AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Mechanisms of bone pain: Progress in research from bench to bedside

Gehua Zhen1Yuhan Fu1Chi Zhang2Neil C. Ford2Xiaojun Wu3Qichao Wu2Dong Yan4Xueming Chen5Xu Cao1( )Yun Guan2,6 ( )
Department of Orthopedics, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
Division of Pathology, Sibley Memorial Hospital Washington, Washington, DC 20016, USA
Department of Oncology, Beijing Luhe Hospital, Capital Medical University, Beijing 100149, China
Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 100149, China
Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
Show Author Information

Abstract

The field of research on pain originating from various bone diseases is expanding rapidly, with new mechanisms and targets asserting both peripheral and central sites of action. The scope of research is broadening from bone biology to neuroscience, neuroendocrinology, and immunology. In particular, the roles of primary sensory neurons and non-neuronal cells in the peripheral tissues as important targets for bone pain treatment are under extensive investigation in both pre-clinical and clinical settings. An understanding of the peripheral mechanisms underlying pain conditions associated with various bone diseases will aid in the appropriate application and development of optimal strategies for not only managing bone pain symptoms but also improving bone repairing and remodeling, which potentially cures the underlying etiology for long-term functional recovery. In this review, we focus on advances in important preclinical studies of significant bone pain conditions in the past 5 years that indicated new peripheral neuronal and non-neuronal mechanisms, novel targets for potential clinical interventions, and future directions of research.

References

1

Oostinga, D., Steverink, J. G., van Wijck, A. J. M. & Verlaan, J. J. An understanding of bone pain: A narrative review. Bone 134, 115272 (2020).

2

Mantyh, P. W. Mechanisms that drive bone pain across the lifespan. Br. J. Clin. Pharm. 85, 1103–1113 (2019).

3

Havelin, J. & King, T. Mechanisms underlying bone and joint pain. Curr. Osteoporos. Rep. 16, 763–771 (2018).

4

Rome, S., Noonan, K., Bertolotti, P., Tariman, J. D. & Miceli, T. Bone health, pain, and mobility: Evidence-based recommendations for patients with multiple myeloma. Clin. J. Oncol. Nurs. 21, 47–59 (2017).

5

Frost, C., Hansen, R. R. & Heegaard, A. M. Bone pain: Current and future treatments. Br. J. Clin. Pharm. 28, 31–37 (2016).

6

Stein, C. New concepts in opioid analgesia. Expert Opin. Investig. Drugs 27, 765–775 (2018).

7

Bennett, M., Paice, J. A. & Wallace, M. Pain and opioids in cancer care: Benefits, risks, and alternatives. Am. Soc. Clin. Oncol. Educ. Book 37, 705–713 (2017).

8

Colloca, L. et al. Neuropathic pain. Nat. Rev. Dis. Prim. 3, 17002 (2017).

9

Schug, S. A. & Chandrasena, C. Pain management of the cancer patient. Expert Opin. Pharmacother. 16, 5–15 (2015).

10

Read, S. J. & Dray, A. Osteoarthritic pain: A review of current, theoretical and emerging therapeutics. Expert Opin. Investig. Drugs 17, 619–640 (2008).

11

Kanis, J. A. Bone and cancer: Pathophysiology and treatment of metastases. Bone 17, 101s–105s (1995).

12

Zhu, J. et al. Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis. eLife 9, e57656 (2020).

13

Zhu, S. et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest. 129, 1076–1093 (2019).

14

Salaffi, F., Ciapetti, A. & Carotti, M. The sources of pain in osteoarthritis: A pathophysiological review. Reumatismo 66, 57–71 (2014).

15

Parfitt, A. M. Targeted and nontargeted bone remodeling: Relationship to basic multicellular unit origination and progression. Bone 30, 5–7 (2002).

16

Tang, Y. et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 15, 757–765 (2009).

17

Crane, J. L. & Cao, X. Function of matrix IGF-1 in coupling bone resorption and formation. J. Mol. Med (Berl.) 92, 107–115 (2014).

18

Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

19

Suda, T. et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345–357 (1999).

20

Simonet, W. S. et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

21

Ikebuchi, Y. et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature 561, 195–200 (2018).

22

Chen, H. et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat. Commun. 10, 181 (2019).

23

Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000).

24

Takeda, S. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305–317 (2002).

25

Elefteriou, F. Impact of the autonomic nervous system on the skeleton. Physiol. Rev. 98, 1083–1112 (2018).

26

Ma, Y. et al. beta2-Adrenergic receptor signaling in osteoblasts contributes to the catabolic effect of glucocorticoids on bone. Endocrinology 152, 1412–1422 (2011).

27

Kondo, H. et al. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J. Biol. Chem. 280, 30192–30200 (2005).

28

Bajayo, A. et al. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc. Natl. Acad. Sci. USA 109, 15455–15460 (2012).

