AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment

Hailong Tian1,Jiangjun Cao1,Bowen Li1Edouard C. Nice2Haijiao Mao3( )Yi Zhang4( )Canhua Huang1( )
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, People’s Republic of China
Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

These authors contributed equally: Hailong Tian, Jiangjun Cao

Show Author Information

Abstract

Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.

References

1

Liu, W. et al. TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ROS/AMPK/mTOR/autophagy signaling. Redox Biol. 53, 102344 (2022).

2

Li, H. B. et al. METTL14-mediated epitranscriptome modification of MN1 mRNA promote tumorigenicity and all-trans-retinoic acid resistance in osteosarcoma. EBioMedicine 82, 104142 (2022).

3

Huang, X., Wang, L., Guo, H., Zhang, W. & Shao, Z. Single-cell transcriptomics reveals the regulative roles of cancer associated fibroblasts in tumor immune microenvironment of recurrent osteosarcoma. Theranostics 12, 5877–5887 (2022).

4

Yu, L. et al. Circular RNA circFIRRE drives osteosarcoma progression and metastasis through tumorigenic-angiogenic coupling. Mol. Cancer 21, 167 (2022).

5

Tsukamoto, S. et al. Effect of adjuvant chemotherapy on periosteal osteosarcoma: a systematic review. Jpn. J. Clin. Oncol. 52, 888–896 (2022).

6

Horkoff, M. J. et al. A population-based analysis of the presentation and outcomes of pediatric patients with osteosarcoma in Canada: a report from CYP-C. Can. J. Surg. 65, E527–e533 (2022).

7

Zhu, T. et al. Immune microenvironment in osteosarcoma: components, therapeutic strategies and clinical applications. Front. Immunol. 13, 907550 (2022).

8

Piperno-Neumann, S. et al. Results of API-AI based regimen in osteosarcoma adult patients included in the French OS2006/Sarcome-09 study. Int. J. Cancer 146, 413–423 (2020).

9

Lamhamedi-Cherradi, S. E. et al. Transcriptional activators YAP/TAZ and AXL orchestrate dedifferentiation, cell fate, and metastasis in human osteosarcoma. Cancer Gene Ther. 28, 1325–1338 (2021).

10

Li, M., Wu, W., Deng, S., Shao, Z. & Jin, X. TRAIP modulates the IGFBP3/AKT pathway to enhance the invasion and proliferation of osteosarcoma by promoting KANK1 degradation. Cell Death Dis. 12, 767 (2021).

11

Liu, R., Hu, Y., Liu, T. & Wang, Y. Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of osteosarcoma cancer. BMC Cancer 21, 1345 (2021).

12

Wan, B. et al. Analysis of immune gene expression subtypes reveals osteosarcoma immune heterogeneity. J. Oncol. 2021, 6649412 (2021).

13

Bain, J. M. et al. Immune cells fold and damage fungal hyphae. Proc. Natl. Acad. Sci. USA 118, e2020484118 (2021).

14

Matsiko, A. Cancer immunotherapy making headway. Nat. Mater. 17, 472 (2018).

15

DeLucia, D. C. & Lee, J. K. Development of cancer immunotherapies. Cancer Treat. Res. 183, 1–48 (2022).

16

Starnes, C. O. Coley’s toxins. Nature 360, 23 (1992).

17

Zaaboub, R. et al. Nurselike cells sequester B cells in disorganized lymph nodes in chronic lymphocytic leukemia via alternative production of CCL21. Blood Adv. 6, 4691–4704 (2022).

18

Wu, B. et al. UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced PDL1 transcription in triple-negative breast cancer. Theranostics 12, 5086–5102 (2022).

19

Zheng, B. et al. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse. J. Hematol. Oncol. 11, 16 (2018).

20

Zhang, T. et al. Imaging-guided/improved diseases management for immune-strategies and beyond. Adv. Drug Deliv. Rev. 188, 114446 (2022).

21

Ali, S. et al. The European Medicines Agency Review of Kymriah (Tisagenlecleucel) for the treatment of acute lymphoblastic Leukemia and diffuse Large B-Cell lymphoma. Oncologist 25, e321–e327 (2020).

22

Wen, Y. et al. Immune checkpoints in osteosarcoma: recent advances and therapeutic potential. Cancer Lett. 547, 215887 (2022).

23

Brohl, A. S. et al. Immuno-transcriptomic profiling of extracranial pediatric solid malignancies. Cell Rep. 37, 110047 (2021).

