AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Titanium particles in peri-implantitis: distribution, pathogenesis and prospects

Long Chen1,2Zian Tong1Hongke Luo1Yuan Qu3Xinhua Gu2( )Misi Si1( )
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China

These authors contributed equally: Long Chen, Zian Tong

Show Author Information

Abstract

Peri-implantitis is one of the most important biological complications in the field of oral implantology. Identifying the causative factors of peri-implant inflammation and osteolysis is crucial for the disease’s prevention and treatment. The underlying risk factors and detailed pathogenesis of peri-implantitis remain to be elucidated. Titanium-based implants as the most widely used implant inevitably release titanium particles into the surrounding tissue. Notably, the concentration of titanium particles increases significantly at peri-implantitis sites, suggesting titanium particles as a potential risk factor for the condition. Previous studies have indicated that titanium particles can induce peripheral osteolysis and foster the development of aseptic osteoarthritis in orthopedic joint replacement. However, it remains unconfirmed whether this phenomenon also triggers inflammation and bone resorption in peri-implant tissues. This review summarizes the distribution of titanium particles around the implant, the potential roles in peri-implantitis and the prevalent prevention strategies, which expects to provide new directions for the study of the pathogenesis and treatment of peri-implantitis.

References

1

Kotsakis, G. A. & Olmedo, D. G. Peri-implantitis is not periodontitis: Scientific discoveries shed light on microbiome-biomaterial interactions that may determine disease phenotype. Periodontol 2000 86, 231–240 (2021).

2

Jepsen, S. et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 89, S237–s248 (2018).

3

Dixon, D. R. & London, R. M. Restorative design and associated risks for peri-implant diseases. Periodontol 2000 81, 167–178 (2019).

4

Komatsu, K. et al. Discriminating microbial community structure between peri-implantitis and periodontitis with integrated metagenomic, metatranscriptomic, and network analysis. Front. Cell. Infect. Microbiol. 10, 596490 (2020).

5

Carcuac, O. et al. Experimental periodontitis and peri-implantitis in dogs. Clin. Oral. Implants Res 24, 363–371 (2013).

6

Nakajima, H. & Okabe, T. Titanium in dentistry: development and research in the U.S.A. Dent. Mater. J. 15, 77–90 (1996).

7

Sarraf, M., Rezvani Ghomi, E., Alipour, S., Ramakrishna, S. & Liana Sukiman, N. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Bio-Des. Manuf. 5, 371–395 (2022).

8

Franchi, M. et al. Early detachment of titanium particles from various different surfaces of endosseous dental implants. Biomaterials 25, 2239–2246 (2004).

9

Schwarz, F., Derks, J., Monje, A. & Wang, H. L. Peri-implantitis. J. Periodontol. 89, S267–s290 (2018).

10

Berglundh, T. et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 45, S286–s291 (2018).

11

Delgado-Ruiz, R & Romanos, G. Potential causes of titanium particle and ion release in implant dentistry: A systematic review. Int. J. Mol. Sci. 19, https://doi.org/10.3390/ijms19113585 (2018).

12

Romanos, GE, Fischer, GA & Delgado-Ruiz, R. Titanium wear of dental implants from placement, under loading and maintenance protocols. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22031067 (2021).

13

Möhlhenrich, S. C., Modabber, A., Steiner, T., Mitchell, D. A. & Hölzle, F. Heat generation and drill wear during dental implant site preparation: Systematic review. Br. J. Oral. Maxillofac. Surg. 53, 679–689 (2015).

14

Rashad, A. et al. Material attrition and bone micromorphology after conventional and ultrasonic implant site preparation. Clin. Oral. Implants Res 24, 110–114 (2013).

15

Alevizakos, V., Mitov, G., Ahrens, A. M. & von See, C. The influence of implant site preparation and sterilization on the performance and wear of implant drills. Int. J. Oral. Maxillofac. Implants 36, 546–552 (2021).