29

Shi, Y. et al. Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab. 11, 231–238 (2010).

30

Fukuda, T. et al. Sema3A regulates bone-mass accrual through sensory innervations. Nature 497, 490–493 (2013).

31

Hayashi, M. et al. Osteoprotection by semaphorin 3A. Nature 485, 69–74 (2012).

32

Nagae, M. et al. Osteoclasts play a part in pain due to the inflammation adjacent to bone. Bone 39, 1107–1115 (2006).

33

Kanaya, K. et al. Acid-sensing ion channel 3 or P2X2/3 is involved in the pain-like behavior under a high bone turnover state in ovariectomized mice. J. Orthop. Res. 34, 566–573 (2016).

34

Epsley, S. et al. The Effect of inflammation on Bone. Front. Physiol. 11, 511799 (2020).

35

Weitzmann, M. N. & Pacifici, R. Estrogen deficiency and bone loss: an inflammatory tale. J. Clin. Invest. 116, 1186–1194 (2006).

36

Yin, J. J., Pollock, C. B. & Kelly, K. Mechanisms of cancer metastasis to the bone. Cell Res. 15, 57–62 (2005).

37

Xie, H. et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med. 20, 1270–1278 (2014).

38

Su, W. et al. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 5, e135446 (2020).

39

Weddell, G. Axonal regeneration in cutaneous nerve plexuses. J. Anat. 77, 49–62 43 (1942).

40

Hobson, M. I. Increased vascularisation enhances axonal regeneration within an acellular nerve conduit. Ann. R. Coll. Surg. Engl. 84, 47–53 (2002).

41

Brain, S. D. & Williams, T. J. Substance P regulates the vasodilator activity of calcitonin gene-related peptide. Nature 335, 73–75 (1988).

42

Leitao, L. et al. Osteoblasts are inherently programmed to repel sensory innervation. Bone Res. 8, 20 (2020).

43

Jung, K. et al. Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int. J. Cancer 111, 783–791 (2004).

44

Kwan Tat, S. et al. The differential expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kappaB ligand (RANKL) in human osteoarthritic subchondral bone osteoblasts is an indicator of the metabolic state of these disease cells. Clin. Exp. Rheumatol. 26, 295–304 (2008).

45

Stapledon, C. J. M. et al. Human osteocyte expression of Nerve Growth Factor: The effect of Pentosan Polysulphate Sodium (PPS) and implications for pain associated with knee osteoarthritis. PLoS One 14, e0222602 (2019).

46

Han, L. et al. A subpopulation of nociceptors specifically linked to itch. Nat. Neurosci. 16, 174–182 (2013).

47

Devor, M. Unexplained peculiarities of the dorsal root ganglion. Pain 6, S27–S35 (1999).

48

Wood, J. N. et al. Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J. Neurosci. 8, 3208–3220 (1988).

49

Renthal, W. et al. Transcriptional reprogramming of distinct peripheral sensory neuron subtypes after axonal injury. Neuron 108, 128–144.e9 (2020).

50

Hu, G. et al. Single-cell RNA-seq reveals distinct injury responses in different types of DRG sensory neurons. eNeuro 6, 31851 (2016).

51

Rau, K. K. et al. Mrgprd enhances excitability in specific populations of cutaneous murine polymodal nociceptors. J. Neurosci. 29, 8612–8619 (2009).

52

Dussor, G., Zylka, M. J., Anderson, D. J. & McCleskey, E. W. Cutaneous sensory neurons expressing the Mrgprd receptor sense extracellular ATP and are putative nociceptors. J. Neurophysiol. 99, 1581–1589 (2008).

53

Zylka, M. J. Nonpeptidergic circuits feel your pain. Neuron 47, 771–772 (2005).

54

Cavanaugh, D. J. et al. Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc. Natl. Acad. Sci. USA. 106, 9075–9080 (2009).

55

Wang, H. & Zylka, M. J. Mrgprd-expressing polymodal nociceptive neurons innervate most known classes of substantia gelatinosa neurons. J. Neurosci. 29, 13202–13209 (2009).

56

Scholz, J. & Woolf, C. J. Can we conquer pain? Nat. Neurosci. 5, 1062–1067 (2002).

57

Braz, J. M., Nassar, M. A., Wood, J. N. & Basbaum, A. I. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47, 787–793 (2005).

58

Block, B. M., Hurley, R. W. & Raja, S. N. Mechanism-based therapies for pain. Drug N. Perspect. 17, 172–186 (2004).

59

Melzack, R., Coderre, T. J., Katz, J. & Vaccarino, A. L. Central neuroplasticity and pathological pain. Ann. N. Y. Acad. Sci. 933, 157–174 (2001).