24

Tian, L. R. et al. Nanodrug regulates lactic acid metabolism to reprogram the immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Biomater. Sci. 10, 3892–3900 (2022).

25

Liu, J., Li, L., Zhang, B. & Xu, Z. P. MnO(2)-shelled Doxorubicin/Curcumin nanoformulation for enhanced colorectal cancer chemo-immunotherapy. J. Colloid Interface Sci. 617, 315–325 (2022).

26

Han, Y., Wen, P., Li, J. & Kataoka, K. Targeted nanomedicine in cisplatin-based cancer therapeutics. J. Control Rel. 345, 709–720 (2022).

27

Rehman, S. et al. Unraveling enhanced brain delivery of paliperidone-loaded lipid nanoconstructs: pharmacokinetic, behavioral, biochemical, and histological aspects. Drug Deliv. 29, 1409–1422 (2022).

28

Tian, H. et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J. Hematol. Oncol. 15, 132 (2022).

29

Chen, J. et al. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8(+) T cell response. Proc. Natl. Acad. Sci. USA 119, e2207841119 (2022).

30

Singh, V. K. et al. CD44 receptor-targeted nanoparticles augment immunity against tuberculosis in mice. J. Control Rel. 349, 796–811 (2022).

31

Wang, T. et al. Biomimetic nanoparticles directly remodel immunosuppressive microenvironment for boosting glioblastoma immunotherapy. Bioact. Mater. 16, 418–432 (2022).

32

Li, S. et al. Advances of bacteria-based delivery systems for modulating tumor microenvironment. Adv. Drug Deliv. Rev. 188, 114444 (2022).

33

Wu, F. et al. Modulation of the tumor immune microenvironment by Bi(2) Te(3) -Au/Pd-based theranostic nanocatalysts enables efficient cancer therapy. Adv. Healthc. Mater. 11, e2200809 (2022).

34

Liu, K. et al. Photothermal-triggered immunogenic nanotherapeutics for optimizing osteosarcoma therapy by synergizing innate and adaptive immunity. Biomaterials 282, 121383 (2022).

35

Wang, H. et al. Subtype classification and prognosis signature construction of osteosarcoma based on cellular senescence-related genes. J. Oncol. 2022, 4421952 (2022).

36

Pierrevelcin, M. et al. Engineering Novel 3D models to recreate high-grade osteosarcoma and its immune and extracellular matrix microenvironment. Adv. Healthc. Mater. 11, e2200195 (2022).

37

Somaiah, N. et al. Durvalumab plus tremelimumab in advanced or metastatic soft tissue and bone sarcomas: a single-centre phase 2 trial. Lancet Oncol. 23, 1156–1166 (2022).

38

Xie, X. et al. Remodeling tumor immunosuppressive microenvironment via a novel bioactive nanovaccines potentiates the efficacy of cancer immunotherapy. Bioact. Mater. 16, 107–119 (2022).

39

Wang, L. et al. Self-splittable transcytosis Nanoraspberry for NIR-II Photo-immunometabolic cancer therapy in deep tumor tissue. Adv Sci (Weinh) 9, e2204067 (2022).

40

Huang, X. et al. Dual-responsive nanosystem based on TGF-β blockade and immunogenic chemotherapy for effective chemoimmunotherapy. Drug Deliv. 29, 1358–1369 (2022).

41

Mi, H. et al. Quantitative spatial profiling of immune populations in pancreatic ductal adenocarcinoma reveals tumor microenvironment heterogeneity and prognostic biomarkers. Cancer 82, 4359–4372 (2022).

42

Li, M. et al. Tumor-derived exosomes deliver the tumor suppressor miR-3591-3p to induce M2 macrophage polarization and promote glioma progression. Oncogene 41, 4618–4632 (2022).

43

Kuo, C. L. et al. A Fc-VEGF chimeric fusion enhances PD-L1 immunotherapy via inducing immune reprogramming and infiltration in the immunosuppressive tumor microenvironment. Cancer Immunol. Immunother. 72, 351–369 (2022).

44

Poulin, L. F., Lasseaux, C. & Chamaillard, M. Understanding the cellular origin of the mononuclear phagocyte system sheds light on the myeloid postulate of immune paralysis in sepsis. Front. Immunol. 9, 823 (2018).

45

Yin, X. et al. Human Blood CD1c+ Dendritic cells encompass CD5high and CD5 low subsets that differ significantly in phenotype, gene expression, and functions. J. Immunol. 198, 1553–1564 (2017).

