).

349

Irfan, M., Delgado, R. Z. R. & Frias-Lopez, J. The oral microbiome and cancer. Front. Immunol. 11, 591088 (2020).

350

Yost, S. et al. Increased virulence of the oral microbiome in oral squamous cell carcinoma revealed by metatranscriptome analyses. Int. J. Oral Sci. 10, 32 (2018).

351

Eun, Y.-G. et al. Oral microbiome associated with lymph node metastasis in oral squamous cell carcinoma. Sci. Rep. 11, 23176 (2021).

352

Rizzetto, L., de Filippo, C. & Cavalieri, D. Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. Eur. J. Immunol. 44, 3166–3181 (2014).

353

Deo, P. N. & Deshmukh, R. Oral microbiome: Unveiling the fundamentals. J. Oral Maxillofac. Pathol. 23, 122 (2019).

354

Mosaddad, S. A. et al. Oral microbial biofilms: an update. Eur. J. Clin. Microbiol. Infect. Dis. 38, 2005–2019 (2019).

355

Willis, J. R. & Gabaldón, T. The human oral microbiome in health and disease: from sequences to ecosystems. Microorganisms 8, 308 (2020).

356

Idris, A., Hasnain, S. Z., Huat, L. Z. & Koh, D. Human diseases, immunity and the oral microbiota—Insights gained from metagenomic studies. Oral Sci. Int. 14, 27–32 (2017).

357

Li, Q. et al. Role of oral bacteria in the development of oral squamous cell carcinoma. Cancers 12, 2797 (2020).

358

Mao, W.-M., Zheng, W.-H. & Ling, Z.-Q. Epidemiologic risk factors for esophageal cancer development. Asian Pac. J. Cancer Prev. 12, 2461–2466 (2011).

359

Wang, H. et al. Microbiomic differences in tumor and paired-normal tissue in head and neck squamous cell carcinomas. Genome Med. 9, 1–10 (2017).

360

Gholizadeh, P. et al. Role of oral microbiome on oral cancers, a review. Biomed. Pharmacother. 84, 552–558 (2016).

361

Frank, D. N. et al. A dysbiotic microbiome promotes head and neck squamous cell carcinoma. Oncogene 41, 1269–1280 (2022).

362

Mager, D. L. et al. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J. Transl. Med. 3, 1–8 (2005).

363

Yang, K. et al. Oral microbiota analysis of tissue pairs and saliva samples from patients with oral squamous cell carcinoma–a pilot study. Front. Microbiol. 12, 719601 (2021).

364

Delaney, C. et al. Limitations of using 16S rRNA microbiome sequencing to predict oral squamous cell carcinoma. APMIS 131, 262–276 (2023).

365

Hashimoto, K. et al. Feasibility of oral microbiome profiles associated with oral squamous cell carcinoma. J. Oral Microbiol. 14, 2105574 (2022).

366

Groeger, S., Domann, E., Gonzales, J. R., Chakraborty, T. & Meyle, J. B7-H1 and B7-DC receptors of oral squamous carcinoma cells are upregulated by Porphyromonas gingivalis. Immunobiology 216, 1302–1310 (2011).

367

Lafuente Ibáñez de Mendoza, I., Maritxalar Mendia, X., Garcia de la Fuente, A. M., Quindos Andres, G. & Aguirre Urizar, J. M. Role of Porphyromonas gingivalis in oral squamous cell carcinoma development: a systematic review. J. Periodontal. Res. 55, 13–22 (2020).

368

Börnigen, D. et al. Alterations in oral bacterial communities are associated with risk factors for oral and oropharyngeal cancer. Sci. Rep. 7, 1–13 (2017).

369

Marttila, E. et al. Acetaldehyde production and microbial colonization in oral squamous cell carcinoma and oral lichenoid disease. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 116, 61–68 (2013).

370

Kurkivuori, J. et al. Acetaldehyde production from ethanol by oral streptococci. Oral Oncol. 43, 181–186 (2007).

371

Rautemaa, R., Hietanen, J., Niissalo, S., Pirinen, S. & Perheentupa, J. Oral and oesophageal squamous cell carcinoma–a complication or component of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS-I). Oral Oncol. 43, 607–613 (2007).

372

Solis, N. V., Swidergall, M., Bruno, V. M., Gaffen, S. L. & Filler, S. G. The aryl hydrocarbon receptor governs epithelial cell invasion during oropharyngeal candidiasis. MBio 8, e00025–17 (2017).