60

Fields, H. L. Pain modulation: Expectation, opioid analgesia and virtual pain. Prog. Brain Res. 122, 245–253 (2000).

61

Jimenez-Andrade, J. M. et al. A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: Therapeutic opportunity for treating skeletal pain. Bone 46, 306–313 (2010).

62

Guedon, J. M. et al. Dissociation between the relief of skeletal pain behaviors and skin hypersensitivity in a model of bone cancer pain. Pain 157, 1239–1247 (2016).

63

Brazill, J. M., Beeve, A. T., Craft, C. S., Ivanusic, J. J. & Scheller, E. L. Nerves in bone: Evolving concepts in pain and anabolism. J. Bone Min. Res. 34, 1393–1406 (2019).

64

Mantyh, P. Bone cancer pain: Causes, consequences, and therapeutic opportunities. Pain 154(Suppl 1), S54–S62 (2013).

65

Zylka, M. J., Rice, F. L. & Anderson, D. J. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45, 17–25 (2005).

66

Mantyh, P. W. The neurobiology of skeletal pain. Eur. J. Neurosci. 39, 508–519 (2014).

67

Castaneda-Corral, G. et al. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 178, 196–207 (2011).

68

Aso, K. et al. Nociceptive phenotype of dorsal root ganglia neurons innervating the subchondral bone in rat knee joints. Eur. J. Pain. 18, 174–181 (2014).

69

Eitner, A., Hofmann, G. O. & Schaible, H. G. Mechanisms of osteoarthritic pain. Studies in humans and experimental models. Front. Mol. Neurosci. 10, 349 (2017).

70

Nencini, S. & Ivanusic, J. J. The physiology of bone pain. How much do we really know? Front. Physiol. 7, 157 (2016).

71

Nencini, S. et al. Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain. Mol. Pain. 13, 1744806917697011 (2017).

72

Ivanusic, J. J. Molecular mechanisms that contribute to bone marrow pain. Front. Neurol. 8, 458 (2017).

73

Lane, N. E. et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N. Engl. J. Med. 363, 1521–1531 (2010).

74

Walicke, P. A. et al. First-in-human randomized clinical trials of the safety and efficacy of tanezumab for treatment of chronic knee osteoarthritis pain or acute bunionectomy pain. Pain. Rep. 3, e653 (2018).

75

Kaan, T. K. et al. Systemic blockade of P2X3 and P2X2/3 receptors attenuates bone cancer pain behaviour in rats. Brain 133, 2549–2564 (2010).

76

Mach, D. B. et al. Origins of skeletal pain: Sensory and sympathetic innervation of the mouse femur. Neuroscience 113, 155–166 (2002).

77

Mitchell, S. A. T., Majuta, L. A. & Mantyh, P. W. New insights in understanding and treating bone fracture pain. Curr. Osteoporos. Rep. 16, 325–332 (2018).

78

Haegerstam, G. A. Pathophysiology of bone pain: A review. Acta Orthop. Scand. 72, 308–317 (2001).

79

Kidd, B. L. Osteoarthritis and joint pain. Pain 123, 6–9 (2006).

80

Felson, D. T. The sources of pain in knee osteoarthritis. Curr. Opin. Rheumatol. 17, 624–628 (2005).

81

Costa-Reis, P. & Sullivan, K. E. Chronic recurrent multifocal osteomyelitis. J. Clin. Immunol. 33, 1043–1056 (2013).

82

Kumar, L. D., Karthik, R., Gayathri, N. & Sivasudha, T. Advancement in contemporary diagnostic and therapeutic approaches for rheumatoid arthritis. Biomed. Pharmacother. 79, 52–61 (2016).

83

Seror, P. Neuralgic amyotrophy. An update. Jt. Bone Spine 84, 153–158 (2017).

84

Li, S. et al. Genotypic and phenotypic analysis in chinese cohort with autosomal recessive osteogenesis imperfecta. Front. Genet. 11, 984 (2020).

85

Zhu, Y. F. et al. Rat model of cancer-induced bone pain: Changes in nonnociceptive sensory neurons in vivo. Pain. Rep. 2, e603 (2017).

86

Milgrom, D. P., Lad, N. L., Koniaris, L. G. & Zimmers, T. A. Bone pain and muscle weakness in cancer patients. Curr. Osteoporos. Rep. 15, 76–87 (2017).

87

Slosky, L. M., Largent-Milnes, T. M. & Vanderah, T. W. Use of animal models in understanding cancer-induced bone pain. Cancer Growth Metastasis 8, 47–62 (2015).

88

Lozano-Ondoua, A. N., Symons-Liguori, A. M. & Vanderah, T. W. Cancer-induced bone pain: Mechanisms and models. Neurosci. Lett. 557(Pt A), 52–59 (2013).

