AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Prospects and challenges of dynamic DNA nanostructures in biomedical applications

Taoran Tian1Yanjing Li2Yunfeng Lin1 ( )
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, P. R. China

These authors contributed equally: Taoran Tian, Yanjing Li.

Show Author Information

Abstract

The physicochemical nature of DNA allows the assembly of highly predictable structures via several fabrication strategies, which have been applied to make breakthroughs in various fields. Moreover, DNA nanostructures are regarded as materials with excellent editability and biocompatibility for biomedical applications. The ongoing maintenance and release of new DNA structure design tools ease the work and make large and arbitrary DNA structures feasible for different applications. However, the nature of DNA nanostructures endows them with several stimulus-responsive mechanisms capable of responding to biomolecules, such as nucleic acids and proteins, as well as biophysical environmental parameters, such as temperature and pH. Via these mechanisms, stimulus-responsive dynamic DNA nanostructures have been applied in several biomedical settings, including basic research, active drug delivery, biosensor development, and tissue engineering. These applications have shown the versatility of dynamic DNA nanostructures, with unignorable merits that exceed those of their traditional counterparts, such as polymers and metal particles. However, there are stability, yield, exogenous DNA, and ethical considerations regarding their clinical translation. In this review, we first introduce the recent efforts and discoveries in DNA nanotechnology, highlighting the uses of dynamic DNA nanostructures in biomedical applications. Then, several dynamic DNA nanostructures are presented, and their typical biomedical applications, including their use as DNA aptamers, ion concentration/pH-sensitive DNA molecules, DNA nanostructures capable of strand displacement reactions, and protein-based dynamic DNA nanostructures, are discussed. Finally, the challenges regarding the biomedical applications of dynamic DNA nanostructures are discussed.

References

1

Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

2

Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

3

Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

4

Pinheiro, A. V., Han, D., Shih, W. M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763–772 (2011).

5

Mathieu, F. et al. Six-helix bundles designed from DNA. Nano Lett. 5, 661–665 (2005).

6

Vinogradov, A. E. DNA helix: the importance of being GC‐rich. Nucleic Acids Res. 31, 1838–1844 (2003).

7

Goodman, R. P., Berry, R. M. & Turberfield, A. J. The single-step synthesis of a DNA tetrahedron. Chem. Commun. 1372–1373 (2004).

8

Goodman, R. P. et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat. Nanotechnol. 3, 93–96 (2008).

9

Yan, H., LaBean, T. H., Feng, L. & Reif, J. H. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc. Natl. Acad. Sci. USA 100, 8103–8108 (2003).

10

Lin, C., Liu, Y., Rinker, S. & Yan, H. DNA tile based self‐assembly: building complex nanoarchitectures. ChemPhysChem 7, 1641–1647 (2006).

11

Nummelin, S., Kommeri, J., Kostiainen, M. A. & Linko, V. Evolution of Structural DNA Nanotechnology. Adv. Mater. 30, e1703721 (2018).

12

Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

13
Williams, S. et al. In International Workshop on DNA-based Computers. 90-101 (Springer).
14

Zadeh, J. N. et al. NUPACK: Analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

15

Kim, D. N., Kilchherr, F., Dietz, H. & Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic acids Res. 40, 2862–2868 (2012).

16
Doye, J. P. et al. The oxDNA coarse-grained model as a tool to simulate DNA origami. arXiv preprint arXiv: 2004.05052. (2020).
17

Castro, C. E. et al. A primer to scaffolded DNA origami. Nat. Methods 8, 221 (2011).

18

Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779 (2015).

19

Zhou, Z., Zhang, P., Yue, L. & Willner, I. Triggered interconversion of dynamic networks composed of DNA-Tetrahedra nanostructures. Nano Lett. 19, 7540–7547 (2019).

20

Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

21

Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

22

Ramezani, H. & Dietz, H. Building machines with DNA molecules. Nat. Rev. Genet. 21, 5–26 (2020).

23

Ma, W. et al. The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct. Target Ther. 6, 351 (2021).

24

Zhang, T. et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat. Protoc. 15, 2728–2757 (2020).

25

Li, J. et al. The neuroprotective effect of MicroRNA‐22‐3p modified tetrahedral framework nucleic acids on damaged retinal neurons via TrkB/BDNF signaling pathway. Adv. Funct. Mater. 31, 2104141 (2021).