46

Collin, M. & Bigley, V. Human dendritic cell subsets: an update. Immunology 154, 3–20 (2018).

47

Talker, S. C. et al. Precise delineation and transcriptional characterization of bovine blood dendritic-cell and monocyte subsets. Front. Immunol. 9, 2505 (2018).

48

Zhou, Y. et al. Vaccine efficacy against primary and metastatic cancer with in vitro-generated CD103(+) conventional dendritic cells. J. Immunother. Cancer 8, e000474 (2020).

49

Meyer, M. A. et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nat. Commun. 9, 1250 (2018).

50

Makino, K. et al. Generation of cDC-like cells from human induced pluripotent stem cells via Notch signaling. J. Immunother. Cancer 10, e003827 (2022).

51

Inagaki, Y. et al. Dendritic and mast cell involvement in the inflammatory response to primary malignant bone tumours. Clin. Sarcoma Res. 6, 13 (2016).

52

Zhang, G. Z. et al. Development of a machine learning-based autophagy-related lncrna signature to improve prognosis prediction in osteosarcoma patients. Front Mol. Biosci. 8, 615084 (2021).

53

Le, T., Su, S., Kirshtein, A. & Shahriyari, L. Data-driven mathematical model of osteosarcoma. Cancers 13, 2367 (2021).

54

Kansara, M. et al. Infiltrating myeloid cells drive osteosarcoma progression via GRM4 regulation of IL23. Cancer Discov. 9, 1511–1519 (2019).

55

Jones, K. B. Dendritic cells drive Osteosarcomagenesis through newly identified oncogene and tumor suppressor. Cancer Discov. 9, 1484–1486 (2019).

56

Kawano, M., Itonaga, I., Iwasaki, T. & Tsumura, H. Enhancement of antitumor immunity by combining anti-cytotoxic T lymphocyte antigen-4 antibodies and cryotreated tumor lysate-pulsed dendritic cells in murine osteosarcoma. Oncol. Rep. 29, 1001–1006 (2013).

57

Zhou, Y. et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 11, 6322 (2020).

58

Koirala, P. et al. Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci. Rep. 6, 30093 (2016).

59

Le, T., Su, S. & Shahriyari, L. Immune classification of osteosarcoma. Math. Biosci. Eng. 18, 1879–1897 (2021).

60

Lawir, D. F., Sikora, K., O’Meara, C. P., Schorpp, M. & Boehm, T. Pervasive changes of mRNA splicing in upf1-deficient zebrafish identify rpl10a as a regulator of T cell development. Proc. Natl. Acad. Sci. USA 117, 15799–15808 (2020).

61

Vogel, A., Kerndl, M., Schabbauer, G. & Sharif, O. Protocol to assess the tolerogenic properties of adoptively transferred dendritic cells during murine experimental autoimmune encephalomyelitis. STAR Protoc. 3, 101653 (2022).

62

Gan, X. et al. An anti-CTLA-4 heavy chain-only antibody with enhanced T(reg) depletion shows excellent preclinical efficacy and safety profile. Proc. Natl. Acad. Sci. USA 119, e2200879119 (2022).

63

Xia, S. et al. miR-150 promotes progressive T cell differentiation via inhibiting FOXP1 and RC3H1. Hum. Immunol. 83, 778–788 (2022).

64

Itahashi, K., Irie, T. & Nishikawa, H. Regulatory T-cell development in the tumor microenvironment. Eur. J. Immunol. 52, 1216–1227 (2022).

65

Liang, J. et al. Tumor-associated regulatory T cells in non-small-cell lung cancer: current advances and future perspectives. J. Immunol. Res. 2022, 4355386 (2022).

66

Schroeter, C. B. et al. Crosstalk of microorganisms and immune responses in autoimmune neuroinflammation: a focus on regulatory t cells. Front. Immunol. 12, 747143 (2021).

67

Yabe, H. et al. Prognostic significance of HLA class I expression in Ewing’s sarcoma family of tumors. J. Surg. Oncol. 103, 380–385 (2011).

68

Ligon, J. A. et al. Pathways of immune exclusion in metastatic osteosarcoma are associated with inferior patient outcomes. J. Immunother. Cancer 9, e001772 (2021).

69

Sundara, Y. T. et al. Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a rationale for T-cell-based immunotherapy. Cancer Immunol. Immunother. 66, 119–128 (2017).

