AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Single-cell RNA sequencing in orthopedic research

Tao Wang1,2,Ling Wang2,3,Liping Zhang4Yubin Long1,2Yingze Zhang1,2,5Zhiyong Hou1,2,5( )
Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
Department of Orthopedic Oncology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, PR China
NHC Key Laboratory of Intelligent Orthopedic Equipment (Third Hospital of Hebei Medical University), Hebei, PR China

These authors contributed equally: Tao Wang, Ling Wang

Show Author Information

Abstract

Although previous RNA sequencing methods have been widely used in orthopedic research and have provided ideas for therapeutic strategies, the specific mechanisms of some orthopedic disorders, including osteoarthritis, lumbar disc herniation, rheumatoid arthritis, fractures, tendon injuries, spinal cord injury, heterotopic ossification, and osteosarcoma, require further elucidation. The emergence of the single-cell RNA sequencing (scRNA-seq) technique has introduced a new era of research on these topics, as this method provides information regarding cellular heterogeneity, new cell subtypes, functions of novel subclusters, potential molecular mechanisms, cell-fate transitions, and cell‒cell interactions that are involved in the development of orthopedic diseases. Here, we summarize the cell subpopulations, genes, and underlying mechanisms involved in the development of orthopedic diseases identified by scRNA-seq, improving our understanding of the pathology of these diseases and providing new insights into therapeutic approaches.

References

1

Johnson, V. L. & Hunter, D. J. The epidemiology of osteoarthritis. Best. Pr. Res. Clin. Rheumatol. 28, 5–15 (2014).

2

Konstantinou, K. & Dunn, K. M. Sciatica: review of epidemiological studies and prevalence estimates. Spine 33, 2464–2472 (2008).

3

Myasoedova, E., Crowson, C. S., Kremers, H. M., Therneau, T. M. & Gabriel, S. E. Is the incidence of rheumatoid arthritis rising?: results from Olmsted County, Minnesota, 1955-2007. Arthritis Rheum. 62, 1576–1582 (2010).

4

Chen, W. et al. National incidence of traumatic fractures in China: a retrospective survey of 512 187 individuals. Lancet Glob. Health 5, e807–e817 (2017).

5

Bavin, E. P. et al. Equine induced pluripotent stem cells have a reduced tendon differentiation capacity compared to embryonic stem cells. Front. Vet. Sci. 2, 55 (2015).

6

Cripps, R. A. et al. A global map for traumatic spinal cord injury epidemiology: towards a living data repository for injury prevention. Spinal Cord. 49, 493–501 (2011).

7

Dey, D. et al. The traumatic bone: trauma-induced heterotopic ossification. Transl. Res. 186, 95–111 (2017).

8

Cho, W. H. et al. Differential presentations, clinical courses, and survivals of osteosarcomas of the proximal humerus over other extremity locations. Ann. Surg. Oncol. 17, 702–708 (2010).

9
Hrdlickova, R., Toloue, M.&Tian, B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA. 8, https://doi.org/10.1002/wrna.1364 (2107).
10

Wilhelm, B. T. et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453, 1239–1243 (2008).

11

Olsen, T. K. & Baryawno, N. Introduction to Single-Cell RNA Sequencing. Curr. Protoc. Mol. Biol. 122, e57 (2018).

12

Hedlund, E. & Deng, Q. Single-cell RNA sequencing: Technical advancements and biological applications. Mol. Asp. Med. 59, 36–46 (2018).

13

Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).

14

Saliba, A. E., Westermann, A. J., Gorski, S. A. & Vogel, J. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845–8860 (2014).

15

Suvà, M. L. & Tirosh, I. Single-Cell RNA Sequencing in Cancer: Lessons Learned and Emerging Challenges. Mol. Cell 75, 7–12 (2019).

16

Rao, D. A., Arazi, A., Wofsy, D. & Diamond, B. Design and application of single-cell RNA sequencing to study kidney immune cells in lupus nephritis. Nat. Rev. Nephrol. 16, 238–250 (2020).

17

Yamada, S. & Nomura, S. Review of single-cell rNA sequencing in the heart. Int. J. Mol. Sci. 21, 8345 (2020).

18

Cuevas-Diaz Duran, R., Wei, H. & Wu, J. Q. Single-cell RNA-sequencing of the brain. Clin. Transl. Med. 6, 20 (2017).