89

Zajączkowska, R., Kocot-Kępska, M., Leppert, W. & Wordliczek, J. Bone pain in cancer patients: Mechanisms and current treatment. Int. J. Mol. Sci. 20, 6047 (2019).

90

Sun, J. et al. The endocannabinoid system: Novel targets for treating cancer induced bone pain. Biomed. Pharmacother. 120, 109504 (2019).

91

Hiraga, T. Bone metastasis: Interaction between cancer cells and bone microenvironment. J. Oral. Biosci. 61, 95–98 (2019).

92

Feller, L. et al. Pain: Persistent postsurgery and bone cancer-related pain. J. Int. Med. Res. 47, 528–543 (2019).

93

Figura, N., Smith, J. & Yu, H. M. Mechanisms of, and adjuvants for, bone pain. Hematol. Oncol. Clin. North Am. 32, 447–458 (2018).

94

Al Kaissi, A. et al. Musculo-skeletal abnormalities in patients with Marfan syndrome. Clin. Med Insights Arthritis Musculoskelet. Disord. 6, 1–9 (2013).

95

Bondestam, J. et al. Bone biopsy and densitometry findings in a child with Camurati-Engelmann disease. Clin. Rheumatol. 26, 1773–1777 (2007).

96

Briot, K. & Roux, C. Glucocorticoid-induced osteoporosis. RMD Open 1, e000014 (2015).

97

Kim, Y. M. et al. Clinical characteristics and treatment outcomes in Camurati-Engelmann disease: A case series. Med. (Baltim.) 97, e0309 (2018).

98

Meyers, C. et al. Heterotopic ossification: A comprehensive review. JBMR 3, e10172 (2019).

99

Kaplan, F. S., Al Mukaddam, M. & Pignolo, R. J. Acute unilateral hip pain in fibrodysplasia ossificans progressiva (FOP). Bone 109, 115–119 (2018).

100

Kitterman, J. A. et al. Neurological symptoms in individuals with fibrodysplasia ossificans progressiva. J. Neurol. 259, 2636–2643 (2012).

101

He, J. Y., Jiang, L. S. & Dai, L. Y. The roles of the sympathetic nervous system in osteoporotic diseases: A review of experimental and clinical studies. Ageing Res. Rev. 10, 253–263 (2011).

102

Schaible, H. G. & Schmidt, R. F. Activation of groups Ⅲ and Ⅳ sensory units in medial articular nerve by local mechanical stimulation of knee joint. J. Neurophysiol. 49, 35–44 (1983).

103

Coggeshall, R. E., Hong, K. A., Langford, L. A., Schaible, H. G. & Schmidt, R. F. Discharge characteristics of fine medial articular afferents at rest and during passive movements of inflamed knee joints. Brain Res. 272, 185–188 (1983).

104

Grigg, P., Schaible, H. G. & Schmidt, R. F. Mechanical sensitivity of group Ⅲ and Ⅳ afferents from posterior articular nerve in normal and inflamed cat knee. J. Neurophysiol. 55, 635–643 (1986).

105

Schaible, H. G. & Schmidt, R. F. Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J. Neurophysiol. 54, 1109–1122 (1985).

106

Kc, R. et al. PKC delta null mutations in a mouse model of osteoarthritis alter osteoarthritic pain independently of joint pathology by augmenting NGF/TrkA-induced axonal outgrowth. Ann. Rheum. Dis. 75, 2133–2141 (2016).

107

Ikeuchi, M., Wang, Q., Izumi, M. & Tani, T. Nociceptive sensory innervation of the posterior cruciate ligament in osteoarthritic knees. Arch. Orthop. Trauma Surg. 132, 891–895 (2012).

108

Suri, S. et al. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann. Rheum. Dis. 66, 1423–1428 (2007).

109

Mapp, P. I. & Walsh, D. A. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat. Rev. Rheumatol. 8, 390–398 (2012).

110

Imai, S., Tokunaga, Y., Maeda, T., Kikkawa, M. & Hukuda, S. Calcitonin gene-related peptide, substance P, and tyrosine hydroxylase-immunoreactive innervation of rat bone marrows: An immunohistochemical and ultrastructural investigation on possible efferent and afferent mechanisms. J. Orthop. Res. 15, 133–140 (1997).

111

Malfait, A. M. & Schnitzer, T. J. Towards a mechanism-based approach to pain management in osteoarthritis. Nat. Rev. Rheumatol. 9, 654–664 (2013).

112

Zhen, G. H. & Cao, X. Targeting TGF beta signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol. Sci. 35, 227–236 (2014).

113

Yusuf, E., Kortekaas, M. C., Watt, I., Huizinga, T. W. J. & Kloppenburg, M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann. Rheum. Dis. 70, 60–67 (2011).

114

Kwoh, C. K. OSTEOARTHRITIS clinical relevance of bone marrow lesions in OA. Nat. Rev. Rheumatol. 9, 7–8 (2013).

