AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article | Open Access

Inhibition of fibroblast activation protein ameliorates cartilage matrix degradation and osteoarthritis progression

Aoyuan Fan1,Genbin Wu2,Jianfang Wang3Laiya Lu1Jingyi Wang1Hanjing Wei3Yuxi Sun4Yanhua Xu3,4Chunyang Mo3Xiaoying Zhang3Zhiying Pang1Zhangyi Pan1Yiming Wang1Liangyu Lu1Guojian Fu2Mengqiu Ma4Qiaoling Zhu3Dandan Cao3Jiachen Qin3Feng Yin1,5,6( )Rui Yue3,5 ( )
Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
Shanghai Clinical Research Center for Aging and Medicine, Shanghai 200040, China

These authors contributed equally: Aoyuan Fan, Genbin Wu

Show Author Information

Abstract

Fibroblast activation protein (Fap) is a serine protease that degrades denatured type Ⅰ collagen, α2-antiplasmin and FGF21. Fap is highly expressed in bone marrow stromal cells and functions as an osteogenic suppressor and can be inhibited by the bone growth factor Osteolectin (Oln). Fap is also expressed in synovial fibroblasts and positively correlated with the severity of rheumatoid arthritis (RA). However, whether Fap plays a critical role in osteoarthritis (OA) remains poorly understood. Here, we found that Fap is significantly elevated in osteoarthritic synovium, while the genetic deletion or pharmacological inhibition of Fap significantly ameliorated posttraumatic OA in mice. Mechanistically, we found that Fap degrades denatured type Ⅱ collagen (Col Ⅱ) and Mmp13-cleaved native Col Ⅱ. Intra-articular injection of rFap significantly accelerated Col Ⅱ degradation and OA progression. In contrast, Oln is expressed in the superficial layer of articular cartilage and is significantly downregulated in OA. Genetic deletion of Oln significantly exacerbated OA progression, which was partially rescued by Fap deletion or inhibition. Intra-articular injection of rOln significantly ameliorated OA progression. Taken together, these findings identify Fap as a critical pathogenic factor in OA that could be targeted by both synthetic and endogenous inhibitors to ameliorate articular cartilage degradation.

References

1

Safiri, S. et al. Global, regional and national burden of osteoarthritis 1990–2017: a systematic analysis of the global burden of disease study 2017. Ann. Rheum. Dis. 79, 819–828 (2020).

2

Bijlsma, J. W., Berenbaum, F. & Lafeber, F. P. Osteoarthritis: an update with relevance for clinical practice. Lancet (Lond., Engl.) 377, 2115–2126 (2011).

3

Turkiewicz, A. et al. Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032. Osteoarthr. Cartil. 22, 1826–1832 (2014).

4

Wei, Y. & Bai, L. Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis. Connect. Tissue Res. 57, 245–261 (2016).

5

van der Kraan, P. M. & van den Berg, W. B. Osteophytes: relevance and biology. Osteoarthr. Cartil. 15, 237–244 (2007).

6

Robinson, W. H. et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 580–592 (2016).

7

Hu, Y., Chen, X., Wang, S., Jing, Y. & Su, J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 9, 20 (2021).

8

Zhen, G. & Cao, X. Targeting TGFbeta signaling in subchondral bone and articular cartilage homeostasis. Trends Pharm. Sci. 35, 227–236 (2014).

9

Pap, T. & Korb-Pap, A. Cartilage damage in osteoarthritis and rheumatoid arthritis-two unequal siblings. Nat. Rev. Rheumatol. 11, 606–615 (2015).

10

Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P. & Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011).

11

Troeberg, L. & Nagase, H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim. Biophys. Acta 1824, 133–145 (2012).

12

Gracitelli, G. C., Moraes, V. Y., Franciozi, C. E., Luzo, M. V. & Belloti, J. C. Surgical interventions (microfracture, drilling, mosaicplasty, and allograft transplantation) for treating isolated cartilage defects of the knee in adults. Cochrane Database Syst. Rev. 9, Cd010675 (2016).