19

Edwards, J. J. et al. Quality indicators for the primary care of osteoarthritis: a systematic review. Ann. Rheum. Dis. 74, 490–498 (2015).

20

Jin, X. et al. Circulating C reactive protein in osteoarthritis: a systematic review and meta-analysis. Ann. Rheum. Dis. 74, 703–710 (2015).

21

Jiang, Y. & Tuan, R. S. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat. Rev. Rheumatol. 11, 206–212 (2015).

22

Decker, R. S., Koyama, E. & Pacifici, M. Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol. 39, 5–10 (2014).

23

Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

24

Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718–735 (2017).

25

Ji, Q. et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann. Rheum. Dis. 1, 100–110 (2019).

26

Chou, C. H. et al. Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci. Rep. 10, 10868 (2020).

27

Sebastian, A. et al. Single-cell RNA-seq reveals transcriptomic heterogeneity and post-traumatic osteoarthritis-associated early molecular changes in mouse articular chondrocytes. Cells 10, 1462 (2021).

28

Lv, Z. et al. Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis. EBioMedicine 84, 104258 (2022).

29

Nanus, D. E. et al. Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets. EBioMedicine 72, 103618 (2021).

30

Liu, W. et al. Single-Cell Profiles of Age-Related Osteoarthritis Uncover Underlying Heterogeneity Associated with Disease Progression. Front. Mol. Biosci. 8, 748360 (2022).

31

Sebastian, A. et al. Single-cell RNA-seq reveals changes in immune landscape in post-traumatic osteoarthritis. Front. Immunol. 13, 938075 (2022).

32

Huang, Z. Y. et al. Single cell transcriptomics in human osteoarthritis synovium and in silico deconvoluted bulk RNA sequencing. Osteoarthr. Cartil. 30, 475–480 (2022).

33

Bian, Q. et al. A single cell transcriptional atlas of early synovial joint development. Development 147, dev185777 (2020).

34

Rickers, K. W., Pedersen, P. H., Tvedebrink, T. & Eiskjær, S. P. Comparison of interventions for lumbar disc herniation: a systematic review with network meta-analysis. Spine J. 21, 1750–1762 (2021).

35

Dowdell, J. et al. Intervertebral disk degeneration and repair. Neurosurgery 80, s46–s54 (2017).

36

Feng, Y., Egan, B. & Wang, J. Genetic factors in intervertebral disc degeneration. Genes Dis. 3, 178–185 (2016).

37

Riester, S. M. et al. RNA sequencing identifes gene regulatory networks controlling extracellular matrix synthesis in intervertebral disk tissues. J. Orthop. Res. 36, 1356–1369 (2018).

38

Hunter, C. J., Matyas, J. R. & Duncan, N. A. Cytomorphology of notochordal and chondrocytic cells from the nucleus pulposus: a species comparison. J. Anat. 205, 357–362 (2004).

39

Bagnall, K. M., Higgins, S. J. & Sanders, E. J. The contribution made by cells from a single somite to tissues within a body segment and assessment of their integration with similar cells from adjacent segments. Development 107, 931–943 (1989).

40

Cherif, H. et al. Single-Cell RNA-seq analysis of cells from degenerating and non-degenerating intervertebral discs from the same individual reveals new biomarkers for intervertebral disc degeneration. Int. J. Mol. Sci. 23, 3993 (2022).

41

Wang, J. et al. Novel biomarkers of intervertebral disc cells and evidence of stem cells in the intervertebral disc. Osteoarthr. Cartil. 29, 389–401 (2021).

42

Panebianco, C. J., Dave, A., Charytonowicz, D., Sebra, R. & Iatridis, J. C. Single-cell RNA-sequencing atlas of bovine caudal intervertebral discs: Discovery of heterogeneous cell populations with distinct roles in homeostasis. FASEB J. 35, e21919 (2021).

43

Calió, M., Gantenbein, B., Egli, M., Poveda, L. & Ille, F. The cellular composition of bovine coccygeal intervertebral discs: a comprehensive single-cell RNAseq analysis. Int. J. Mol. Sci. 22, 4917 (2021).

44

Gao, B. et al. Discovery and application of postnatal nucleus pulposus progenitors essential for intervertebral disc homeostasis and degeneration. Adv. Sci. 9, e2104888 (2022).