115

Laslett, L. L. et al. Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: A randomised controlled trial. Ann. Rheum. Dis. 71, 1322–1328 (2012).

116

Hamilton, J. L. et al. Targeting VEGF and its receptors for the treatment of osteoarthritis and associated pain. J. Bone Min. Res. 31, 911–924 (2016).

117

Zheng, S., Hunter, D. J., Xu, J. & Ding, C. Monoclonal antibodies for the treatment of osteoarthritis. Expert Opin. Biol. Ther. 16, 1529–1540 (2016).

118

Okun, A. et al. Afferent drive elicits ongoing pain in a model of advanced osteoarthritis. Pain 153, 924–933 (2012).

119

Okun, A. et al. Transient inflammation-induced ongoing pain is driven by TRPV1 sensitive afferents. Mol. Pain. 7, 4 (2011).

120

Tiwari, V. et al. Activation of peripheral mu-opioid receptors by Dermorphin [D-Arg2, Lys4] (1-4) amide leads tomodality-preferred inhibition of neuropathic pain. Anesthesiology 124, 706–720 (2016).

121

Tiwari, V. et al. Peripherally Acting mu-opioid receptor agonists attenuate ongoing pain-associated behavior and spontaneous neuronal activity after nerve injury in rats. Anesthesiology 128, 1220–1236 (2018).

122

Frey, E., Karney-Grobe, S., Krolak, T., Milbrandt, J. & DiAntonio, A. TRPV1 Agonist, Capsaicin, Induces Axon Outgrowth after Injury via Ca2+/PKA Signaling. eNeuro 5, ENEURO.0095-18.2018 (2018).

123

Weng, H. J. et al. Tmem100 is a regulator of TRPA1-TRPV1 complex and contributes to persistent pain. Neuron 85, 833–846 (2015).

124

Shinoda, M. et al. Involvement of TRPV1 in nociceptive behavior in a rat model of cancer pain. J. Pain. 9, 687–699 (2008).

125

Ni, S. et al. Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nat. Commun. 10, 5643 (2019).

126

Hu, X. M. et al. Vascular endothelial growth factor a signaling promotes spinal central sensitization and pain-related behaviors in female rats with bone cancer. Anesthesiology 131, 1125–1147 (2019).

127

Zhang, Z. et al. Microglial annexin A3 downregulation alleviates bone cancer-induced pain through inhibiting the Hif-1alpha/vascular endothelial growth factor signaling pathway. Pain 161, 2750–2762 (2020).

128

Nees, T. A. et al. Synovial cytokines significantly correlate with osteoarthritis-related knee pain and disability: Inflammatorymediators of potential clinical relevance. J. Clin. Med. 8, 1343 (2019).

129

Lacout, A., Carlier, R. Y., El Hajjam, M. & Marcy, P. Y. VEGF inhibition as possible therapy in spondyloarthritis patients: Targeting bone remodelling. Med. Hypotheses 101, 52–54 (2017).

130

Takano, S. et al. Vascular endothelial growth factor is regulated by the canonical and noncanonical transforming growth factor-beta pathway in synovial fibroblasts derived from osteoarthritis patients. Biomed. Res. Int. 2019, 6959056 (2019).

131

Das, V. et al. Blockade of Vascular Endothelial Growth Factor Receptor-1 (Flt-1), reveals a novel analgesic for osteoarthritis-induced joint pain. Gene Rep. 11, 94–100 (2018).

132

Esen, F., Alhan, O., Kuru, P. & Sahin, O. Safety assessment and power analyses in published anti-vascular endothelial growth factor randomized controlled trials. Am. J. Ophthalmol. 169, 68–72 (2016).

133

Castellanos, R. & Tighe, S. Injectable amniotic membrane/umbilical cord particulate for knee osteoarthritis: A prospective, single-center pilot study. Pain. Med. 20, 2283–2291 (2019).

134

Atlas, S. J. & Deyo, R. A. Evaluating and managing acute low back pain in the primary care setting. J. Gen. Intern Med. 16, 120–131 (2001).

135

Bogduk, N. Evidence-informed management of chronic low back pain with facet injections and radiofrequency neurotomy. Spine J. 8, 56–64 (2008).

136

Kalichman, L. & Hunter, D. J. Lumbar facet joint osteoarthritis: A review. Semin Arthritis Rheum. 37, 69–80 (2007).

137

Park, W. M., Kim, K. & Kim, Y. H. Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput. Biol. Med. 43, 1234–1240 (2013).

138

Kalichman, L. et al. Facet joint osteoarthritis and low back pain in the community-based population. Spine (Philos. Pa 1976) 33, 2560–2565 (2008).