70

Tobita, S. et al. Successful continuous nivolumab therapy for metastatic non-small cell lung cancer after local treatment of oligometastatic lesions. Thorac. Cancer 11, 2357–2360 (2020).

71

Lavon, I., Heli, C., Brill, L., Charbit, H. & Vaknin-Dembinsky, A. Blood levels of co-inhibitory-receptors: a biomarker of disease prognosis in multiple sclerosis. Front. Immunol. 10, 835 (2019).

72

Su, M., Huang, C. X. & Dai, A. P. Immune checkpoint inhibitors: therapeutic tools for breast cancer. Asian Pac. J. Cancer Prev. 17, 905–910 (2016).

73

Han, Q., Shi, H. & Liu, F. CD163(+) M2-type tumor-associated macrophage support the suppression of tumor-infiltrating T cells in osteosarcoma. Int Immunopharmacol. 34, 101–106 (2016).

74

Matsuo, T. et al. Extraskeletal osteosarcoma with partial spontaneous regression. Anticancer Res. 29, 5197–5201 (2009).

75

Maskalenko, N. A., Zhigarev, D. & Campbell, K. S. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat. Rev. Drug Disco. 21, 559–577 (2022).

76

Croft, C. A. et al. Notch, RORC and IL-23 signals cooperate to promote multi-lineage human innate lymphoid cell differentiation. Nat. Commun. 13, 4344 (2022).

77

Le, H., Spearman, P., Waggoner, S. N. & Singh, K. Ebola virus protein VP40 stimulates IL-12- and IL-18-dependent activation of human natural killer cells. JCI Insight 7, e158902 (2022).

78

Pende, D. et al. Killer Ig-like Receptors (KIRs): Their role in NK cell modulation and developments leading to their clinical exploitation. Front. Immunol. 10, 1179 (2019).

79

Zheng, G., Jia, L. & Yang, A. G. Roles of HLA-G/KIR2DL4 in breast cancer immune microenvironment. Front. Immunol. 13, 791975 (2022).

80

D’Amico, S. et al. ERAP1 controls the interaction of the inhibitory receptor KIR3DL1 with HLA-B51: 01 by affecting natural killer cell function. Front. Immunol. 12, 778103 (2021).

81

Boudreau, J. E. & Hsu, K. C. Natural killer cell education and the response to infection and cancer therapy: stay tuned. Trends Immunol. 39, 222–239 (2018).

82

Borrego, F. et al. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol. Immunol. 38, 637–660 (2002).

83

Barrow, A. D., Martin, C. J. & Colonna, M. The natural cytotoxicity receptors in health and disease. Front. Immunol. 10, 909 (2019).

84

Lee, G. H. et al. Clinical impact of natural killer Group 2D receptor expression and that of its ligand in ovarian carcinomas: a retrospective study. Yonsei Med. J. 62, 288–297 (2021).

85

Kegasawa, T. et al. Soluble UL16-binding protein 2 is associated with a poor prognosis in pancreatic cancer patients. Biochem. Biophys. Res. Commun. 517, 84–88 (2019).

86

Tsertsvadze, T., Mitskevich, N., Bilanishvili, A., Girdaladze, D. & Porakishvili, N. Phagocytosis and expression of FCg-receptors and CD180 on monocytes in chronic lymphocytic leukemia. Georgian Med. News 88–93 (2017).

87

Sivori, S. et al. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol. Immunol. 16, 430–441 (2019).

88

Souza-Fonseca-Guimaraes, F., Cursons, J. & Huntington, N. D. The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol. 40, 142–158 (2019).

89

Ogiwara, Y. et al. Blocking FSTL1 boosts NK immunity in treatment of osteosarcoma. Cancer Lett. 537, 215690 (2022).

90

Razmara, A. M. et al. Natural killer and T cell infiltration in canine osteosarcoma: clinical implications and translational relevance. Front. Vet. Sci. 8, 771737 (2021).

91

Lim, K. S., Mimura, K., Kua, L. F., Shiraishi, K. & Kono, K. Implication of highly cytotoxic natural killer cells for esophageal squamous cell carcinoma treatment. J. Immunother. 41, 261–273 (2018).

92

Baek, H. J. et al. Ex vivo expansion of natural killer cells using cryopreserved irradiated feeder cells. Anticancer Res. 33, 2011–2019 (2013).

93

Cho, D. et al. Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clin. Cancer Res. 16, 3901–3909 (2010).