45

Ling, Z. et al. Single-cell RNA-seq analysis reveals macrophage involved in the progression of human intervertebral disc degeneration. Front. Cell Dev. Biol. 9, 833420 (2022).

46

Tu, J. et al. Single-cell transcriptome profiling reveals multicellular ecosystem of nucleus pulposus during degeneration progression. Adv. Sci. 9, e2103631 (2022).

47

Sakai, D. & Andersson, G. B. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat. Rev. Rheumatol. 11, 243–256 (2015).

48

Lyu, F. J. et al. IVD progenitor cells: a new horizon for understanding disc homeostasis and repair. Nat. Rev. Rheumatol. 15, 102–112 (2019).

49

Gan, Y. et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 9, 37 (2021).

50

Sakai, D. et al. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat. Commun. 3, 1264 (2012).

51

Mizrahi, O. et al. Nucleus pulposus degeneration alters properties of resident progenitor cells. Spine J. 13, 803–814 (2013).

52

Zhang, Y. et al. Single-cell RNA-seq analysis identifies unique chondrocyte subsets and reveals involvement of ferroptosis in human intervertebral disc degeneration. Osteoarthr. Cartil. 29, 1324–1334 (2021).

53

Han, S. et al. Single-cell RNA sequencing of the nucleus pulposus reveals chondrocyte differentiation and regulation in intervertebral disc degeneration. Front. Cell Dev. Biol. 10, 824771 (2022).

54

Fernandes, L. M. et al. Single-cell RNA-seq identifies unique transcriptional landscapes of human nucleus pulposus and annulus fibrosus cells. Sci. Rep. 10, 15263 (2020).

55

Ellman, M. B. et al. Fibroblast growth factor control of cartilage homeostasis. J. Cell. Biochem. 114, 735–742 (2013).

56

Brown, E. A. et al. FGF4 retrogene on CFA12 is responsible for chondrodystrophy and intervertebral disc disease in dogs. Proc. Natl. Acad. Sci. USA 114, 11476–11481 (2017).

57

Zhang, J. et al. TGF-β1 suppresses CCL3/4 expression through the ERK signaling pathway and inhibits intervertebral disc degeneration and inflammation-related pain in a rat model. Exp. Mol. Med. 49, e379 (2017).

58

Chen, S. et al. TGF-β signaling in intervertebral disc health and disease. Osteoarthr. Cartil. 27, 1109–1117 (2019).

59

Hiyama, A. et al. The relationship between the Wnt/β-catenin and TGF-β/BMP signals in the intervertebral disc cell. J. Cell. Physiol. 226, 1139–1148 (2011).

60

Wang, Z., Weitzmann, M. N., Sangadala, S., Hutton, W. C. & Yoon, S. T. Link protein N-terminal peptide binds to bone morphogenetic protein (BMP) type II receptor and drives matrix protein expression in rabbit intervertebral disc cells. J. Biol. Chem. 288, 28243–28253 (2013).

61

Paglia, D. N., Singh, H., Karukonda, T., Drissi, H. & Moss, I. L. PDGF-BB delays degeneration of the intervertebral discs in a rabbit preclinical model. Spine 41, E449–E458 (2016).

62

McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

63

Rana, A. K., Li, Y., Dang, Q. & Yang, F. Monocytes in rheumatoid arthritis: Circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int. Immunopharmacol. 65, 348–359 (2018).

64

Guo, Q. et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 6, 15 (2018).

65

Aletaha, D. & Smolen, J. S. Diagnosis and management of rheumatoid arthritis: a review. JAMA 320, 1360–1372 (2018).

66

Ten, Brinck, R. M. et al. The risk of individual autoantibodies, autoantibody combinations and levels for arthritis development in clinically suspect arthralgia. Rheumatology 56, 2145–2153 (2017).

67

Verheul, M. K. et al. Mass-spectrometric identification of carbamylated proteins present in the joints of rheumatoid arthritis patients and controls. Clin. Exp. Rheumatol. 39, 570–577 (2021).

68

Sahlström, P. et al. Different hierarchies of anti-modified protein autoantibody reactivities in rheumatoid arthritis. Arthritis Rheumatol. 72, 1643–1657 (2020).