26

Li, Y. et al. Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: From innate to adaptive immunity. Nanomicro Lett. 13, 86 (2021).

27

Zhang, M. et al. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact. Mater. 8, 368–380 (2022).

28

Wang, Y. et al. Tetrahedral framework nucleic acids can alleviate taurocholate-induced severe acute pancreatitis and its subsequent multiorgan injury in mice. Nano Lett. 22, 1759–1768 (2022).

29

Zhou, Y. et al. An organelle-specific nanozyme for diabetes care in genetically or diet-induced models. Adv. Mater. 32, 2003708 (2020).

30

Shen, H., Wang, Y., Wang, J., Li, Z. & Yuan, Q. Emerging biomimetic applications of DNA nanotechnology. ACS Appl. Mater. Interfaces 11, 13859–13873 (2019).

31

Liu, L. et al. Efficient and reliable MicroRNA imaging in living cells via a FRET-based localized Hairpin-DNA cascade amplifier. Anal. Chem. 91, 3675–3680 (2019).

32

Burns, J. R., Seifert, A., Fertig, N. & Howorka, S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotechnol. 11, 152–156 (2016).

33

Fisher, P. D. E. et al. A programmable DNA origami platform for organizing intrinsically disordered nucleoporins within nanopore confinement. ACS Nano 12, 1508–1518 (2018).

34

Shen, Q. et al. DNA-origami nanotrap for studying the selective barriers formed by phenylalanine-glycine-rich nucleoporins. J. Am. Chem. Soc. 143, 12294–12303 (2021).

35

Woods, D. et al. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature 567, 366–372 (2019).

36

Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

37

Liu, S. et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater. 20, 421–430 (2021).

38

Kahn, J. S., Hu, Y. & Willner, I. Stimuli-responsive DNA-based hydrogels: from basic principles to applications. Acc. Chem. Res 50, 680–690 (2017).

39

Zhang, J., Song, S., Wang, L., Pan, D. & Fan, C. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat. Protoc. 2, 2888–2895 (2007).

40

Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).

41

Ong, L. L. et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017).

42

Praetorius, F. et al. Biotechnological mass production of DNA origami. Nature 552, 84–87 (2017).

43

Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 4, 325–330 (2009).

44

Du, Y., Peng, P. & Li, T. DNA logic operations in living cells utilizing lysosome-recognizing framework nucleic acid nanodevices for subcellular imaging. ACS Nano 13, 5778–5784 (2019).

45

Fong, F. Y., Oh, S. S., Hawker, C. J. & Soh, H. T. In vitro selection of pH-activated DNA nanostructures. Angew. Chem. Int Ed. Engl. 55, 15258–15262 (2016).

46

Kim, S. H. et al. Reversible regulation of enzyme activity by ph-responsive encapsulation in DNA nanocages. ACS Nano 11, 9352–9359 (2017).

47

Ijas, H., Hakaste, I., Shen, B., Kostiainen, M. A. & Linko, V. Reconfigurable DNA Origami nanocapsule for pH-controlled encapsulation and display of cargo. ACS Nano 13, 5959–5967 (2019).

48

Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

49

Li, Q. et al. Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug delivery. ACS Appl Mater. Interfaces 9, 36695–36701 (2017).

50

Xing, C. et al. Active self-assembly of train-shaped DNA nanostructures via catalytic hairpin assembly reactions. Small 15, e1901795 (2019).

51

Wu, H., Chen, T. T., Wang, X. N., Ke, Y. & Jiang, J. H. RNA imaging in living mice enabled by an in vivo hybridization chain reaction circuit with a tripartite DNA probe. Chem. Sci. 11, 62–69 (2020).

52

Juul, S. et al. Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage. ACS Nano 7, 9724–9734 (2013).

53

Kim, C. J., Jeong, E. H., Lee, H. & Park, S. J. A dynamic DNA nanostructure with switchable and size-selective molecular recognition properties. Nanoscale 11, 2501–2509 (2019).

54

Zhang, L. et al. Engineering of bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers via the incorporation of an artificial sandwich base. J. Am. Chem. Soc. 141, 4282–4290 (2019).