94

Fernández, L. et al. Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D-NKG2DL dependent manner. Cancer Lett. 368, 54–63 (2015).

95

Zhu, S. et al. The narrow-spectrum HDAC inhibitor entinostat enhances NKG2D expression without NK cell toxicity, leading to enhanced recognition of cancer cells. Pharm. Res. 32, 779–792 (2015).

96

Otegbeye, F. et al. Natural killer cell alloreactivity predicted by killer cell immunoglobulin-like receptor ligand mismatch does not impact engraftment in umbilical cord blood and haploidentical stem cell transplantation. Transpl. Cell Ther. 28, 483.e481–483.e487 (2022).

97

Zhang, Y. et al. Mesenchymal stem cells enhance the impact of KIR receptor-ligand mismatching on acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia but not in those with acute lymphocytic leukemia. Hematol. Oncol. 39, 380–389 (2021).

98

Arvanitakis, K., Koletsa, T., Mitroulis, I. & Germanidis, G. Tumor-associated macrophages in hepatocellular carcinoma pathogenesis, prognosis and therapy. Cancers 14, 226 (2022).

99

Izumi, Y. et al. An antibody-drug conjugate that selectively targets human monocyte progenitors for anti-cancer therapy. Front. Immunol. 12, 618081 (2021).

100

Wu, X. Q. et al. Increased expression of tribbles homolog 3 predicts poor prognosis and correlates with tumor immunity in clear cell renal cell carcinoma: a bioinformatics study. Bioengineered 13, 14000–14012 (2022).

101

Kelleher, F. C. & O’Sullivan, H. Monocytes, macrophages, and osteoclasts in osteosarcoma. J. Adolesc. Young-. Adult Oncol. 6, 396–405 (2017).

102

Italiani, P. & Boraschi, D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front. Immunol. 5, 514 (2014).

103

Brifault, C., Gilder, A. S., Laudati, E., Banki, M. & Gonias, S. L. Shedding of membrane-associated LDL receptor-related protein-1 from microglia amplifies and sustains neuroinflammation. J. Biol. Chem. 292, 18699–18712 (2017).

104

Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

105

Shapouri-Moghaddam, A. et al. Macrophage plasticity, polarization, and function in health and disease. J. Cell Physiol. 233, 6425–6440 (2018).

106

Komohara, Y., Fujiwara, Y., Ohnishi, K. & Takeya, M. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv. Drug Deliv. Rev. 99, 180–185 (2016).

107

Huang, Q. et al. The role of tumor-associated macrophages in osteosarcoma progression - therapeutic implications. Cell Oncol. 44, 525–539 (2021).

108

Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

109

Kielbassa, K., Vegna, S., Ramirez, C. & Akkari, L. Understanding the origin and diversity of macrophages to tailor their targeting in solid cancers. Front. Immunol. 10, 2215 (2019).

110

Dudzinski, S. O. et al. Leptin augments antitumor immunity in obesity by repolarizing tumor-associated macrophages. J. Immunol. 207, 3122–3130 (2021).

111

Ahirwar, D. K. et al. Slit2 inhibits breast cancer metastasis by activating M1-like phagocytic and antifibrotic macrophages. Cancer Res. 81, 5255–5267 (2021).

112

Szulc-Kielbik, I. & Kielbik, M. Tumor-associated macrophages: reasons to be cheerful, reasons to be fearful. Exp. Suppl. 113, 107–140 (2022).

113

Wang, X. et al. HMGA2 facilitates colorectal cancer progression via STAT3-mediated tumor-associated macrophage recruitment. Theranostics 12, 963–975 (2022).

114

Deng, C. et al. Reprograming the tumor immunologic microenvironment using neoadjuvant chemotherapy in osteosarcoma. Cancer Sci. 111, 1899–1909 (2020).

115

Shao, X. J. et al. Inhibition of M2-like macrophages by all-trans retinoic acid prevents cancer initiation and stemness in osteosarcoma cells. Acta Pharm. Sin. 40, 1343–1350 (2019).

116

Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).

117

Jakab, M., Rostalski, T., Lee, K. H., Mogler, C. & Augustin, H. G. Tie2 receptor in tumor-infiltrating macrophages is dispensable for tumor angiogenesis and tumor relapse after chemotherapy. Cancer Res. 82, 1353–1364 (2022).

118

Zhang, J., Zhou, X. & Hao, H. Macrophage phenotype-switching in cancer. Eur. J. Pharm. 931, 175229 (2022).