373

Zhu, W. et al. EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection. Proc. Natl Acad. Sci. USA 109, 14194–14199 (2012).

374

Warnakulasuriya, S. & Ariyawardana, A. Malignant transformation of oral leukoplakia: a systematic review of observational studies. J. Oral Pathol. Med. 45, 155–166 (2016).

375

Nadeau, C. & Kerr, A. R. Evaluation and management of oral potentially malignant disorders. Dent. Clin. 62, 1–27 (2018).

376

Monteiro, L. et al. Type of surgical treatment and recurrence of oral leukoplakia: a retrospective clinical study. Med. Oral Patol. Oral Cir. Bucal. 22, e520 (2017).

377

Brignardello-Petersen, R. Proliferative verrucous leukoplakia and erythroplakia are probably the disorders with the highest rate of malignant transformation. J. Am. Dent. Assoc. 151, e62 (2020).

378

van der Waal, I. Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol. 45, 317–323 (2009).

379

Armstrong, W. B. et al. Single-dose administration of Bowman-Birk inhibitor concentrate in patients with oral leukoplakia. Cancer Epidemiol. Biomark. Prev. 9, 43–47 (2000).

380

Armstrong, W. B. et al. Clinical modulation of oral leukoplakia and protease activity by Bowman-Birk inhibitor concentrate in a phase Ⅱa chemoprevention trial. Clin. Cancer Res. 6, 4684–4691 (2000).

381

Chaudhry, Z., Gupta, S. R. & Oberoi, S. S. The efficacy of ErCr: YSGG laser fibrotomy in management of moderate oral submucous fibrosis: a preliminary study. J. Maxillofac. Oral Surg. 13, 286–294 (2014).

382

Shah, P. H., Venkatesh, R., More, C. B. & Vassandacoumara, V. Comparison of therapeutic efficacy of placental extract with dexamethasone and hyaluronic acid with dexamethasone for oral submucous fibrosis-a retrospective analysis. J. Clin. Diagn. Res. 10, ZC63 (2016).

383

Cheng, Y.-S. L., Gould, A., Kurago, Z., Fantasia, J. & Muller, S. Diagnosis of oral lichen planus: a position paper of the American Academy of Oral and Maxillofacial Pathology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 122, 332–354 (2016).

384

Liu, C. et al. Efficacy of intralesional betamethasone for erosive oral lichen planus and evaluation of recurrence: a randomized, controlled trial. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 116, 584–590 (2013).

385

Olson, M. A., Rogers, R. S. Ⅲ & Bruce, A. J. Oral lichen planus. Clin. Dermatol. 34, 495–504 (2016).

386

Halonen, P. et al. Cancer risk of Lichen planus: a cohort study of 13,100 women in Finland. Int. J. Cancer 142, 18–22 (2018).

387

Sutton, D. N., Brown, J. S., Rogers, S. N., Vaughan, E. D. & Woolgar, J. A. The prognostic implications of the surgical margin in oral squamous cell carcinoma. Int. J. Oral Maxillofac. Surg. 32, 30–34 (2003).

388

Brands, M. T., Brennan, P. A., Verbeek, A. L., Merkx, M. A. & Geurts, S. M. Follow-up after curative treatment for oral squamous cell carcinoma. A critical appraisal of the guidelines and a review of the literature. Eur. J. Surg. Oncol. 44, 559–565 (2018).

389

Mistry, R. C., Qureshi, S. S. & Kumaran, C. Post‐resection mucosal margin shrinkage in oral cancer: quantification and significance. J. Surg. Oncol. 91, 131–133 (2005).

390

Petruzzi, M., Lucchese, A., Baldoni, E., Grassi, F. R. & Serpico, R. Use of Lugol’s iodine in oral cancer diagnosis: an overview. Oral Oncol. 46, 811–813 (2010).

391

Xiao, T., Kurita, H., Shimane, T., Nakanishi, Y. & Koike, T. Vital staining with iodine solution in oral cancer: iodine infiltration, cell proliferation, and glucose transporter 1. Int. J. Clin. Oncol. 18, 792–800 (2013).

392

Sakuraba, M. et al. Recent advances in reconstructive surgery: head and neck reconstruction. Int. J. Clin. Oncol. 18, 561–565 (2013).

393

Tsao, A. S. et al. Phase Ⅱ randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions. Cancer Prev. Res. 2, 931–941 (2009).