55

Shen, C., Liu, S., Li, X. & Yang, M. Electrochemical detection of circulating tumor cells based on DNA generated electrochemical current and rolling circle amplification. Anal. Chem. 91, 11614–11619 (2019).

56

Gao, H., Zhang, K., Teng, X. & Li, J. Rolling circle amplification for single cell analysis and in situ sequencing. TrAC Trends Anal. Chem. 121, 115700 (2019).

57

Sharma, V. K. & Watts, J. K. Oligonucleotide therapeutics: chemistry, delivery and clinical progress. Future Med. Chem. 7, 2221–2242 (2015).

58

Sefah, K., Shangguan, D., Xiong, X., O’Donoghue, M. B. & Tan, W. Development of DNA aptamers using Cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010).

59

Xing, H., Wong, N. Y., Xiang, Y. & Lu, Y. DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr. Opin. Chem. Biol. 16, 429–435 (2012).

60

Hirao, I., Kimoto, M. & Lee, K. H. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method. Biochimie 145, 15–21 (2018).

61

Cansiz, S. et al. DNA Aptamer based nanodrugs: Molecular engineering for efficiency. Chem. Asian J. 10, 2084–2094 (2015).

62

Kimoto, M., Nakamura, M. & Hirao, I. Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications. Nucleic Acids Res. 44, 7487–7494 (2016).

63

Christian, S. et al. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J. cell Biol. 163, 871–878 (2003).

64

Keefe, A. D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010).

65

Bunka, D. H., Platonova, O. & Stockley, P. G. Development of aptamer therapeutics. Curr. Opin. Pharm. 10, 557–562 (2010).

66

Han, Y. et al. Immune lipoprotein nanostructures inspired relay drug delivery for amplifying antitumor efficiency. Biomaterials 185, 205–218 (2018).

67

Kohwi, Y. & Kohwi-Shigematsu, T. Magnesium ion-dependent triple-helix structure formed by homopurine-homopyrimidine sequences in supercoiled plasmid DNA. Proc. Natl. Acad. Sci. USA 85, 3781–3785 (1988).

68

Wu, Y. Y., Zhang, Z. L., Zhang, J. S., Zhu, X. L. & Tan, Z. J. Multivalent ion-mediated nucleic acid helix-helix interactions: RNA versus DNA. Nucleic acids Res. 43, 6156–6165 (2015).

69

Takezawa, Y., Müller, J. & Shionoya, M. Artificial DNA base pairing mediated by diverse metal ions. Chem. Lett. 46, 622–633 (2017).

70

Zhang, Z. L., Wu, Y. Y., Xi, K., Sang, J. P. & Tan, Z. J. Divalent ion-mediated DNA-DNA interactions: A comparative study of triplex and duplex. Biophys. J. 113, 517–528 (2017).

71

Naskar, S., Guha, R. & Muller, J. Metal-modified nucleic acids: Metal-mediated base pairs, triples, and tetrads. Angew. Chem. Int. Ed. Engl. 59, 1397–1406 (2020).

72

Guo, K. et al. Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene. J. Am. Chem. Soc. 129, 10220–10228 (2007).

73

Chu, B., Zhang, D. & Paukstelis, P. J. A DNA G-quadruplex/i-motif hybrid. Nucleic Acids Res. 47, 11921–11930 (2019).

74

Zhang, Z. et al. Acidic pH environment induces autophagy in osteoblasts. Sci. Rep. 7, 46161 (2017).

75

Galow, A. M. et al. Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration. Biochem. Biophys. Rep. 10, 17–25 (2017).

76

Skolakova, P. et al. Systematic investigation of sequence requirements for DNA i-motif formation. Nucleic Acids Res. 47, 2177–2189 (2019).

77

Abou Assi, H., Garavis, M., Gonzalez, C. & Damha, M. J. i-Motif DNA: Structural features and significance to cell biology. Nucleic Acids Res. 46, 8038–8056 (2018).

78

Park, H., Kim, J., Jung, S. & Kim, W. J. DNA‐Au nanomachine equipped with i‐Motif and G‐Quadruplex for triple combinatorial anti‐tumor therapy. Adv. Funct. Mater. 28, 1705416 (2018).

79

Keum, J. W. & Bermudez, H. DNA-based delivery vehicles: pH-controlled disassembly and cargo release. Chem. Commun. (Camb.) 48, 12118–12120 (2012).