119

Sun, Q. et al. Lenvatinib for effectively treating antiangiogenic drug-resistant nasopharyngeal carcinoma. Cell Death Dis. 13, 724 (2022).

120

Hang, X. et al. BCL-2 isoform β promotes angiogenesis by TRiC-mediated upregulation of VEGF-A in lymphoma. Oncogene 41, 3655–3663 (2022).

121

Huang, C. Y. et al. Fluoroquinolones suppress TGF-β and PMA-induced MMP-9 production in cancer cells: implications in repurposing quinolone antibiotics for cancer treatment. Int. J. Mol. Sci. 22, 11602 (2021).

122

Patel, S. S. et al. The microenvironmental niche in classic Hodgkin lymphoma is enriched for CTLA-4-positive T cells that are PD-1-negative. Blood 134, 2059–2069 (2019).

123

Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

124

Zhang, P. et al. Macrophages promote coal tar pitch extract-induced tumorigenesis of BEAS-2B cells and tumor metastasis in nude mice mediated by AP-1. Asian Pac. J. Cancer Prev. 15, 4871–4876 (2014).

125

Han, Y. et al. Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis. Cancer Lett. 440-441, 116–125 (2019).

126

Etzerodt, A. et al. Specific targeting of CD163(+) TAMs mobilizes inflammatory monocytes and promotes T cell-mediated tumor regression. J. Exp. Med. 216, 2394–2411 (2019).

127

Yamaguchi, Y. et al. PD-L1 blockade restores CAR T cell activity through IFN-γ-regulation of CD163+ M2 macrophages. J. Immunother. Cancer 10, e004400 (2022).

128

Eruslanov, E. B., Singhal, S. & Albelda, S. M. Mouse versus human neutrophils in cancer: a major knowledge gap. Trends Cancer 3, 149–160 (2017).

129

Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

130

Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

131

Yang, S., Wu, C., Wang, L., Shan, D. & Chen, B. Pretreatment inflammatory indexes as prognostic predictors for survival in osteosarcoma patients. Int. J. Clin. Exp. Pathol. 13, 515–524 (2020).

132

Liu, B. et al. Prognostic value of inflammation-based scores in patients with osteosarcoma. Sci. Rep. 6, 39862 (2016).

133

Xia, W. K. et al. Prognostic performance of pre-treatment NLR and PLR in patients suffering from osteosarcoma. World J. Surg. Oncol. 14, 127 (2016).

134

Vasquez, L. et al. Pretreatment Neutrophil-to-Lymphocyte ratio and lymphocyte recovery: independent prognostic factors for survival in pediatric sarcomas. J. Pediatr. Hematol. Oncol. 39, 538–546 (2017).

135

Yapar, A. et al. Diagnostic and prognostic role of neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, and lymphocyte/monocyte ratio in patients with osteosarcoma. Jt Dis. Relat. Surg. 32, 489–496 (2021).

136

Wu, L., Saxena, S., Awaji, M. & Singh, R. K. Tumor-associated neutrophils in cancer: going pro. Cancers 11, 564 (2019).

137

Filep, J. G. Targeting neutrophils for promoting the resolution of inflammation. Front. Immunol. 13, 866747 (2022).

138

Silvestre-Roig, C., Hidalgo, A. & Soehnlein, O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 127, 2173–2181 (2016).

139

Pillay, J. et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116, 625–627 (2010).

140

Akgul, C., Moulding, D. A. & Edwards, S. W. Molecular control of neutrophil apoptosis. FEBS Lett. 487, 318–322 (2001).

141

Carestia, A., Kaufman, T. & Schattner, M. Platelets: New bricks in the building of neutrophil extracellular traps. Front. Immunol. 7, 271 (2016).

142

Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).

143

Leshner, M. et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front. Immunol. 3, 307 (2012).

144

Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

145

Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

146

Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

147

Mishalian, I. et al. Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol. Immunother. 62, 1745–1756 (2013).

148

Sun, R. et al. Neutrophils with protumor potential could efficiently suppress tumor growth after cytokine priming and in presence of normal NK cells. Oncotarget 5, 12621–12634 (2014).

149

Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

150

Jaillon, S. et al. Neutrophil diversity, and plasticity in tumour progression and therapy. Nat. Rev. Cancer 20, 485–503 (2020).

151

Shaul, M. E. & Fridlender, Z. G. Tumour-associated neutrophils in patients with cancer. Nat. Rev. Clin. Oncol. 16, 601–620 (2019).