139

Hicks, G. E., Morone, N. & Weiner, D. K. Degenerative lumbar disc and facet disease in older adults: prevalence and clinical correlates. Spine (Philos. Pa 1976) 34, 1301–1306 (2009).

140

Hu, S. J. & Xing, J. L. An experimental model for chronic compression of dorsal root ganglion produced by intervertebral foramen stenosis in the rat. Pain 77, 15–23 (1998).

141

Pinho-Ribeiro, F. A., Verri, W. A. Jr. & Chiu, I. M. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol. 38, 5–19 (2017).

142

Kobayashi, S., Yoshizawa, H. & Yamada, S. Pathology of lumbar nerve root compression. Part 2: morphological and immunohistochemical changes of dorsal root ganglion. J. Orthop. Res. 22, 180–188 (2004).

143

Zheng, L. et al. Ciliary parathyroid hormone signaling activates transforming growth factor-beta to maintain intervertebral disc homeostasis during aging. Bone Res. 6, 21 (2018).

144

DiZerega, G. S., Traylor, M. M., Alphonso, L. S. & Falcone, S. J. Use of temporary implantable biomaterials to reduce leg pain and back pain in patients with sciatica and lumbar disc herniation. Materials 3, 3331–3368 (2010).

145

Bian, Q. et al. Excessive activation of TGFbeta by spinal instability causes vertebral endplate sclerosis. Sci. Rep. 6, 27093 (2016).

146

Buck, D. Amniotic umbilical cord particulate for discogenic pain. J. Am. Osteopath Assoc. 119, 814–819 (2019).

147

Bennett, D. S. Cryopreserved amniotic membrane and umbilical cord particulate for managing pain caused by facet joint syndrome: A case series. Med. (Baltim.) 98, e14745 (2019).

148

Burckhardt, C. S. The use of the McGill Pain Questionnaire in assessing arthritis pain. Pain 19, 305–314 (1984).

149
Shubayev, V. I., Kato, K. & Myers, R. R.. in Translational Pain Research: From Mouse to Man Frontiers in Neuroscience (eds L. Kruger & A. R. Light) (2010).
150

Toth, K. et al. Synovial fluid beta-endorphin level in avascular necrosis, rheumatoid arthritis, and osteoarthritis of the femoral head and knee. A controlled pilot study. Clin. Rheumatol. 30, 537–540 (2011).

151

Denko, C. W. & Malemud, C. J. Role of the growth hormone/insulin-like growth factor-1 paracrine axis in rheumatic diseases. Semin. Arthritis Rheum. 35, 24–34 (2005).

152

Wright, H. L., Bucknall, R. C., Moots, R. J. & Edwards, S. W. Analysis of SF and plasma cytokines provides insights into the mechanisms of inflammatory arthritis and may predict response to therapy. Rheumatol. (Oxf.) 51, 451–459 (2012).

153
Xu, Z. Z. et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat. Med. 16, 592–597 (2010). 591p following 597.
154

Giera, M. et al. Lipid and lipid mediator profiling of human synovial fluid in rheumatoid arthritis patients by means of LC-MS/MS. Biochim. Biophys. Acta. 1821, 1415–1424 (2012).

155

Zhen, G. et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 19, 704–712 (2013).

156

Edwards, R. R. et al. Enhanced reactivity to pain in patients with rheumatoid arthritis. Arthritis Res. Ther. 11, R61 (2009).

157

Pollard, L. C., Ibrahim, F., Choy, E. H. & Scott, D. L. Pain thresholds in rheumatoid arthritis: The effect of tender point counts and disease duration. J. Rheumatol. 39, 28–31 (2012).

158

Hummel, T., Schiessl, C., Wendler, J. & Kobal, G. Peripheral and central nervous changes in patients with rheumatoid arthritis in response to repetitive painful stimulation. Int. J. Psychophysiol. 37, 177–183 (2000).

159

Hess, A. et al. Blockade of TNF-alpha rapidly inhibits pain responses in the central nervous system. Proc. Natl. Acad. Sci. USA 108, 3731–3736 (2011).

160

Wang, C. R. et al. Rare occurrence of inflammatory bowel disease in a cohort of Han Chinese ankylosing spondylitis patients- a single institute study. Sci. Rep. 7, 13165 (2017).

161

Yu, T. et al. Chondrogenesis mediates progression of ankylosing spondylitis through heterotopic ossification. Bone Res. 9, 19 (2021).

162

Langford, L. A. & Schmidt, R. F. Afferent and efferent axons in the medial and posterior articular nerves of the cat. Anat. Rec. 206, 71–78 (1983).

163

Adams, S. B. et al. Inflammatory cytokines and matrix metalloproteinases in the synovial fluid after intra-articular ankle fracture. Foot Ankle Int. 36, 1264–1271 (2015).