69

Bader, L. et al. Candidate markers for stratification and classification in rheumatoid arthritis. Front. Immunol. 10, 1488 (2019).

70

Saevarsdottir, S. et al. Multiomics analysis of rheumatoid arthritis yields sequence variants that have large effects on risk of the seropositive subset. Ann. Rheum. Dis. 81, 1085–1095 (2022).

71

Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

72

Liao, L., Liang, K., Lan, L., Wang, J. & Guo, J. Marker genes change of synovial fibroblasts in rheumatoid arthritis patients. Biomed. Res. Int. 2021, 5544264 (2021).

73

Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).

74

Kuo, D. et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. 11, eaau8587 (2019).

75

Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

76

Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microflfluidic instrumentation. Nat. Commun. 9, 791 (2018).

77

Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

78

Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

79

Wei, K. et al. Notch signaling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

80

Kelkka, T. et al. Adult-onset anti-citrullinated peptide antibody-negative destructive rheumatoid arthritis is characterized by a disease-specific CD8+ T lymphocyte signature. Front. Immunol. 11, 578848 (2020).

81

Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

82

Fonseka, C. Y. et al. Mixed-effects association of single cells identifies an expanded effector CD4+ T cell subset in rheumatoid arthritis. Sci. Transl. Med. 10, eaaq0305 (2018).

83

Han, L. et al. A comprehensive transcriptomic analysis of alternate interferon signaling pathways in peripheral blood mononuclear cells in rheumatoid arthritis. Aging 13, 20511–20533 (2021).

84

Andreev, D. et al. Regulatory eosinophils induce the resolution of experimental arthritis and appear in remission state of human rheumatoid arthritis. Ann. Rheum. Dis. 2020, 218902 (2020).

85

Meednu, N. et al. Dynamic spectrum of ectopic lymphoid B cell activation and hypermutation in the RA synovium characterized by NR4A nuclear receptor expression. Cell Rep. 39, 110766 (2022).

86

Wu, X. et al. Single-cell sequencing of immune cells from anticitrullinated peptide antibody positive and negative rheumatoid arthritis. Nat. Commun. 12, 4977 (2021).

87

Cai, S. et al. Similar transition processes in synovial fibroblasts from rheumatoid arthritis and osteoarthritis: a single-cell study. J. Immunol. Res. 2019, 4080735 (2019).

88

Einhorn, T. A. & Gerstenfeld, L. C. Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 11, 45–54 (2015).

89

Burge, R. et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–25. J. Bone Miner. Res. 22, 465–475 (2007).

90

Mills, L. A., Aitken, S. A. & Simpson, A. The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop. 88, 434–439 (2017).

91

Gruber, R. et al. Fracture healing in the elderly patient. Exp. Gerontol. 41, 1080–1093 (2006).

92

Xu, R. et al. Targeting skeletal endothelium to ameliorate bone loss. Nat. Med. 24, 823–833 (2018).

93

Wang, R. et al. miR-143 promotes angiogenesis and osteoblast differentiation by targeting HDAC7. Cell Death Dis. 11, 179 (2020).

94

Julien, A. et al. FGFR3 in periosteal cells drives cartilage-to-bone transformation in bone repair. Stem Cell Rep. 15, 955–967 (2020).

95

Hu, D. P. et al. Cartilage to bone transformation during fracture healing is coordinated by the invading vasculature and induction of the core pluripotency genes. Development 144, 221–234 (2017).

96

Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).

97

Baryawno, N. et al. A Cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–.e16 (2019).

98

Sivaraj, K. K. et al. Regional specialization and fate specification of bone stromal cells in skeletal development. Cell Rep. 36, 109352 (2021).

99

Abou-Khalil, R. et al. Role of muscle stem cells during skeletal regeneration. Stem Cells 33, 1501–1511 (2015).

100

Glass, G. E. et al. TNF-α promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc. Natl. Acad. Sci. USA. 108, 1585–1590 (2011).

101

Harry, L. E. et al. Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J. Orthop. Res. 26, 1238–1244 (2008).

102

Liu, R. et al. Myogenic progenitors contribute to open but not closed fracture repair. BMC Musculoskelet. Disord. 12, 288 (2011).

103

Byrd, H. S., Cierny, G. & Tebbetts, J. B. The management of open tibial fractures with associated soft–tissue loss: external pin fifixation with early flap coverage. Plast. Reconstr. Surg. 68, 73–79 (1981).