80

Ma, W. et al. I-Motif-based in situ bipedal hybridization chain reaction for specific activatable imaging and enhanced delivery of antisense oligonucleotides. Anal. Chem. 91, 12538–12545 (2019).

81

Liu, H. et al. Kinetics of RNA and RNA:DNA hybrid strand displacement. ACS Synth. Biol. 10, 3066–3073 (2021).

82

Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

83

Figg, C. A., Winegar, P. H., Hayes, O. G. & Mirkin, C. A. Controlling the DNA hybridization chain reaction. J. Am. Chem. Soc. 142, 8596–8601 (2020).

84

Dirks, R. M. & Pierce, N. A. Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA 101, 15275–15278 (2004).

85

Li, B., Ellington, A. D. & Chen, X. Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic Acids Res. 39, e110 (2011).

86

Chen, J., Wen, J., Zhuang, L. & Zhou, S. An enzyme-free catalytic DNA circuit for amplified detection of aflatoxin B1 using gold nanoparticles as colorimetric indicators. Nanoscale 8, 9791–9797 (2016).

87

Zhou, F. et al. Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles. Anal. Chim. Acta 969, 8–17 (2017).

88

Wei, Q. et al. A DNA nanowire based localized catalytic hairpin assembly reaction for microRNA imaging in live cells. Chem. Sci. 9, 7802–7808 (2018).

89

Tang, J. et al. Recognition-driven remodeling of dual-split aptamer triggering in situ hybridization chain reaction for activatable and autonomous identification of cancer cells. Anal. Chem. 92, 10839–10846 (2020).

90

Yao, C. et al. Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. J. Am. Chem. Soc. 142, 3422–3429 (2020).

91

Guo, Q. et al. DNA-based hybridization chain reaction and biotin-streptavidin signal amplification for sensitive detection of Escherichia coli O157:H7 through ELISA. Biosens. Bioelectron. 86, 990–995 (2016).

92

Tang, Y. et al. Universal strategy to engineer catalytic DNA hairpin assemblies for protein analysis. Anal. Chem. 87, 8063–8066 (2015).

93

Yang, L., Fung, C. W., Cho, E. J. & Ellington, A. D. Real-time rolling circle amplification for protein detection. Anal. Chem. 79, 3320–3329 (2007).

94

Lizardi, P. M. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 19, 225–232 (1998).

95

Ciftci, S. et al. Digital rolling circle amplification-based detection of ebola and other tropical viruses. J. Mol. Diagn. 22, 272–283 (2020).

96

Zhao, Y. et al. Nucleic Acids Analysis. Sci. China Chem. 1–33, (2020).

97

Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).

98

Elbaz, J. et al. DNA computing circuits using libraries of DNAzyme subunits. Nat. Nanotechnol. 5, 417–422 (2010).

99

Chatterjee, G., Dalchau, N., Muscat, R. A., Phillips, A. & Seelig, G. A spatially localized architecture for fast and modular DNA computing. Nat. Nanotechnol. 12, 920–927 (2017).

100

Ketterer, P. et al. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex. Nat. Commun. 9, 902 (2018).

101

Shen, Q., Grome, M. W., Yang, Y. & Lin, C. Engineering lipid membranes with programmable DNA nanostructures. Adv. Biosyst. 4, 1900215 (2020).

102

Bian, X., Zhang, Z., Xiong, Q., De Camilli, P. & Lin, C. A programmable DNA-origami platform for studying lipid transfer between bilayers. Nat. Chem. Biol. 15, 830–837 (2019).

103

Zhou, K., Zhou, Y., Pan, V., Wang, Q. & Ke, Y. Programming dynamic assembly of viral proteins with DNA Origami. J. Am. Chem. Soc. 142, 5929–5932 (2020).

104

Bazak, R., Houri, M., Achy, S. E., Hussein, W. & Refaat, T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol. Clin. Oncol. 2, 904–908 (2014).

105

Ma, W. et al. Biomimetic Nanoerythrosome-Coated Aptamer-DNA Tetrahedron/Maytansine Conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer. Adv Mater. e2109609, (2022).