16

Allsobrook, O. F., Leichter, J., Holborrow, D. & Swain, M. Descriptive study of the longevity of dental implant surgery drills. Clin. Implant Dent. Relat. Res. 13, 244–254 (2011).

17

Oliveira, N., Alaejos-Algarra, F., Mareque-Bueno, J., Ferrés-Padró, E. & Hernández-Alfaro, F. Thermal changes and drill wear in bovine bone during implant site preparation. A comparative in vitro study: twisted stainless steel and ceramic drills. Clin. Oral. Implants Res 23, 963–969 (2012).

18

Möhlhenrich, S. C. et al. Influence of bone density and implant drill diameter on the resulting axial force and temperature development in implant burs and artificial bone: an in vitro study. Oral. Maxillofac. Surg. 20, 135–142 (2016).

19

Barrak, F. et al. Particle release from dental implants immediately after placement - An ex vivo comparison of different implant systems. Dent. Mater. 38, 1004–1014 (2022).

20

Guan, H., van Staden, R. C., Johnson, N. W. & Loo, Y. C. Dynamic modelling and simulation of dental implant insertion process—A finite element study. Finite Elem. Anal. Des. 47, 886–897 (2011).

21

Gao, S. S., Zhang, Y. R., Zhu, Z. L. & Yu, H. Y. Micromotions and combined damages at the dental implant/bone interface. Int. J. oral. Sci. 4, 182–188 (2012).

22

Alqutaibi, A. Y. & Aboalrejal, A. N. Microgap and micromotion at the implant abutment interface cause marginal bone loss around dental implant but more evidence is needed. J. Evid. Based Dent. Pract. 18, 171–172 (2018).

23

Lopes, P. A. et al. Physicochemical and microscopic characterization of implant-abutment joints. Eur. J. Dent. 12, 100–104 (2018).

24

Blum, K. et al. Fatigue induced changes in conical implant-abutment connections. Dent. Mater. 31, 1415–1426 (2015).

25

Gratton, D. G., Aquilino, S. A. & Stanford, C. M. Micromotion and dynamic fatigue properties of the dental implant-abutment interface. J. Prosthet. Dent. 85, 47–52 (2001).

26

Binon, P. P. The effect of implant/abutment hexagonal misfit on screw joint stability. Int. J. Prosthodont. 9, 149–160 (1996).

27

Zipprich, H., Weigl, P., Ratka, C., Lange, B. & Lauer, H. C. The micromechanical behavior of implant-abutment connections under a dynamic load protocol. Clin. Implant Dent. Relat. Res. 20, 814–823 (2018).

28

Huang, HH et al. Blood coagulation on titanium dioxide films with various crystal structures on titanium implant surfaces. Cells 11, https://doi.org/10.3390/cells11172623 (2022).

29

Addison, O. et al. Do ‘passive’ medical titanium surfaces deteriorate in service in the absence of wear? J. R. Soc., Interface 9, 3161–3164 (2012).

30

Valente, M. L., Lepri, C. P. & dos Reis, A. C. In vitro microstructural analysis of dental implants subjected to insertion torque and pullout test. Braz. Dent. J. 25, 343–345 (2014).

31

Feng, B. et al. Characterization of surface oxide films on titanium and bioactivity. J. Mater. Sci. Mater. Med. 13, 457–464 (2002).

32

Alrabeah, G. O., Knowles, J. C. & Petridis, H. The effect of platform switching on the levels of metal ion release from different implant-abutment couples. Int. J. oral. Sci. 8, 117–125 (2016).

33

Ramel, C. F. et al. Surface roughness of dental implants and treatment time using six different implantoplasty procedures. Clin. Oral. Implants Res 27, 776–781 (2016).

34

Dhaliwal, J. S. et al. Microbial biofilm decontamination on dental implant surfaces: A mini review. Front. Cell. Infect. Microbiol. 11, 736186 (2021).