394

Furusaka, T., Asakawa, T., Tanaka, A., Matsuda, H. & Ikeda, M. Efficacy of multidrug superselective intra-arterial chemotherapy (docetaxel, cisplatin, and 5-fluorouracil) using the Seldinger technique for tongue cancer. Acta Otolaryngol. 132, 1108–1114 (2012).

395

Mitsudo, K. et al. Organ preservation with daily concurrent chemoradiotherapy using superselective intra-arterial infusion via a superficial temporal artery for T3 and T4 head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 79, 1428–1435 (2011).

396

Colli, L. M. et al. Landscape of combination immunotherapy and targeted therapy to improve cancer management prioritizing immunotherapy and targeted drug combinations. Cancer Res. 77, 3666–3671 (2017).

397

Vermorken, J. B. et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 359, 1116–1127 (2008).

398

Yu, C.-C. et al. Targeting the PI3K/AKT/mTOR signaling pathway as an effectively radiosensitizing strategy for treating human oral squamous cell carcinoma in vitro and in vivo. Oncotarget 8, 68641 (2017).

399

Xu, J., Wu, Z. & Huang, J. Flavopereirine suppresses the progression of human oral cancer by inhibiting the JAK-STAT signaling pathway via targeting LASP1. Drug Des. Dev. Ther. 15, 1705 (2021).

400

Gan, R. et al. FLI-06 intercepts notch signaling and suppresses the proliferation and self-renewal of tongue cancer cells. OncoTargets Ther. 12, 7663 (2019).

401

Smith, D. C. et al. First-in-human evaluation of the human monoclonal antibody vantictumab (OMP-18R5; anti-Frizzled) targeting the WNT pathway in a phase Ⅰ study for patients with advanced solid tumors. J. Clin. Oncol. 31, 2540–2540 (2013).

402
El-Khoueiry, A. B. et al. A Phase Ⅰ First-in-Human Study of PRI-724 in Patients (pts) with Advanced Solid Tumors (American Society of Clinical Oncology, 2013).
403

Liu, J. et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc. Natl Acad. Sci. USA 110, 20224–20229 (2013).

404

Brahmer, J. R. et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

405

Burtness, B. et al. KEYNOTE-048: Phase Ⅲ study of first-line pembrolizumab (P) for recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). Ann. Oncol. 29, viii729 (2018).

406

Cohen, E. E. W. et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet 393, 156–167 (2019).

407

Burova, E. et al. Preclinical development of the anti-LAG-3 antibody REGN3767: Characterization and activity in combination with the anti-PD-1 antibody cemiplimab in human PD-1xLAG-3–knockin mice. Mol. Cancer Therapeut. 18, 2051–2062 (2019).

408

Huang, J., Barbera, L., Brouwers, M., Browman, G. & Mackillop, W. J. Does delay in starting treatment affect the outcomes of radiotherapy? A systematic review. J. Clin. Oncol. 21, 555–563 (2003).

409

Lee, W.-H. S. et al. Effective killing of acute myeloid leukemia by TIM-3 targeted chimeric antigen receptor T CellsmRNA encoding anti–TIM-3 CAR T cells to treat AML. Mol. Cancer Therapeut. 20, 1702–1712 (2021).

410

Maeda, S., Murakami, K., Inoue, A., Yonezawa, T. & Matsuki, N. CCR4 blockade depletes regulatory T cells and prolongs survival in a canine model of bladder cancer anti-treg immunotherapy for canine bladder cancer. Cancer Immunol. Res. 7, 1175–1187 (2019).

411

Fultang, L. et al. MDSC targeting with Gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancers. EBioMedicine 47, 235–246 (2019).

412

Wolf, G. T. et al. Tumor infiltrating lymphocytes after neoadjuvant IRX-2 immunotherapy in oral squamous cell carcinoma: Interim findings from the INSPIRE trial. Oral Oncol. 111, 104928 (2020).

413

Yete, S. & Saranath, D. MicroRNAs in oral cancer: biomarkers with clinical potential. Oral Oncol. 110, 105002 (2020).

414

Zanoni, D. K. et al. Survival outcomes after treatment of cancer of the oral cavity (1985–2015). Oral Oncol. 90, 115–121 (2019).

415

Almangush, A. et al. Staging and grading of oral squamous cell carcinoma: an update. Oral Oncol. 107, 104799 (2020).