104

Richards, R. R., McKee, M. D., Paitich, C. B., Anderson, G. I. & Bertoia, J. T. A comparison of the effects of skin coverage and muscle flap coverage on the early strength of union at the site of osteotomy after devascularization of a segment of canine tibia. J. Bone Jt. Surg. -Ser. A 73, 1323–1330 (1991).

105

Willett, K., Al-Khateeb, H., Kotnis, R., Bouamra, O. & Lecky, F. Risk of mortality: the relationship with associated injuries and fracture treatment methods in patients with unilateral or bilateral femoral shaft fractures. J. Trauma - Inj. Infect. Crit. Care 69, 405–410 (2010).

106

Chan, J. K. K., Harry, L., Williams, G. & Nanchahal, J. Soft-tissue reconstruction of open fractures of the lower limb: muscle versus fasciocutaneous flaps. Plast. Reconstr. Surg. 130, 284e–295e (2012).

107

Julien, A. et al. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair. Nat. Commun. 12, 2860 (2021).

108

Al-Sebaei, M. O. et al. Role of Fas and Treg cells in fracture healing as characterized in the fas-deficient (lpr) mouse model of lupus. J. Bone Min. Res. 29, 1478–1491 (2014).

109

Bragdon, B. et al. Earliest phases of chondrogenesis are dependent upon angiogenesis during ectopic bone formation in mice. Bone 101, 49–61 (2017).

110

Zhang, H. et al. Single-cell RNA sequencing reveals B Cells are important regulators in fracture healing. Front. Endocrinol. 8, 666140 (2021).

111
Avin, K. G. et al. Single-cell RNAseq provides insight into altered immune cell populations in human fracture nonunions. J. Orthop. Res. (2022). https://doi.org/10.1002/jor.25452. Online ahead of print.
112

Gumucio, J. P., Sugg, K. B. & Mendias, C. L. TGF-β superfamily signaling in muscle and tendon adaptation to resistance exercise. Exerc. Sport Sci. Rev. 43, 93–99 (2015).

113

Kjaer, M. et al. Extracellular matrix adaptation of tendon and skeletal muscle to exercise. J. Anat. 208, 445–450 (2006).

114

Magnusson, S. P. & Kjaer, M. The impact of loading, unloading, ageing and injury on the human tendon. J. Physiol. 597, 1283–1298 (2019).

115

Mendias, C. L., Gumucio, J. P., Bakhurin, K. I., Lynch, E. B. & Brooks, S. V. Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts. J. Orthop. Res. 30, 606–612 (2012).

116

Paolillo, C., Londin, E. & Fortina, P. Single-cell genomics. Clin. Chem. 65, 972–985 (2019).

117

De Micheli, A. J. et al. Single-cell transcriptomic analysis identifies extensive heterogeneity in the cellular composition of mouse Achilles tendons. Am. J. Physiol. Cell Physiol. 319, C885–C894 (2020).

118

Still, C. et al. Single-cell transcriptomic profiling reveals distinct mechanical responses between normal and diseased tendon progenitor cells. Cell Rep. Med. 2, 100343 (2021).

119

Fan, C. et al. A Cd9+Cd271+ stem/progenitor population and the SHP2 pathway contribute to neonatal-to-adult switching that regulates tendon maturation. Cell Rep. 39, 110762 (2022).

120

Nakajima, T. et al. Grafting of iPS cell-derived tenocytes promotes motor function recovery after Achilles tendon rupture. Nat. Commun. 12, 5012 (2021).

121

Yoshimoto, Y. et al. Tenogenic induction from induced pluripotent stem cells unveils the trajectory towards tenocyte differentiation. Front. Cell Dev. Biol. 10, 780038 (2022).

122

Kaji, D. A., Montero, A. M., Patel, R. & Huang, A. H. Transcriptional profiling of mESC-derived tendon and fibrocartilage cell fate switch. Nat. Commun. 12, 4208 (2021).

123

Kult, S. et al. Bi-fated tendon-to-bone attachment cells are regulated by shared enhancers and KLF transcription factors. Elife 10, e55361 (2021).

124

Garcia-Melchor, E. et al. Novel self-amplificatory loop between T cells and tenocytes as a driver of chronicity in tendon disease. Ann. Rheum. Dis. 80, 1075–1085 (2021).