35

Louropoulou, A., Slot, D. E. & Van der Weijden, F. A. Titanium surface alterations following the use of different mechanical instruments: a systematic review. Clin. Oral. Implants Res 23, 643–658 (2012).

36

Ronay, V., Merlini, A., Attin, T., Schmidlin, P. R. & Sahrmann, P. In vitro cleaning potential of three implant debridement methods. Simulation of the non-surgical approach. Clin. Oral. Implants Res 28, 151–155 (2017).

37

Mouhyi, J., Dohan Ehrenfest, D. M. & Albrektsson, T. The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin. Implant Dent. Relat. Res 14, 170–183 (2012).

38

Mombelli, A., Hashim, D. & Cionca, N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin. Oral. Implants Res 29, 37–53 (2018).

39

Wheelis, S. E. et al. Effects of decontamination solutions on the surface of titanium: investigation of surface morphology, composition, and roughness. Clin. Oral. Implants Res 27, 329–340 (2016).

40

Chen, W. Q., Zhang, S. M. & Qiu, J. Surface analysis and corrosion behavior of pure titanium under fluoride exposure. J. Prosthet. Dent. 124, 239.e231–239.e238 (2020).

41

Chen, X. et al. Elucidating the corrosion-related degradation mechanisms of a Ti-6Al-4V dental implant. Dent. Mater. 36, 431–441 (2020).

42

Barbieri, M. et al. Corrosion behavior of dental implants immersed into human saliva: preliminary results of an in vitro study. Eur. Rev. Med. Pharmacol. Sci. 21, 3543–3548 (2017).

43

Faverani, L. P. et al. Effect of bleaching agents and soft drink on titanium surface topography. J. Biomed. Mater. Res. B Appl. Biomater. 102, 22–30 (2014).

44

Siddiqui, D. A. et al. Evaluation of oral microbial corrosion on the surface degradation of dental implant materials. J. Periodontol. 90, 72–81 (2019).

45

Alhamad, M, Barão, VAR, Sukotjo, C, Cooper, LF & Mathew, MT. Ti-ions and/or particles in saliva potentially aggravate dental implant corrosion. Materials (Basel, Switzerland) 14, https://doi.org/10.3390/ma14195733 (2021).

46

Herbster, M. et al. Microstructure-dependent crevice corrosion damage of implant materials CoCr28Mo6, TiAl6V4 and REX 734 under severe inflammatory conditions. J. Biomed. Mater. Res. B Appl. Biomater. 110, 1687–1704 (2022).

47

Sridhar, S. et al. In vitro investigation of the effect of oral bacteria in the surface oxidation of dental implants. Clin. Implant Dent. Relat. Res. 17, e562–e575 (2015).

48

Mathew, M. T. et al. What is the role of lipopolysaccharide on the tribocorrosive behavior of titanium? J. Mech. Behav. Biomed. Mater. 8, 71–85 (2012).

49

Safioti, L. M., Kotsakis, G. A., Pozhitkov, A. E., Chung, W. O. & Daubert, D. M. Increased Levels of Dissolved Titanium Are Associated With Peri-Implantitis - A Cross-Sectional Study. J. Periodontol. 88, 436–442 (2017).

50

Suárez-López Del Amo, F., Garaicoa-Pazmiño, C., Fretwurst, T., Castilho, R. M. & Squarize, C. H. Dental implants-associated release of titanium particles: A systematic review. Clin. Oral. Implants Res 29, 1085–1100 (2018).

51

Flatebø, R. S. et al. Mapping of titanium particles in peri-implant oral mucosa by laser ablation inductively coupled plasma mass spectrometry and high-resolution optical darkfield microscopy. J. Oral. Pathol. Med. 40, 412–420 (2011).

52

He, X. et al. Analysis of titanium and other metals in human jawbones with dental implants - A case series study. Dent. Mater. 32, 1042–1051 (2016).