416

Rivera, C., Oliveira, A. K., Costa, R. A. P., Rossi, Tde & Leme, A. F. P. Prognostic biomarkers in oral squamous cell carcinoma: a systematic review. Oral Oncol. 72, 38–47 (2017).

417

Sasahira, T. & Kirita, T. Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma. Int. J. Mol. Sci. 19, 2413 (2018).

418

Suresh, G. M., Koppad, R., Prakash, B. V., Sabitha, K. S. & Dhara, P. S. Prognostic indicators of oral squamous cell carcinoma. Ann. Maxillofac. Surg. 9, 364 (2019).

419

Kather, J. N. et al. Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images. Oncotarget 6, 19163 (2015).

420

Mărgăritescu, C. et al. VEGF expression and angiogenesis in oral squamous cell carcinoma: an immunohistochemical and morphometric study. Clin. Exp. Med. 10, 209–214 (2010).

421

Sakata, J. et al. HMGA2 contributes to distant metastasis and poor prognosis by promoting angiogenesis in oral squamous cell carcinoma. Int. J. Mol. Sci. 20, 2473 (2019).

422

Dong, Z. et al. Overexpression of Id-1 is associated with tumor angiogenesis and poor clinical outcome in oral squamous cell carcinoma. Oral Oncol. 46, 154–157 (2010).

423

Hong, K.-O. et al. Tumor budding is associated with poor prognosis of oral squamous cell carcinoma and histologically represents an epithelial-mesenchymal transition process. Hum. Pathol. 80, 123–129 (2018).

424

Almangush, A. et al. Tumour budding in oral squamous cell carcinoma: a meta-analysis. Br. J. Cancer 118, 577–586 (2018).

425

Staton, C. A., Reed, M. W. R. & Brown, N. J. A critical analysis of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol. 90, 195–221 (2009).

426

Seki, M., Sano, T., Yokoo, S. & Oyama, T. Tumour budding evaluated in biopsy specimens is a useful predictor of prognosis in patients with cN0 early stage oral squamous cell carcinoma. Histopathology 70, 869–879 (2017).

427

Alkhadar, H., Macluskey, M., White, S. & Ellis, I. Perineural invasion in oral squamous cell carcinoma: Incidence, prognostic impact and molecular insight. J. Oral Pathol. Med. 49, 994–1003 (2020).

428

Yu, E.-H., Tu, H.-F., Wu, C.-H., Yang, C.-C. & Chang, K.-W. MicroRNA-21 promotes perineural invasion and impacts survival in patients with oral carcinoma. J. Chin. Med. Assoc. 80, 383–388 (2017).

429

Tassone, P. et al. The role of matrixmetalloproteinase-2 expression by fibroblasts in perineural invasion by oral cavity squamous cell carcinoma. Oral Oncol. 132, 106002 (2022).

430

Zollo, M. et al. Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models. Clin. Exp. Metastasis 29, 585–601 (2012).

431

Rylands, J., Lowe, D. & Rogers, S. N. Outcomes by area of residence deprivation in a cohort of oral cancer patients: survival, health-related quality of life, and place of death. Oral Oncol. 52, 30–36 (2016).

432

Liu, F. et al. Prospective study on factors affecting the prognosis of oral cancer in a Chinese population. Oncotarget 8, 4352 (2017).

433

Lambert, R., Sauvaget, C., Camargo Cancela, Mde & Sankaranarayanan, R. Epidemiology of cancer from the oral cavity and oropharynx. Eur. J. Gastroenterol. Hepatol. 23, 633–641 (2011).

434

Jayaprakash, V. et al. Human papillomavirus types 16 and 18 in epithelial dysplasia of oral cavity and oropharynx: a meta-analysis, 1985–2010. Oral Oncol. 47, 1048–1054 (2011).

435

Ramqvist, T. et al. Studies on human papillomavirus (HPV) 16 E2, E5 and E7 mRNA in HPV-positive tonsillar and base of tongue cancer in relation to clinical outcome and immunological parameters. Oral Oncol. 51, 1126–1131 (2015).

436

Sousa, L. Gde et al. Human papillomavirus status and prognosis of oropharyngeal high-grade neuroendocrine carcinoma. Oral Oncol. 138, 106311 (2023).

437

Fakhry, C. & D’Souza, G. Discussing the diagnosis of HPV-OSCC: Common questions and answers. Oral Oncol. 49, 863–871 (2013).