13

Angele, P. et al. Chondral and osteochondral operative treatment in early osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 24, 1743–1752 (2016).

14

Glyn-Jones, S. et al. Osteoarthritis. Lancet (Lond., Engl.) 386, 376–387 (2015).

15

Kolasinski, S. L. et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 72, 220–233 (2020).

16

Bannuru, R. R. et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr. Cartil. 27, 1578–1589 (2019).

17

Bruyère, O. et al. An updated algorithm recommendation for the management of knee osteoarthritis from the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Semin. Arthritis Rheum. 49, 337–350 (2019).

18

Filardo, G. et al. Non-surgical treatments for the management of early osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 24, 1775–1785 (2016).

19

Heinegard, D. & Saxne, T. The role of the cartilage matrix in osteoarthritis. Nat. Rev. Rheumatol. 7, 50–56 (2011).

20

Bondeson, J., Wainwright, S., Hughes, C. & Caterson, B. The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: a review. Clin. Exp. Rheumatol. 26, 139–145 (2008).

21

Mehana, E. E., Khafaga, A. F. & El-Blehi, S. S. The role of matrix metalloproteinases in osteoarthritis pathogenesis: an updated review. Life Sci. 234, 116786 (2019).

22

Knauper, V., Lopez-Otin, C., Smith, B., Knight, G. & Murphy, G. Biochemical characterization of human collagenase-3. J. Biol. Chem. 271, 1544–1550 (1996).

23

Wan, Y. et al. Selective MMP-13 inhibitors: promising agents for the therapy of osteoarthritis. Curr. Med Chem. 27, 3753–3769 (2020).

24

Mort, J. S. & Billington, C. J. Articular cartilage and changes in arthritis: matrix degradation. Arthritis Res. 3, 337–341 (2001).

25

Mitchell, P. G. et al. Cloning, expression, and type Ⅱ collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J. Clin. Investig. 97, 761–768 (1996).

26

Bányai, L., Tordai, H. & Patthy, L. The gelatin-binding site of human 72 kDa type Ⅳ collagenase (gelatinase A). Biochem. J. 298, 403–407 (1994).

27

Overall, C. M. & Sodek, J. Initial characterization of a neutral metalloproteinase, active on native 3/4-collagen fragments, synthesized by ROS 17/2.8 osteoblastic cells, periodontal fibroblasts, and identified in gingival crevicular fluid. J. Dent. Res. 66, 1271–1282 (1987).

28

Renkiewicz, R. et al. Broad-spectrum matrix metalloproteinase inhibitor marimastat-induced musculoskeletal side effects in rats. Arthritis Rheum. 48, 1742–1749 (2003).

29

Krzeski, P. et al. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res. Ther. 9, R109 (2007).

30

Milner, J. M., Patel, A. & Rowan, A. D. Emerging roles of serine proteinases in tissue turnover in arthritis. Arthritis Rheum. 58, 3644–3656 (2008).

31

Chou, P. Y., Su, C. M., Huang, C. Y. & Tang, C. H. The characteristics of thrombin in osteoarthritic pathogenesis and treatment. Biomed. Res. Int. 2014, 407518 (2014).

32

Wilkinson, D. J. et al. Matriptase induction of metalloproteinase-dependent aggrecanolysis in vitro and in vivo: promotion of osteoarthritic cartilage damage by multiple mechanisms. Arthritis Rheumatol. 69, 1601–1611 (2017).

33

Akhatib, B. et al. Chondroadherin fragmentation mediated by the protease HTRA1 distinguishes human intervertebral disc degeneration from normal aging. J. Biol. Chem. 288, 19280–19287 (2013).

34

Goldstein, L. A. et al. Molecular cloning of seprase: a serine integral membrane protease from human melanoma. Biochim. Biophys. Acta 1361, 11–19 (1997).

35

Park, J. E. et al. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem. 274, 36505–36512 (1999).

36

Balaziova, E. et al. Dipeptidyl peptidase-Ⅳ activity and/or structure homologs (DASH): contributing factors in the pathogenesis of rheumatic diseases? Adv. Exp. Med. Biol. 575, 169–174 (2006).