53

Weingart, D. et al. Titanium deposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. Int. J. Oral. Maxillofac. Surg. 23, 450–452 (1994).

54

Wennerberg, A., Jimbo, R., Allard, S., Skarnemark, G. & Andersson, M. In vivo stability of hydroxyapatite nanoparticles coated on titanium implant surfaces. Int. J. Oral. Maxillofac. Implants 26, 1161–1166 (2011).

55

Olmedo, D., Guglielmotti, M. B. & Cabrini, R. L. An experimental study of the dissemination of Titanium and Zirconium in the body. J. Mater. Sci. Mater. Med. 13, 793–796 (2002).

56

Guglielmotti, M. B. et al. Migration of titanium dioxide microparticles and nanoparticles through the body and deposition in the gingiva: an experimental study in rats. Eur. J. Oral. Sci. 123, 242–248 (2015).

57

Fretwurst, T. et al. Metal elements in tissue with dental peri-implantitis: a pilot study. Clin. Oral. Implants Res 27, 1178–1186 (2016).

58

Pettersson, M., Pettersson, J., Johansson, A. & Molin Thorén, M. Titanium release in peri-implantitis. J. Oral. Rehabil. 46, 179–188 (2019).

59

Olmedo, D. G., Nalli, G., Verdú, S., Paparella, M. L. & Cabrini, R. L. Exfoliative cytology and titanium dental implants: a pilot study. J. Periodontol. 84, 78–83 (2013).

60

Daubert, D. M., Pozhitkov, A. E., Safioti, L. M. & Kotsakis, G. A. Association of global DNA methylation to titanium and peri-implantitis: A case-control study. JDR Clin. Transl. Res. 4, 284–291 (2019).

61

Rakic, M. et al. Study on the immunopathological effect of titanium particles in peri-implantitis granulation tissue: A case-control study. Clin. Oral. Implants Res 33, 656–666 (2022).

62

Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

63

Messous, R. et al. Cytotoxic effects of submicron- and nano-scale titanium debris released from dental implants: an integrative review. Clin. Oral. Investig. 25, 1627–1640 (2021).

64

Ivanovski, S., Bartold, P. M. & Huang, Y. S. The role of foreign body response in peri-implantitis: What is the evidence? Periodontol 2000 90, 176–185 (2022).

65

Wang, X., Li, Y., Feng, Y., Cheng, H. & Li, D. Macrophage polarization in aseptic bone resorption around dental implants induced by Ti particles in a murine model. J. Periodontal Res. 54, 329–338 (2019).

66

Eger, M., Sterer, N., Liron, T., Kohavi, D. & Gabet, Y. Scaling of titanium implants entrains inflammation-induced osteolysis. Sci. Rep. 7, 39612 (2017).

67

Ribeiro, A. R. et al. Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells. Sci. Rep. 6, 23615 (2016).

68

Lu, X. et al. Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology 10, 140–150 (2016).

69

Malakootian, M., Nasiri, A., Osornio-Vargas, A. R. & Faraji, M. Effect of titanium dioxide nanoparticles on DNA methylation of human peripheral blood mononuclear cells. Toxicol. Res. 10, 1045–1051 (2021).

70

Ndika, J. et al. Silver, titanium dioxide, and zinc oxide nanoparticles trigger miRNA/isomiR expression changes in THP-1 cells that are proportional to their health hazard potential. Nanotoxicology 13, 1380–1395 (2019).

71

Ichioka, Y., Asa’ad, F., Malekzadeh, B., Westerlund, A. & Larsson, L. Epigenetic changes of osteoblasts in response to titanium surface characteristics. J. Biomed. Mater. Res. A 109, 170–180 (2021).

72

Freitag, L. et al. Dental implant material related changes in molecular signatures in peri-implantitis - A systematic review and integrative analysis of omics in-vitro studies. Dent. Mater. 39, 101–113 (2023).