152

Powell, D. R. & Huttenlocher, A. Neutrophils in the Tumor Microenvironment. Trends Immunol. 37, 41–52 (2016).

153

Yang, B. et al. Identification of prognostic biomarkers associated with metastasis and immune infiltration in osteosarcoma. Oncol. Lett. 21, 180 (2021).

154

Furumaya, C., Martinez-Sanz, P., Bouti, P., Kuijpers, T. W. & Matlung, H. L. Plasticity in Pro- and anti-tumor activity of neutrophils: shifting the balance. Front. Immunol. 11, 2100 (2020).

155

Zhang, X. et al. Neutrophils in cancer development and progression: Roles, mechanisms, and implications (Review). Int. J. Oncol. 49, 857–867 (2016).

156

Zhang, C. et al. Neutrophils correlate with hypoxia microenvironment and promote progression of non-small-cell lung cancer. Bioengineered 12, 8872–8884 (2021).

157

Fu, Y. et al. Development and validation of a hypoxia-associated prognostic signature related to osteosarcoma metastasis and immune infiltration. Front. Cell Dev. Biol. 9, 633607 (2021).

158

Wang, Y. et al. CXCR4-guided liposomes regulating hypoxic and immunosuppressive microenvironment for sorafenib-resistant tumor treatment. Bioact. Mater. 17, 147–161 (2022).

159

Wang, W. et al. Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments. Nat. Commun. 13, 4495 (2022).

160

Dou, A. & Fang, J. Heterogeneous myeloid cells in tumors. Cancers 13, 3772 (2021).

161

De Vlaeminck, Y., González-Rascón, A., Goyvaerts, C. & Breckpot, K. Cancer-associated myeloid regulatory cells. Front Immunol. 7, 113 (2016).

162

Ling, Z., Yang, C., Tan, J., Dou, C. & Chen, Y. Beyond immunosuppressive effects: dual roles of myeloid-derived suppressor cells in bone-related diseases. Cell Mol. Life Sci. 78, 7161–7183 (2021).

163

Horlad, H. et al. Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells. Mol. Nutr. Food Res. 57, 1046–1054 (2013).

164

Wu, S. Y. & Chiang, C. S. Distinct role of CD11b(+)Ly6G(-)Ly6C(-) Myeloid-derived cells on the progression of the primary tumor and therapy-associated recurrent brain tumor. Cells 9, 51 (2019).

165

Ribechini, E., Greifenberg, V., Sandwick, S. & Lutz, M. B. Subsets, expansion and activation of myeloid-derived suppressor cells. Med. Microbiol Immunol. 199, 273–281 (2010).

166

Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

167

Bottomley, M. J., Harden, P. N., Wood, K. J., Hester, J. & Issa, F. Dampened Inflammatory signalling and myeloid-derived suppressor-like cell accumulation reduces circulating monocytic HLA-DR density and may associate with malignancy risk in long-term renal transplant recipients. Front. Immunol. 13, 901273 (2022).

168

Mukherjee, S. et al. IL-6 dependent expansion of inflammatory MDSCs (CD11b+ Gr-1+) promote Th-17 mediated immune response during experimental cerebral malaria. Cytokine 155, 155910 (2022).

169

Scirocchi, F. et al. Immune effects of CDK4/6 inhibitors in patients with HR(+)/HER2(-) metastatic breast cancer: Relief from immunosuppression is associated with clinical response. EBioMedicine 79, 104010 (2022).

170

Joshi, S. & Sharabi, A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharm. Ther. 235, 108114 (2022).

171

Fionda, C., Abruzzese, M. P., Santoni, A. & Cippitelli, M. Immunoregulatory and effector activities of nitric oxide and reactive nitrogen species in cancer. Curr. Med. Chem. 23, 2618–2636 (2016).

172

Sasidharan Nair, V., Saleh, R., Toor, S. M., Alajez, N. M. & Elkord, E. Transcriptomic analyses of myeloid-derived suppressor cell subsets in the circulation of colorectal cancer patients. Front. Oncol. 10, 1530 (2020).

173

Porta, C. et al. Tumor-derived Prostaglandin E2 promotes p50 NF-κB-dependent differentiation of monocytic MDSCs. Cancer Res. 80, 2874–2888 (2020).

174

Xin, B. et al. Enhancing the therapeutic efficacy of programmed death ligand 1 antibody for metastasized liver cancer by overcoming hepatic immunotolerance in mice. Hepatology 76, 630–645 (2022).