438

Wang, F. et al. A systematic investigation of the association between HPV and the clinicopathological parameters and prognosis of oral and oropharyngeal squamous cell carcinomas. Cancer Med. 6, 910–917 (2017).

439

Xiao, W. et al. Circular RNAs in cell cycle regulation: mechanisms to clinical significance. Cell Prolif. 54, e13143 (2021).

440

Hu, X., Xia, K., Xiong, H. & Su, T. G3BP1 may serve as a potential biomarker of proliferation, apoptosis, and prognosis in oral squamous cell carcinoma. J. Oral Pathol. Med. 50, 995–1004 (2021).

441

Wang, J. et al. The prognostic value of B7‐H6 protein expression in human oral squamous cell carcinoma. J. Oral Pathol. Med. 46, 766–772 (2017).

442

Wu, C.-C. et al. Overexpression of FAM3C is associated with poor prognosis in oral squamous cell carcinoma. Pathol. Res. Pract. 215, 772–778 (2019).

443

Yu, V. et al. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines. Oral Oncol. 52, 58–65 (2016).

444

Hawk, E. T. & Colbert Maresso, K. E-Cigarettes: unstandardized, under-regulated, understudied, and unknown health and cancer risks e-cigarettes: unknown health and cancer risks. Cancer Res. 79, 6079–6083 (2019).

445

Reidy, J., McHugh, E. & Stassen, L. F. A review of the relationship between alcohol and oral cancer. Surgeon 9, 278–283 (2011).

446

Madathil, S. A. et al. Nonlinear association between betel quid chewing and oral cancer: Implications for prevention. Oral Oncol. 60, 25–31 (2016).

447

Chaturvedi, A. K. et al. Effect of prophylactic human papillomavirus (HPV) vaccination on oral HPV infections among young adults in the United States. J. Clin. Oncol. 36, 262 (2018).

448

Sathish, N., Wang, X. & Yuan, Y. Human papillomavirus (HPV)-associated oral cancers and treatment strategies. J. Dent. Res. 93, 29S–36S (2014).

449

Hübbers, C. U. & Akgül, B. HPV and cancer of the oral cavity. Virulence 6, 244–248 (2015).

450

Gondivkar, S. M. et al. Involvement of viral factors with head and neck cancers. Oral Oncol. 48, 195–199 (2012).

451

de La Cour, C. D., Sperling, C. D., Belmonte, F., Syrjänen, S. & Kjaer, S. K. Human papillomavirus prevalence in oral potentially malignant disorders: systematic review and meta‐analysis. Oral Dis. 27, 431–438 (2021).

452

Vogtmann, E. & Goedert, J. J. Epidemiologic studies of the human microbiome and cancer. Br. J. Cancer 114, 237–242 (2016).

453

Farah, C. S. et al. Oral cancer and oral potentially malignant disorders. Int. J. Dent. 2014, 853479 (2014).

454

Hu, Q. et al. Obesity and genes related to lipid metabolism predict poor survival in oral squamous cell carcinoma. Oral Oncol. 89, 14–22 (2019).

455

Sinevici, N. & O’sullivan, J. Oral cancer: deregulated molecular events and their use as biomarkers. Oral Oncol. 61, 12–18 (2016).

456

Dumache, R. Early diagnosis of oral squamous cell carcinoma by salivary microRNAs. Clin. Lab. 63, 1771–1776 (2017).

457

Dikova, V., Jantus-Lewintre, E. & Bagan, J. Potential non-invasive biomarkers for early diagnosis of oral squamous cell carcinoma. J. Clin. Med. 10, 1658 (2021).

458

Bolandparva, F. et al. Early diagnosis of oral squamous cell carcinoma (OSCC) by miR-138 and miR-424-5p expression as a cancer marker. Asian Pac. J. Cancer Prev. 22, 2185 (2021).

459

Sujir, N., Ahmed, J., Pai, K., Denny, C. & Shenoy, N. Challenges in early diagnosis of oral cancer: Cases series. Acta Stomatol. Croat. 53, 174 (2019).

460

Roi, A. et al. The challenges of OSCC diagnosis: salivary cytokines as potential biomarkers. J. Clin. Med. 9, 2866 (2020).

461

Lingen, M. W., Kalmar, J. R., Karrison, T. & Speight, P. M. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol. 44, 10–22 (2008).

462

Carreras-Torras, C. & Gay-Escoda, C. Techniques for early diagnosis of oral squamous cell carcinoma: Systematic review. Med. Oral Patol. Oral Cir. Bucal. 20, e305 (2015).