164

Sabsovich, I. et al. TNF signaling contributes to the development of nociceptive sensitization in a tibia fracture model of complex regional pain syndrome type I. Pain 137, 507–519 (2008).

165

Syx, D., Tran, P. B., Miller, R. E. & Malfait, A. M. Peripheral mechanisms contributing to osteoarthritis pain. Curr. Rheumatol. Rep. 20, 9 (2018).

166

Binshtok, A. M. et al. Nociceptors are interleukin-1beta sensors. J. Neurosci. 28, 14062–14073 (2008).

167

Yeh, K. T. et al. Non-steroid anti-inflammatory drugs are better than acetaminophen on fever control at acute stage of fracture. PLoS One 10, e0137225 (2015).

168

Sun, S. et al. No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing. Bone 131, 115109 (2020).

169

Li, Z. et al. Fracture repair requires TrkA signaling by skeletal sensory nerves. J. Clin. Invest. 129, 5137–5150 (2019).

170

Zhang, R., Liang, Y. & Wei, S. The expressions of NGF and VEGF in the fracture tissues are closely associated with accelerated clavicle fracture healing in patients with traumatic brain injury. Ther. Clin. Risk Manag. 14, 2315–2322 (2018).

171

Davila, D., Antoniou, A. & Chaudhry, M. A. Evaluation of osseous metastasis in bone scintigraphy. Semin. Nucl. Med. 45, 3–15 (2015).

172

Li, B. T., Wong, M. H. & Pavlakis, N. Treatment and prevention of bone metastases from breast cancer: A comprehensive review of evidence for clinical practice. J. Clin. Med. 3, 1–24 (2014).

173

Aielli, F., Ponzetti, M. & Rucci, N. Bone metastasis pain, from the bench to the bedside. Int. J. Mol. Sci. 20, 280 (2019).

174

Majuta, L. A., Guedon, J. G., Mitchell, S. A. T., Kuskowski, M. A. & Mantyh, P. W. Mice with cancer-induced bone pain show a marked decline in day/night activity. Pain. Rep. 2, e614 (2017).

175

Coleman, R. E. et al. Bone metastases. Nat. Rev. Dis. Prim. 6, 83 (2020).

176

Sindhi, V. & Erdek, M. Interventional treatments for metastatic bone cancer pain. Pain. Manag. 9, 307–315 (2019).

177

Falk, S. & Dickenson, A. H. Pain and nociception: Mechanisms of cancer-induced bone pain. J. Clin. Oncol. 32, 1647–1654 (2014).

178

Middlemiss, T., Laird, B. J. & Fallon, M. T. Mechanisms of cancer-induced bone pain. Clin. Oncol. (R. Coll. Radio.) 23, 387–392 (2011).

179

Coleman, R. E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 12, 6243s–6249s (2006).

180

Chiang, J. S. New developments in cancer pain therapy. Acta. Anaesthesiol. Sin. 38, 31–36 (2000).

181

Edwards, K. A. et al. A kappa opioid receptor agonist blocks bone cancer pain without altering bone loss, tumor size, or cancer cell proliferation in a mouse model of cancer-induced bone pain. J. Pain. 19, 612–625 (2018).

182

Appel, C. K. et al. The Src family kinase inhibitor dasatinib delays pain-related behaviour and conserves bone in a rat model of cancer-induced bone pain. Sci. Rep. 7, 4792 (2017).

183

Currie, G. L. et al. Animal models of bone cancer pain: Systematic review and meta-analyses. Pain 154, 917–926 (2013).

184

Muralidharan, A. & Smith, M. T. Pathobiology and management of prostate cancer-induced bone pain: recent insights and future treatments. Inflammopharmacology 21, 339–363 (2013).

185

Park, S. H., Eber, M. R., Widner, D. B. & Shiozawa, Y. Role of the bone microenvironment in the development of painful complications of skeletal metastases. Cancers 10, 141 (2018).

186

Jimenez-Andrade, J. M. et al. Pathological sprouting of adult nociceptors in chronic prostate cancer-induced bone pain. J. Neurosci. 30, 14649–14656 (2010).

187

Davies, M. P., Fingas, S. & Chantry, A. Mechanisms and treatment of bone pain in multiple myeloma. Curr. Opin. Support Palliat. Care 13, 408–416 (2019).

188

Fernandes, R. S. et al. Development of imaging probes for bone cancer in animal models. A systematic review. Biomed. Pharmacother. 83, 1253–1264 (2016).

189

Raja, S. N., Ringkamp, M., Guan, Y., Campbell, J. N. & John, J. Bonica Award Lecture: Peripheral neuronal hyperexcitability: the “low-hanging” target for safe therapeutic strategies in neuropathic pain. Pain 161(Suppl 1), S14–S26 (2020).

190

Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

191

Latourte, A., Kloppenburg, M. & Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 16, 673–688 (2020).