125

Jiang, Y. et al. Enhanced tenogenic differentiation and tendon-like tissue formation by tenomodulin overexpression in murine mesenchymal stem cells. J. Tissue Eng. Regen. Med. 11, 2525–2536 (2017).

126

Jo, C. H., Lim, H.-J. & Yoon, K. S. Characterization of tendon-specific markers in various human tissues, tenocytes and mesenchymal stem cells. Tissue Eng. Regen. Med. 16, 151–159 (2019).

127

Tran, A. P., Warren, P. M. & Silver, J. The biology of regeneration failure and success after spinal cord injury. Physiol. Rev. 98, 881–917 (2018).

128

Guimarães-Camboa, N. et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20, 345–359 (2017).

129

Riew, T. R., Jin, X., Kim, S., Kim, H. L. & Lee, M. Y. Temporal dynamics of cells expressing NG2 and platelet-derived growth factor receptor-β in the fibrotic scar formation after 3-nitropropionic acid-induced acute brain injury. Cell Tissue Res. 385, 539–555 (2021).

130

Li, Y. et al. Microglia organized scar-free spinal cord repair in neonatal mice. Nature 587, 613–618 (2020b).

131

Ramotowski, C., Qu, X. & Villa-Diaz, L. G. Progress in the use of induced pluripotent stem cell-derived neural cells for traumatic spinal cord injuries in animal populations: meta-analysis and review. Stem Cells Transl. Med. 8, 681–693 (2019).

132

Nori, S. et al. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc. Natl. Acad. Sci. USA 108, 16825–16830 (2011).

133

Zengeler, K. E. & Lukens, J. R. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat. Rev. Immunol. 21, 454–468 (2021).

134

Wahane, S. et al. Diversified transcriptional responses of myeloid and glial cells in spinal cord injury shaped by HDAC3 activity. Sci. Adv. 7, eabd8811 (2021).

135

Wang, J. et al. Single-cell transcriptome analysis reveals the immune heterogeneity and the repopulation of microglia by Hif1α in mice after spinal cord injury. Cell Death Dis. 13, 432 (2022).

136

Hakim, R. et al. Spinal cord injury induces permanent reprogramming of microglia into a disease-associated state which contributes to functional recovery. J. Neurosci. 41, 8441–8459 (2021).

137

Milich, L. M. et al. Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J. Exp. Med. 218, e20210040 (2021).

138

Hugnot, J. P. & Franzen, R. The spinal cord ependymal region: a stem cell niche in the caudal central nervous system. Front. Biosci. 16, 1044–1059 (2011).

139

Shu, M. et al. Single-cell RNA sequencing reveals Nestin+ active neural stem cells outside the central canal after spinal cord injury. Sci. China Life Sci. 65, 295–308 (2022).

140

Stenudd, M. et al. Identification of a discrete subpopulation of spinal cord ependymal cells with neural stem cell properties. Cell Rep. 38, 110440 (2022).

141

Shimono, K. et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat. Med. 17, 454–460 (2011).

142

Regard, J. B. et al. Activation of hedgehog signaling by loss of GNAS causes heterotopic ossification. Nat. Med. 19, 1505–1512 (2013).

143

Ranganathan, K. et al. Heterotopic ossification: basic-science principles and clinical correlates. J. Bone Jt. Surg. 97, 1101–1111 (2015).

144

Wang, G., Kang, Y., Chen, F. & Wang, B. Cervical intervertebral disc calcification combined with ossification of posterior longitudinal ligament in an-11-year old girl: case report and review of literature. Childs Nerv. Syst. 32, 381–386 (2016).

145

Xu, Y. et al. Heterotopic ossification: clinical features, basic researches, and mechanical stimulations. Front. Cell Dev. Biol. 10, 770931 (2022).

146

C. Meyers, J. et al. Heterotopic ossification: A comprehensive review. JBMR. 3, e10172 (2019).

147

Agarwal, S. et al. Scleraxis-lineage cells contribute to ectopic bone formation in muscle and tendon. Stem Cells 35, 705–710 (2017).

148

Agarwal, S. et al. Inhibition of Hif1 prevents both trauma-induced and genetic heterotopic ossification. Proc. Natl. Acad. Sci. USA 113, E338–E347 (2015).