463

Javaid, M. A., Ahmed, A. S., Durand, R. & Tran, S. D. Saliva as a diagnostic tool for oral and systemic diseases. J. Oral Biol. Craniofacial. Res. 6, 67–76 (2016).

464

McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 89–94 (2020).

465

Kar, A. et al. Improvement of oral cancer screening quality and reach: The promise of artificial intelligence. J. Oral Pathol. Med. 49, 727–730 (2020).

466

Alabi, R. O. et al. Machine learning in oral squamous cell carcinoma: current status, clinical concerns and prospects for future—et systematic review. Artif. Intell. Med. 115, 102060 (2021).

467

Wang, X. et al. A personalized computational model predicts cancer risk level of oral potentially malignant disorders and its web application for promotion of non‐invasive screening. J. Oral Pathol. Med. 49, 417–426 (2020).

468

de Souza, L. L. et al. Machine learning for detection and classification of oral potentially malignant disorders: a conceptual review. J. Oral Pathol. Med. 52, 197–205 (2023).

469

Elmakaty, I., Elmarasi, M., Amarah, A., Abdo, R. & Malki, M. I. Accuracy of artificial intelligence-assisted detection of oral squamous cell carcinoma: a systematic review and meta-analysis. Crit. Rev. Oncol./Hematol. 178, 103777 (2022).

470

Musulin, J. et al. An enhanced histopathology analysis: an ai-based system for multiclass grading of oral squamous cell carcinoma and segmenting of epithelial and stromal tissue. Cancers 13, 1784 (2021).

471

Tian, H., Zhang, M., Jin, G., Jiang, Y. & Luan, Y. Cu-MOF chemodynamic nanoplatform via modulating glutathione and H2O2 in tumor microenvironment for amplified cancer therapy. J. Colloid Interface Sci. 587, 358–366 (2021).

472

Tian, H. et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J. Hematol. Oncol. 15, 1–40 (2022).

473

Tian, H. et al. A cascaded copper-based nanocatalyst by modulating glutathione and cyclooxygenase-2 for hepatocellular carcinoma therapy. J. Colloid Interface Sci. 607, 1516–1526 (2022).

474

Tian, H. et al. A targeted nanomodulator capable of manipulating tumor microenvironment against metastasis. J. Control. Release 348, 590–600 (2022).

475

Zhu, Y. et al. Recent advances of nano-drug delivery system in oral squamous cell carcinoma treatment. Eur. Rev. Med. Pharmacol. Sci. 23, 9445–9453 (2019).

476

Gharat, S. A., Momin, M. M. & Bhavsar, C. Oral squamous cell carcinoma: current treatment strategies and nanotechnology-based approaches for prevention and therapy. Crit. Rev. Therapeut. Drug Carr. Syst. 33, 363–400 (2016).

477

Fan, H. et al. Light stimulus responsive nanomedicine in the treatment of oral squamous cell carcinoma. Eur. J. Med. Chem. 199, 112394 (2020).

478

Zheng, D.-W. et al. Biomaterial-mediated modulation of oral microbiota synergizes with PD-1 blockade in mice with oral squamous cell carcinoma. Nat. Biomed. Eng. 6, 32–43 (2022).

479

Mapanao, A. K., Santi, M. & Voliani, V. Combined chemo-photothermal treatment of three-dimensional head and neck squamous cell carcinomas by gold nano-architectures. J. Colloid. Interface Sci. 582, 1003–1011 (2021).

480

Reuter, J. A., Spacek, D. V. & Snyder, M. P. High-throughput sequencing technologies. Mol. Cell 58, 586–597 (2015).

481

Pillay, B. et al. The impact of multidisciplinary team meetings on patient assessment, management and outcomes in oncology settings: a systematic review of the literature. Cancer Treat. Rev. 42, 56–72 (2016).

International Journal of Oral Science
Article number: 44
Cite this article:
Tan Y, Wang Z, Xu M, et al. Oral squamous cell carcinomas: state of the field and emerging directions. International Journal of Oral Science, 2023, 15: 44. https://doi.org/10.1038/s41368-023-00249-w

253

Views

6

Downloads

92

Crossref

69

Web of Science

82

Scopus

Altmetrics

Received: 02 June 2023
Revised: 25 August 2023
Accepted: 04 September 2023
Published: 22 September 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return