192

Chang, D. S., Hsu, E., Hottinger, D. G. & Cohen, S. P. Anti-nerve growth factor in pain management: current evidence. J. Pain. Res. 9, 373–383 (2016).

193

Hochberg, M. C. Serious joint-related adverse events in randomized controlled trials of anti-nerve growth factor monoclonal antibodies. Osteoarthr. Cartil. 23(Suppl 1), S18–S21 (2015).

194

Ma, X. & Xu, S. TNF inhibitor therapy for rheumatoid arthritis. Biomed. Rep. 1, 177–184 (2013).

195

Kirwan, J. R., Bijlsma, J. W., Boers, M. & Shea, B. J. Effects of glucocorticoids on radiological progression in rheumatoid arthritis. Cochrane Database Syst. Rev. 2007, CD006356 (2007).

196

Lopez-Olivo, M. A. et al. Methotrexate for treating rheumatoid arthritis. Cochrane Database Syst. Rev. 2014, CD000957 (2014).

197

Vittecoq, O. et al. Relapse in rheumatoid arthritis patients undergoing dose reduction and withdrawal of biologics: are predictable factors more relevant than predictive parameters? An observational prospective real-life study. BMJ Open 9, e031467 (2019).

198

Guan, Y. et al. Peripherally acting mu-opioid receptor agonist attenuates neuropathic pain in rats after L5 spinal nerve injury. Pain 138, 318–329 (2008).

199

Stein, C. & Lang, L. J. Peripheral mechanisms of opioid analgesia. Curr. Opin. Pharm. 9, 3–8 (2009).

200

Mattia, C., Di Bussolo, E. & Coluzzi, F. Non-analgesic effects of opioids: The interaction of opioids with bone and joints. Curr. Pharm. Des. 18, 6005–6009 (2012).

201

Snyder, L. M. et al. Kappa opioid receptor distribution and function in primary afferents. Neuron 99, 1274–1288.e6 (2018).

202

Woodhams, S. G., Chapman, V., Finn, D. P., Hohmann, A. G. & Neugebauer, V. The cannabinoid system and pain. Neuropharmacology 124, 105–120 (2017).

203

Agarwal, N. et al. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat. Neurosci. 10, 870–879 (2007).

204

Sagar, D. R. et al. Inhibitory effects of CB1 and CB2 receptor agonists on responses of DRG neurons and dorsal horn neurons in neuropathic rats. Eur. J. Neurosci. 22, 371–379 (2005).

205

Zhang, H. et al. Peripherally restricted cannabinoid 1 receptor agonist as a novel analgesic in cancer-induced bone pain. Pain 159, 1814–1823 (2018).

206

Starowicz, K. & Finn, D. P. Cannabinoids and pain: Sites and mechanisms of action. Adv. Pharm. 80, 437–475 (2017).

207

Yu, X. H. et al. A peripherally restricted cannabinoid receptor agonist produces robust anti-nociceptive effects in rodent models of inflammatory and neuropathic pain. Pain 151, 337–344 (2010).

208

Kalliomaki, J. et al. Evaluation of the analgesic efficacy of AZD1940, a novel cannabinoid agonist, on post-operative pain after lower third molar surgical removal. Scand. J. Pain. 4, 17–22 (2013).

209

Hu, B. et al. A novel rat model of patellofemoral osteoarthritis due to patella baja, or low-lying patella. Nat. Commun. 25, 2702–2717 (2019).

210

Seino, D. et al. The role of ERK signaling and the P2X receptor on mechanical pain evoked by movement of inflamed knee joint. Pain 123, 193–203 (2006).

211

Percie du Sert, N. & Rice, A. S. Improving the translation of analgesic drugs to the clinic: animal models of neuropathic pain. Br. J. Pharm. 171, 2951–2963 (2014).

212

King, T. & Porreca, F. Preclinical assessment of pain: improving models in discovery research. Curr. Top. Behav. Neurosci. 20, 101–120 (2014).

213

Navratilova, E., Xie, J. Y., King, T. & Porreca, F. Evaluation of reward from pain relief. Ann. N. Y. Acad. Sci. 1282, 1–11 (2013).

214

King, T. et al. Unmasking the tonic-aversive state in neuropathic pain. Nat. Neurosci. 12, 1364–1366 (2009).

215

Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

Bone Research
Article number: 44
Cite this article:
Zhen G, Fu Y, Zhang C, et al. Mechanisms of bone pain: Progress in research from bench to bedside. Bone Research, 2022, 10: 44. https://doi.org/10.1038/s41413-022-00217-w

180

Views

3

Downloads

28

Crossref

22

Web of Science

24

Scopus

Altmetrics

Received: 12 April 2022
Revised: 29 April 2022
Accepted: 09 May 2022
Published: 06 June 2022
© The Author(s) 2022

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return