106

Zhang, T., Tian, T. & Lin, Y. Functionalizing framework nucleic acid-based nanostructures for biomedical application. Adv Mater. e2107820, (2021).

107

Li, J. et al. Repair of infected bone defect with clindamycin-tetrahedral DNA nanostructure complex-loaded 3D bioprinted hybrid scaffold. Chem. Eng. J. 435, 134855 (2022).

108

Erben, C. M., Goodman, R. P. & Turberfield, A. J. Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem. Int. Ed. Engl. 45, 7414–7417 (2006).

109

Li, S. et al. Bioswitchable delivery of microRNA by framework nucleic acids: Application to bone regeneration. Small (Weinh. der Bergstr., Ger.) 17, e2104359 (2021).

110

Kim, K. R. et al. Shaping rolling circle amplification products into DNA nanoparticles by incorporation of modified nucleotides and their application to in vitro and in vivo delivery of a photosensitizer. Molecules 23, 1833 (2018).

111

Miao, D., Yu, Y., Chen, Y., Liu, Y. & Su, G. Facile construction of i-Motif DNA-conjugated gold nanostars as near-infrared and pH dual-responsive targeted drug delivery systems for combined cancer therapy. Mol. Pharm. 17, 1127–1138 (2020).

112

Liu, J. et al. A self-assembled DNA nanostructure for targeted and pH-triggered drug delivery to combat doxorubicin resistance. J. Mater. Chem. B 4, 3854–3858 (2016).

113

Tian, T. et al. A framework nucleic acid based robotic nanobee for active targeting therapy. Adv. Funct. Mater. 2007342 (2020).

114

Xiao, D. et al. Tetrahedral framework nucleic acids loaded with Aptamer AS1411 for siRNA delivery and gene silencing in malignant melanoma. ACS Appl. Mater. Interfaces 13, 6109–6118 (2021).

115

Li, S. et al. Bioswitchable delivery of microRNA by framework nucleic acids: application to bone regeneration. Small. n/a, e2104359, (2021).

116

Gačanin, J., Synatschke, C. V. & Weil, T. Biomedical applications of DNA‐based hydrogels. Adv. Funct. Mater. 30, 1906253 (2020).

117

Abolhasan, R., Mehdizadeh, A., Rashidi, M. R., Aghebati-Maleki, L. & Yousefi, M. Application of hairpin DNA-based biosensors with various signal amplification strategies in clinical diagnosis. Biosens. Bioelectron. 129, 164–174 (2019).

118

Liu, M. et al. In vitro selection of a DNA aptamer targeting degraded protein fragments for biosensing. Angew. Chem. Int. Ed. Engl. 59, 7706–7710 (2020).

119

Pei, H. et al. A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv. Mater. 22, 4754–4758 (2010).

120

Wiraja, C. et al. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat. Commun. 10, 1147 (2019).

121

Bi, S., Yue, S. & Zhang, S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev. 46, 4281–4298 (2017).

122

Tang, X. et al. Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 6, 1632–1636 (2006).

123

Xu, H. et al. Magnetically assisted DNA assays: High selectivity using conjugated polymers for amplified fluorescent transduction. Nucleic Acids Res 33, e83 (2005).

124

Jung, C., Allen, P. B. & Ellington, A. D. A Simple, Cleated DNA Walker That Hangs on to Surfaces. ACS Nano 11, 8047–8054 (2017).

125

Zhang, B. et al. Facilitating in situ tumor imaging with a tetrahedral DNA framework‐enhanced hybridization chain reaction probe. Adv. Funct. Mater. 2109728 (2022).

126

Jin, H. et al. Stemmed DNA nanostructure for the selective delivery of therapeutics. Nanoscale 10, 7511–7518 (2018).

127

Yang, J. et al. Self-assembled double-bundle DNA tetrahedron for efficient antisense delivery. ACS Appl. Mater. Interfaces 10, 23693–23699 (2018).

128

Xue, H. et al. DNA tetrahedron-based nanogels for siRNA delivery and gene silencing. Chem. Commun. 55, 4222–4225 (2019).

129

Zhou, M. et al. A DNA nanostructure-based neuroprotectant against neuronal apoptosis via inhibiting toll-like Receptor 2 signaling pathway in acute ischemic stroke. ACS Nano. https://doi.org/10.1021/acsnano.1c09626 (2021).