73

Napetschnig, J. & Wu, H. Molecular basis of NF-κB signaling. Annu. Rev. Biophys. 42, 443–468 (2013).

74

Bonnet, N., Bourgoin, L., Biver, E., Douni, E. & Ferrari, S. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J. Clin. Invest. 129, 3214–3223 (2019).

75

Zhu, S. et al. Strontium inhibits titanium particle-induced osteoclast activation and chronic inflammation via suppression of NF-κB pathway. Sci. Rep. 6, 36251 (2016).

76

Mishra, V. et al. Titanium dioxide nanoparticles augment allergic airway inflammation and Socs3 expression via NF-κB pathway in murine model of asthma. Biomaterials 92, 90–102 (2016).

77

Yu, X., Hong, F. & Zhang, Y. Q. Cardiac inflammation involving in PKCε or ERK1/2-activated NF-κB signalling pathway in mice following exposure to titanium dioxide nanoparticles. J. Hazard. Mater. 313, 68–77 (2016).

78

Tang, W. et al. Puerarin inhibits titanium particle-induced osteolysis and RANKL-induced osteoclastogenesis via suppression of the NF-κB signaling pathway. J. Cell. Mol. Med. 24, 11972–11983 (2020).

79

Wachi, T., Shuto, T., Shinohara, Y., Matono, Y. & Makihira, S. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption. Toxicology 327, 1–9 (2015).

80

Krishnan, V., Bryant, H. U. & Macdougald, O. A. Regulation of bone mass by Wnt signaling. J. Clin. Invest. 116, 1202–1209 (2006).

81

Brandenburg, J. & Reiling, N. The Wnt blows: On the functional role of wnt signaling in mycobacterium tuberculosis infection and beyond. Front. Immunol. 7, 635 (2016).

82

Schaale, K., Neumann, J., Schneider, D., Ehlers, S. & Reiling, N. Wnt signaling in macrophages: augmenting and inhibiting mycobacteria-induced inflammatory responses. Eur. J. Cell Biol. 90, 553–559 (2011).

83

Abaricia, J. O., Shah, A. H., Chaubal, M., Hotchkiss, K. M. & Olivares-Navarrete, R. Wnt signaling modulates macrophage polarization and is regulated by biomaterial surface properties. Biomaterials 243, 119920 (2020).

84

Qu, R. et al. Ghrelin fights against titanium particle-induced inflammatory osteolysis through activation of β-catenin signaling pathway. Inflammation 42, 1652–1665 (2019).

85

Wang, B et al. The effect of strontium ranelate on titanium particle-induced periprosthetic osteolysis regulated by WNT/β-catenin signaling in vivo and in vitro. Biosci. Rep. 41, https://doi.org/10.1042/bsr20203003 (2021).

86

Ping, Z. et al. Melatonin attenuates titanium particle-induced osteolysis via activation of Wnt/β-catenin signaling pathway. Acta Biomater. 51, 513–525 (2017).

87

Zheng, K. et al. Protective effects of sirtuin 3 on titanium particle-induced osteogenic inhibition by regulating the NLRP3 inflammasome via the GSK-3β/β-catenin signalling pathway. Bioact. Mater. 6, 3343–3357 (2021).

88

Xiong, L. et al. Acetyl-11-keto-β-boswellic acid attenuates titanium particle-induced osteogenic inhibition via activation of the GSK-3β/β-catenin signaling pathway. Theranostics 9, 7140–7155 (2019).

89

Ersahin, T., Tuncbag, N. & Cetin-Atalay, R. The PI3K/AKT/mTOR interactive pathway. Mol. Biosyst. 11, 1946–1954 (2015).

90

Zheng, Z. et al. Involvement of PI3K/Akt signaling pathway in promoting osteogenesis on titanium implant surfaces modified with novel non-thermal atmospheric plasma. Front. Bioeng. Biotechnol. 10, 975840 (2022).