37

Hamson, E. J., Keane, F. M., Tholen, S., Schilling, O. & Gorrell, M. D. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteom. Clin. Appl. 8, 454–463 (2014).

38

Dunshee, D. R. et al. Fibroblast activation protein cleaves and inactivates fibroblast growth factor 21. J. Biol. Chem. 291, 5986–5996 (2016).

39

Lee, K. N. et al. Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 107, 1397–1404 (2006).

40

Keane, F. M., Nadvi, N. A., Yao, T. W. & Gorrell, M. D. Neuropeptide Y, B-type natriuretic peptide, substance P and peptide YY are novel substrates of fibroblast activation protein-alpha. FEBS J. 278, 1316–1332 (2011).

41

Zhang, H. E. et al. Identification of novel natural substrates of fibroblast activation protein-alpha by differential degradomics and proteomics. Mol. Cell Proteom. 18, 65–85 (2019).

42

Scanlan, M. J. et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc. Natl. Acad. Sci. USA 91, 5657–5661 (1994).

43

Rettig, W. J. et al. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc. Natl Acad. Sci. USA 85, 3110–3114 (1988).

44

Kelly, T. Fibroblast activation protein-alpha and dipeptidyl peptidase Ⅳ (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy. Drug Resist. Updat. 8, 51–58 (2005).

45

Garin-Chesa, P., Old, L. J. & Rettig, W. J. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl. Acad. Sci. USA 87, 7235–7239 (1990).

46

Cortez, E., Roswall, P. & Pietras, K. Functional subsets of mesenchymal cell types in the tumor microenvironment. Semin. Cancer Biol. 25, 3–9 (2014).

47

Kou, X. et al. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci. Transl. Med. 10, eaai8524 (2018).

48

Wei, H. et al. Identification of fibroblast activation protein as an osteogenic suppressor and anti-osteoporosis drug target. Cell Rep. 33, 108252 (2020).

49

Bauer, S. et al. Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res. Ther. 8, R171 (2006).

50

Waldele, S. et al. Deficiency of fibroblast activation protein alpha ameliorates cartilage destruction in inflammatory destructive arthritis. Arthritis Res. Ther. 17, 12 (2015).

51

Hiraoka, A. et al. Cloning, expression, and characterization of a cDNA encoding a novel human growth factor for primitive hematopoietic progenitor cells. Proc. Natl. Acad. Sci. USA 94, 7577–7582 (1997).

52

Hiraoka, A. et al. Stem cell growth factor: in situ hybridization analysis on the gene expression, molecular characterization and in vitro proliferative activity of a recombinant preparation on primitive hematopoietic progenitor cells. Hematol. J. 2, 307–315 (2001).

53

Yue, R., Shen, B. & Morrison, S. J. Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton. eLife 5, e18782 (2016).

54

Shen, B. et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. eLife 8, e42274 (2019).

55

Edosada, C. Y. et al. Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity. J. Biol. Chem. 281, 7437–7444 (2006).

56

Niedermeyer, J. et al. Expression of the fibroblast activation protein during mouse embryo development. Int. J. Dev. Biol. 45, 445–447 (2001).

57

Gosset, M., Berenbaum, F., Thirion, S. & Jacques, C. Primary culture and phenotyping of murine chondrocytes. Nat. Protoc. 3, 1253–1260 (2008).

58

Goldring, M. B. & Berenbaum, F. Human chondrocyte culture models for studying cyclooxygenase expression and prostaglandin regulation of collagen gene expression. Osteoarthr. Cartil. 7, 386–388 (1999).

59

Liacini, A., Sylvester, J., Li, W. Q. & Zafarullah, M. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol. 21, 251–262 (2002).

60

Robbins, J. R. et al. Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1beta. Arthritis Rheum.43, 2189–2201 (2000).

61

Lee, H. O. et al. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer 11, 245 (2011).