149

Chen, Y. et al. Single-cell integration analysis of heterotopic ossification and fibrocartilage developmental lineage: endoplasmic reticulum stress effector Xbp1 transcriptionally regulates the notch signaling pathway to mediate fibrocartilage differentiation. Oxid. Med. Cell Longev. 2021, 7663366 (2021).

150

J.Sahlman, R. et al. Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for type II collagen. Spine 26, 2558–2565 (2001).

151

Mutsuzaki, H. & Nakajima, H. Development of fibrocartilage layers in Achilles tendon enthesis in rabbits. J. Rural Med. 16, 160–164 (2021).

152

De Kretser, D. M., O’Hehir, R. E., Hardy, C. L. & Hedger, M. P. The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair. Mol. Cell. Endocrinol. 359, 101–106 (2012).

153

Xia, Y. & Schneyer, A. L. The biology of activin: Recent advances in structure, regulation and function. J. Endocrinol. 202, 1–12 (2009).

154

Hwang, C. et al. Activin A does not drive post-traumatic heterotopic ossification. Bone 138, 115473 (2020).

155

Mundy, C. et al. Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice. Sci. Signal. 14, eabd0536 (2021).

156

Barruet, E. et al. Modeling the ACVR1R206H mutation in human skeletal muscle stem cells. Elife 10, e66107 (2021).

157

Hsu, G. C. et al. Endogenous CCN family member WISP1 inhibits trauma-induced heterotopic ossification. JCI Insight 5, e135432 (2020).

158

Tan, L. et al. Discovery of type II inhibitors of TGFβ-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2). J. Med. Chem. 58, 183–196 (2015).

159

Kim, S. I. et al. TGF-beta-activated kinase 1 and TAK1-binding protein 1 cooperate to mediate TGF-beta1-induced MKK3-p38 MAPK activation and stimulation of type I collagen. Am. J. Physiol. Ren. Physiol. 292, F1471–F1478 (2007).

160

Lee, K. S., Hong, S. H. & Bae, S. C. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene 21, 7156–7163 (2002).

161

Strong, A. L. et al. Small molecule inhibition of non-canonical (TAK1-mediated) BMP signaling results in reduced chondrogenic ossification and heterotopic ossification in a rat model of blast-associated combat-related lower limb trauma. Bone 139, 115517 (2020).

162

Lin, J. et al. Single cell analysis reveals inhibition of angiogenesis attenuates the progression of heterotopic ossification in Mkx-/- mice. Bone Res. 10, 4 (2022).

163

Qin, Q. et al. Neuron-to-vessel signaling is a required feature of aberrant stem cell commitment after soft tissue trauma. Bone Res. 10, 43 (2022).

164

Sorkin, M. et al. Regulation of heterotopic ossification by monocytes in a mouse model of aberrant wound healing. Nat. Commun. 11, 722 (2020).

165

Mujtaba, B. et al. Heterotopic ossifification: radiological and pathological review. Radio. Oncol. 53, 275–284 (2019).

166

Shehab, D., Elgazzar, A. H. & Collier, D. Heterotopic ossification. J. Nucl. Med. 43, 346–353 (2002).

167

Zagarella, A., Impellizzeri, E., Maiolino, R., Attolini, R. & Castoldi, M. C. Pelvic heterotopic ossifification: when CT comes to the aid of MR imaging. Insights Imaging 4, 595–603 (2013).

168

Edwards, N. J. et al. High frequency spectral ultrasound imaging detects early heterotopic ossification in rodents. Stem Cells Dev. 30, 473–484 (2021).

169

Pingping, B. et al. Incidence and mortality of sarcomas in Shanghai, China, during 2002–14. Front. Oncol. 9, 662 (2019).

170

Kyle, R. A. et al. Monoclonal gammopathy of undetermined signifcance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia 24, 1121–1127 (2010).

171

Kansara, M., Teng, M. W., Smyth, M. J. & Thomas, D. M. Translational biology of osteosarcoma. Nat. Rev. Cancer 14, 722–735 (2014).

172

Zhou, Y. et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 11, 6322 (2020).

173

Liu, Y. et al. Single-cell transcriptomics reveals the complexity of the tumor microenvironment of treatment-naive osteosarcoma. Front. Oncol. 11, 709210 (2021).