130

Finke, A. et al. Functionalized DNA hydrogels produced by polymerase-catalyzed incorporation of non-natural nucleotides as a surface coating for cell culture applications. Adv. Healthc. Mater. 8, e1900080 (2019).

131

Kim, F. et al. Functionalized DNA nanostructures as scaffolds for guided mineralization. Chem. Sci. 10, 10537–10542 (2019).

132

Song, Y. et al. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem. 92, 9895–9900 (2020).

133

Chen, Z., Wu, Q., Chen, J., Ni, X. & Dai, J. A DNA aptamer based method for detection of SARS-CoV-2 nucleocapsid protein. Virol. Sin. 35, 351–354 (2020).

134

Wu, T. H. et al. Hybridization chain reactions targeting the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Int. J. Mol. Sci. 21, 3216 (2020).

135

Wang, L. et al. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 6, 276–285 (2022).

136

Li, F., Li, Q., Zuo, X. & Fan, C. DNA framework-engineered electrochemical biosensors. Sci. China Life Sci. 63, 1130–1141 (2020).

137

Saka, S. K. et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37, 1080–1090 (2019).

138

Wang, Z. et al. A tubular DNA nanodevice as a siRNA/Chemo-drug co-delivery vehicle for combined cancer therapy. Angew. Chem. Int. Ed. Engl. 60, 2594–2598 (2021).

139

Qin, X. et al. Tetrahedral framework nucleic acids-based delivery of microRNA-155 inhibits choroidal neovascularization by regulating the polarization of macrophages. Bioact. Mater. 14, 134–144 (2021).

140

Jiang, D. et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2, 865–877 (2018).

141

Chen, Q. et al. Sequential therapy of acute kidney injury with a DNA nanodevice. Nano Lett. 21, 4394–4402 (2021).

142

Zhang, Q. et al. Tetrahedral framework nucleic acids act as antioxidants in acute kidney injury treatment. Chem. Eng. J. 413, 127426 (2021).

143

Kim, Y. & Yin, P. Enhancing biocompatible stability of DNA nanostructures using dendritic oligonucleotides and brick motifs. Angew. Chem. 132, 710–713 (2020).

144

Hahn, J., Wickham, S. F., Shih, W. M. & Perrault, S. D. Addressing the instability of DNA nanostructures in tissue culture. ACS Nano 8, 8765–8775 (2014).

145

Ji, X., Zhou, Y., Li, Q., Song, H. & Fan, C. Protein-mimicking nanoparticles for a cellular regulation of homeostasis. ACS Appl. Mater. Interfaces 13, 31331–31336 (2021).

146

Samavedi, S., Whittington, A. R. & Goldstein, A. S. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta biomaterialia 9, 8037–8045 (2013).

147

Boshtam, M., Asgary, S., Kouhpayeh, S., Shariati, L. & Khanahmad, H. Aptamers against Pro- and anti-inflammatory cytokines: a Review. Inflammation 40, 340–349 (2017).

148

Qin, W. et al. Bioinspired DNA nanointerface with anisotropic aptamers for accurate capture of circulating tumor cells. Adv. Sci. (Weinh.) 7, 2000647 (2020).

149

Whitfield, C. J. et al. Functional DNA–polymer conjugates. Chem. Rev. 121, 11030–11084 (2021).

150

Liu, X. et al. Complex silica composite nanomaterials templated with DNA origami. Nature 559, 593–598 (2018).

151

Zhang, Z.-L., Wu, Y.-Y., Xi, K., Sang, J.-P. & Tan, Z.-J. Divalent ion-mediated DNA-DNA interactions: a comparative study of triplex and duplex. Biophysical J. 113, 517–528 (2017).

152

Yao, C. et al. Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. J. Am. Chem. Soc. 142, 3422–3429 (2020).

Bone Research
Article number: 40
Cite this article:
Tian T, Li Y, Lin Y. Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Research, 2022, 10: 40. https://doi.org/10.1038/s41413-022-00212-1

291

Views

3

Downloads

88

Crossref

83

Web of Science

87

Scopus

0

CSCD

Altmetrics

Received: 31 January 2022
Revised: 10 March 2022
Accepted: 20 March 2022
Published: 23 May 2022
© The Author(s) 2022

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return