91

Wen, Z. et al. MiR-92a/KLF4/p110δ regulates titanium particles-induced macrophages inflammation and osteolysis. Cell death Discov. 8, 197 (2022).

92

Xian, G. et al. Titanium particles induce apoptosis by promoting autophagy in macrophages via the PI3K/Akt signaling pathway. J. Biomed. Mater. Res. A 108, 1792–1805 (2020).

93

Wu, Y. et al. Melatonin alleviates titanium nanoparticles induced osteolysis via activation of butyrate/GPR109A signaling pathway. J. nanobiotechnology 19, 170 (2021).

94

Zhu, K. et al. Crocin inhibits titanium particle-induced inflammation and promotes osteogenesis by regulating macrophage polarization. Int. Immunopharmacol. 76, 105865 (2019).

95

Soler, MD et al. Titanium corrosion in peri-implantitis. Materials (Basel, Switzerland) 13, https://doi.org/10.3390/ma13235488 (2020).

96

Daubert, D., Pozhitkov, A., McLean, J. & Kotsakis, G. Titanium as a modifier of the peri-implant microbiome structure. Clin. Implant Dent. Relat. Res. 20, 945–953 (2018).

97

Irshad, M. et al. Influence of titanium on in vitro fibroblast-Porphyromonas gingivalis interaction in peri-implantitis. J. Clin. Periodontol. 40, 841–849 (2013).

98

Weller, J. et al. The role of bacterial corrosion on recolonization of titanium implant surfaces: An in vitro study. Clin. Implant Dent. Relat. Res. 24, 664–675 (2022).

99

Yu, T. S. Effect of titanium-ion on the growth of various bacterial species. J. Microbiol. 42, 47–50 (2004).

100

Apaza-Bedoya, K. et al. Synergistic interactions between corrosion and wear at titanium-based dental implant connections: A scoping review. J. Periodontal Res. 52, 946–954 (2017).

101

Martin, A., Zhou, P., Singh, B. B. & Kotsakis, G. A. Transcriptome-wide gene expression analysis in peri-implantitis reveals candidate cellular pathways. JDR Clin. Transl. Res. 7, 415–424 (2022).

102

Suárez-López Del Amo, F. et al. Titanium activates the DNA damage response pathway in oral epithelial cells: A pilot study. Int. J. Oral. Maxillofac. Implants 32, 1413–1420 (2017).

103

Fage, S. W., Muris, J., Jakobsen, S. S. & Thyssen, J. P. Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermat. 74, 323–345 (2016).

104

Wang, Z. et al. Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis. Autophagy 11, 2358–2369 (2015).

105

Chen, W. et al. Autophagy inhibitors 3-MA and LY294002 repress osteoclastogenesis and titanium particle-stimulated osteolysis. Biomater. Sci. 9, 4922–4935 (2021).

106

Camuzard, O., Breuil, V., Carle, G. F. & Pierrefite-Carle, V. Autophagy involvement in aseptic loosening of arthroplasty components. J. Bone Jt. Surg. Am. 101, 466–472 (2019).

107

Wang, Z. et al. NanoZnO-modified titanium implants for enhanced anti-bacterial activity, osteogenesis and corrosion resistance. J. Nanobiotechnol. 19, 353 (2021).

108

Wang, J. et al. Enhanced corrosion resistance in an inflammatory environment and osteogenic properties of silicalite-1 coated titanium alloy implants. Colloids Surf. B, Biointerfaces 220, 112922 (2022).

109

Zhu, W. Q. et al. Enhanced corrosion resistance of zinc-containing nanowires-modified titanium surface under exposure to oxidizing microenvironment. J. Nanobiotechnol. 17, 55 (2019).