62

Nagaraju, C. K. et al. Global fibroblast activation throughout the left ventricle but localized fibrosis after myocardial infarction. Sci. Rep. 7, 10801 (2017).

63

Brokopp, C. E. et al. Fibroblast activation protein is induced by inflammation and degrades type Ⅰ collagen in thin-cap fibroatheromata. Eur. Heart J. 32, 2713–2722 (2011).

64

Christiansen, V. J., Jackson, K. W., Lee, K. N. & McKee, P. A. Effect of fibroblast activation protein and alpha2-antiplasmin cleaving enzyme on collagen types Ⅰ, Ⅲ, and Ⅳ. Arch. Biochem. Biophys. 457, 177–186 (2007).

65

Fan, M. H. et al. Fibroblast activation protein (FAP) accelerates collagen degradation and clearance from lungs in mice. J. Biol. Chem. 291, 8070–8089 (2016).

66

Kumagai, K. et al. Changes of synovial fluid biomarker levels after opening wedge high tibial osteotomy in patients with knee osteoarthritis. Osteoarthr. Cartil. 29, 1020–1028 (2021).

67

Li, L. et al. Profiling of inflammatory mediators in the synovial fluid related to pain in knee osteoarthritis. BMC Musculoskelet. Disord. 21, 99 (2020).

68

Van Spil, W. E., Kubassova, O., Boesen, M., Bay-Jensen, A. C. & Mobasheri, A. Osteoarthritis phenotypes and novel therapeutic targets. Biochem. Pharm. 165, 41–48 (2019).

69

Pineiro-Sanchez, M. L. et al. Identification of the 170-kDa melanoma membrane-bound gelatinase (seprase) as a serine integral membrane protease. J. Biol. Chem. 272, 7595–7601 (1997).

70

Aertgeerts, K. et al. Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein alpha. J. Biol. Chem. 280, 19441–19444 (2005).

71

Deacon, C. F. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 16, 642–653 (2020).

72

Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

73

Metsäranta, M. et al. Chondrodysplasia in transgenic mice harboring a 15-amino acid deletion in the triple helical domain of pro alpha 1(Ⅱ) collagen chain. J. Cell Biol. 118, 203–212 (1992).

74

Rintala, M., Metsäranta, M., Säämänen, A. M., Vuorio, E. & Rönning, O. Abnormal craniofacial growth and early mandibular osteoarthritis in mice harbouring a mutant type Ⅱ collagen transgene. J. Anat. 190, 201–208 (1997).

75

Burrage, P. S., Mix, K. S. & Brinckerhoff, C. E. Matrix metalloproteinases: role in arthritis. Front. Biosci. 11, 529–543 (2006).

76

Liu, J. & Khalil, R. A. Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog. Mol. Biol. Transl. Sci. 148, 355–420 (2017).

77

Hollander, A. P. et al. Damage to type Ⅱ collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration. J. Clin. Investig. 96, 2859–2869 (1995).

78

Kellgren, J. H. & Lawrence, J. S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16, 494–502 (1957).

79

Pritzker, K. P. et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr. Cartil. 14, 13–29 (2006).

80

Krenn, V. et al. Synovitis score: discrimination between chronic low-grade and high-grade synovitis. Histopathology 49, 358–364 (2006).

81

Lorenz, J. & Grässel, S. Experimental osteoarthritis models in mice. Methods Mol. Biol. 1194, 401–419 (2014).

82

Yao, Z. et al. Reduced PDGF-AA in subchondral bone leads to articular cartilage degeneration after strenuous running. J. Cell. Physiol. 234, 17946–17958 (2019).

Bone Research
Article number: 3
Cite this article:
Fan A, Wu G, Wang J, et al. Inhibition of fibroblast activation protein ameliorates cartilage matrix degradation and osteoarthritis progression. Bone Research, 2023, 11: 3. https://doi.org/10.1038/s41413-022-00243-8

115

Views

1

Downloads

17

Crossref

16

Web of Science

18

Scopus

Altmetrics

Received: 19 January 2022
Revised: 14 October 2022
Accepted: 11 November 2022
Published: 02 January 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return