174

Akiyama, T. et al. Novel therapeutic strategy for osteosarcoma targeting osteoclast differentiation, bone-resorbing activity, and apoptosis pathway. Mol. Cancer Ther. 7, 3461–3469 (2008).

175

Pelon, F. et al. Cancer-associated fifibroblast heterogeneity in axillary lymphnodes drives metastases in breast cancer through complementary mechanisms. Nat. Commun. 11, 404 (2020).

176

Smeland, S. et al. Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur. J. Cancer 109, 36–50 (2019).

177

Chiu, D. K. et al. Hepatocellular carcinoma cells up-regulate PVRL1, stabilizing PVR and inhibiting the cytotoxic T-cell response via TIGIT to mediate tumor resistance to PD1 inhibitors in mice. Gastroenterology 159, 609–623 (2020).

178

Hoogi, S. et al. A TIGIT-based chimeric co-stimulatory switch receptor improves T-cell anti-tumor function. J. Immunother. Cancer 7, 243 (2019).

179

Zhang, Q. et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018).

180

Stamm, H. et al. Targeting the TIGIT-PVR immune checkpoint axis as novel therapeutic option in breast cancer. Oncoimmunology 8, e1674605 (2019).

181

Qin, Z. et al. ATG16L1 is a potential prognostic biomarker and immune signature for osteosarcoma: a study based on bulk rna and single-cell RNA-sequencing. Int. J. Gen. Med. 15, 1033–1045 (2022).

182

Manoharan, M. et al. A computational approach identifies immunogenic features of prognosis in human cancers. Front. Immunol. 9, 3017 (2018).

183

Gharibi, A. et al. ITGA1 is a pre-malignant biomarker that promotes therapy resistance and metastatic potential in pancreatic cancer. Sci. Rep. 7, 10060 (2017).

184

Yim, D. H. et al. ITGA1 polymorphisms and haplotypes are associated with gastric cancer risk in a Korean population. World J. Gastroenterol. 19, 5870–5876 (2013).

185

Li, H. et al. Integrin alpha1 promotes tumorigenicity and progressive capacity of colorectal cancer. Int. J. Biol. Sci. 16, 815–826 (2020).

186

Liu, L. et al. Novel genetic variants of SYK and ITGA1 related lymphangiogenesis signaling pathway predict non-small cell lung cancer survival. Am. J. Cancer Res. 10, 2603–2616 (2020).

187

Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

188

Rai, M. F. et al. Single cell omics for musculoskeletal research. Curr. Osteoporos. Rep. 19, 131–140 (2021).

189

Sarmiento, P. & Little, D. Tendon and multiomics: advantages, advances, and opportunities. NPJ Regen. Med. 6, 61 (2021).

190

Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 2191–2199 (2015).

191

Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleo some position. Nat. Methods 10, 1213–1218 (2013).

192

Llorens-Bobadilla, E. et al. A latent lineage potential in resident neural stem cells enables spinal cord repair. Science 370, 6512 (2020).

193

Ståhl, P. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

194

Stephenson, E., Webb, S. & Haniffa, M. Multiomics uncovers developing immunological lineages in human. Eur. J. Immunol. 51, 764–772 (2021).

195

Ballantyne, K. N. et al. Decreasing amplification bias associated with multiple displacement amplification and short tandem repeat genotyping. Anal. Biochem. 368, 222–229 (2007).

196

Buttner, M., Miao, Z., Wolf, F. A., Teichmann, S. A. & Theis, F. J. A test metric for assessing single-cell RNA-seq batch correction. Nat. Methods 16, 43–49 (2019).

197

Hicks, S. C., Townes, F. W., Teng, M. & Irizarry, R. A. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics 19, 562–578 (2018).

198

Shaham, U. et al. Removal of batch effects using distribution-matching residual networks. Bioinformatics 33, 2539–2546 (2017).

Bone Research
Article number: 10
Cite this article:
Wang T, Wang L, Zhang L, et al. Single-cell RNA sequencing in orthopedic research. Bone Research, 2023, 11: 10. https://doi.org/10.1038/s41413-023-00245-0

140

Views

2

Downloads

14

Crossref

12

Web of Science

13

Scopus

Altmetrics

Received: 29 April 2022
Revised: 22 December 2022
Accepted: 29 December 2022
Published: 24 February 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return