110

Guo, T, Scimeca, JC, Ivanovski, S, Verron, E & Gulati, K. Enhanced corrosion resistance and local therapy from nano-engineered titanium dental implants. Pharmaceutics 15, https://doi.org/10.3390/pharmaceutics15020315 (2023).

111

Akimoto, T. et al. Evaluation of corrosion resistance of implant-use Ti-Zr binary alloys with a range of compositions. J. Biomed. Mater. Res. B Appl. Biomater. 106, 73–79 (2018).

112

Wu, Y et al. Recent advances in copper-doped titanium implants. Materials (Basel, Switzerland) 15, https://doi.org/10.3390/ma15072342 (2022).

113

Wang, X., Ning, B. & Pei, X. Tantalum and its derivatives in orthopedic and dental implants: Osteogenesis and antibacterial properties. Colloids Surf. B, Biointerfaces 208, 112055 (2021).

114

Chopra, D., Jayasree, A., Guo, T., Gulati, K. & Ivanovski, S. Advancing dental implants: Bioactive and therapeutic modifications of zirconia. Bioact. Mater. 13, 161–178 (2022).

115

Mace, A., Khullar, P., Bouknight, C. & Gilbert, J. L. Corrosion properties of low carbon CoCrMo and additively manufactured CoCr alloys for dental applications. Dent. Mater. 38, 1184–1193 (2022).

116

Kurtz, S. M. & Devine, J. N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28, 4845–4869 (2007).

117

Najeeb, S., Zafar, M. S., Khurshid, Z. & Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. prosthodontic Res. 60, 12–19 (2016).

118

Torstrick, F. B. et al. Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK. Biomaterials 185, 106–116 (2018).

119

Eger, M. et al. Mechanism and Prevention of Titanium Particle-Induced Inflammation and Osteolysis. Front. Immunol. 9, 2963 (2018).

120

Guo, X. et al. Bioinspired peptide adhesion on Ti implants alleviates wear particle-induced inflammation and improves interfacial osteogenesis. J. Colloid Interface Sci. 605, 410–424 (2022).

121

Wang, J. et al. A decomposable silica-based antibacterial coating for percutaneous titanium implant. Int J. Nanomed. 12, 371–379 (2017).

122

Ren, X. et al. Eradicating infecting bacteria while maintaining tissue integration on photothermal nanoparticle-coated titanium surfaces. ACS Appl. Mater. interfaces 12, 34610–34619 (2020).

123

Caldwell, M. et al. Promising applications of D-amino acids in periprosthetic joint infection. Bone Res. 11, 14 (2023).

124

Gulati, K. et al. Craniofacial therapy: advanced local therapies from nano-engineered titanium implants to treat craniofacial conditions. Int. J. oral. Sci. 15, 15 (2023).

125

Wilson, T. G. Jr. et al. Foreign bodies associated with peri-implantitis human biopsies. J. Periodontol. 86, 9–15 (2015).

126

Pettersson, M. et al. Titanium ions form particles that activate and execute interleukin-1β release from lipopolysaccharide-primed macrophages. J. Periodontal Res. 52, 21–32 (2017).

127

Nelson, K. et al. Distribution and chemical speciation of exogenous micro- and nanoparticles in inflamed soft tissue adjacent to titanium and ceramic dental implants. Anal. Chem. 92, 14432–14443 (2020).

128

Berryman, Z. et al. Titanium particles: An emerging risk factor for peri-implant bone loss. Saudi Dent. J. 32, 283–292 (2020).

International Journal of Oral Science
Article number: 49
Cite this article:
Chen L, Tong Z, Luo H, et al. Titanium particles in peri-implantitis: distribution, pathogenesis and prospects. International Journal of Oral Science, 2023, 15: 49. https://doi.org/10.1038/s41368-023-00256-x

174

Views

1

Downloads

12

Crossref

9

Web of Science

10

Scopus

Altmetrics

Received: 24 August 2023
Revised: 25 October 2023
Accepted: 30 October 2023
Published: 23 November 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return