175

Zhang, X. et al. CD147 mediates epidermal malignant transformation through the RSK2/AP-1 pathway. J. Exp. Clin. Cancer Res. 41, 246 (2022).

176

Rodríguez, P. C. & Ochoa, A. C. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol. Rev. 222, 180–191 (2008).

177

Yang, Y., Li, C., Liu, T., Dai, X. & Bazhin, A. V. Myeloid-derived suppressor cells in tumors: from mechanisms to antigen specificity and microenvironmental regulation. Front. Immunol. 11, 1371 (2020).

178

Gabrilovich, D. I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 5, 3–8 (2017).

179

Sevko, A. & Umansky, V. Myeloid-derived suppressor cells interact with tumors in terms of myelopoiesis, tumorigenesis and immunosuppression: thick as thieves. J. Cancer 4, 3–11 (2013).

180

Marvel, D. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J. Clin. Invest. 125, 3356–3364 (2015).

181

Wang, N. et al. 3D hESC exosomes enriched with miR-6766-3p ameliorates liver fibrosis by attenuating activated stellate cells through targeting the TGFβRII-SMADS pathway. J. Nanobiotechnology 19, 437 (2021).

182

Liu, H., Sun, X., Gong, X. & Wang, G. Human umbilical cord mesenchymal stem cells derived exosomes exert antiapoptosis effect via activating PI3K/Akt/mTOR pathway on H9C2 cells. J. Cell Biochem. 120, 14455–14464 (2019).

183

Jiao, Y. et al. Tumor cell-derived extracellular vesicles for breast cancer specific delivery of therapeutic P53. J. Control Release 349, 606–616 (2022).

184

De Martino, V. et al. Extracellular vesicles in osteosarcoma: antagonists or therapeutic agents? Int. J. Mol. Sci. 22, 12586 (2021).

185

Hareendran, S., Yang, X., Sharma, V. K. & Loh, Y. P. Carboxypeptidase E and its splice variants: Key regulators of growth and metastasis in multiple cancer types. Cancer Lett. 548, 215882 (2022).

186

Zhang, Y. et al. H3K27 acetylation activated-COL6A1 promotes osteosarcoma lung metastasis by repressing STAT1 and activating pulmonary cancer-associated fibroblasts. Theranostics 11, 1473–1492 (2021).

187

Du, M. et al. Genome-wide CRISPR screen identified Rad18 as a determinant of doxorubicin sensitivity in osteosarcoma. J. Exp. Clin. Cancer Res. 41, 154 (2022).

188

Cappariello, A. & Rucci, N. Tumour-derived Extracellular Vesicles (EVs): A dangerous “Message in A Bottle” for Bone. Int. J. Mol. Sci. 20, 4805 (2019).

189

Greening, D. W., Gopal, S. K., Xu, R., Simpson, R. J. & Chen, W. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev. Biol. 40, 72–81 (2015).

190

Troyer, R. M. et al. Exosomes from Osteosarcoma and normal osteoblast differ in proteomic cargo and immunomodulatory effects on T cells. Exp. Cell Res. 358, 369–376 (2017).

191

Wang, J. et al. Exosomal PD-L1 and N-cadherin predict pulmonary metastasis progression for osteosarcoma patients. J. Nanobiotechnology 18, 151 (2020).

192

Isla Larrain, M. T. et al. IDO is highly expressed in breast cancer and breast cancer-derived circulating microvesicles and associated to aggressive types of tumors by in silico analysis. Tumour Biol. 35, 6511–6519 (2014).

193

Wang, S., Ma, F., Feng, Y., Liu, T. & He, S. Role of exosomal miR‑21 in the tumor microenvironment and osteosarcoma tumorigenesis and progression (Review). Int J. Oncol. 56, 1055–1063 (2020).

194

Schiavone, K., Garnier, D., Heymann, M. F. & Heymann, D. The heterogeneity of Osteosarcoma: The role played by cancer stem cells. Adv. Exp. Med. Biol. 1139, 187–200 (2019).

195

Xu, A. et al. Cell Differentiation trajectory-associated molecular classification of Osteosarcoma. Genes 12, 1685 (2021).

196

Sarhadi, V. K., Daddali, R. & Seppänen-Kaijansinkko, R. Mesenchymal stem cells and extracellular vesicles in osteosarcoma pathogenesis and therapy. Int. J. Mol. Sci. 22, 11035 (2021).

197

Sole, A. et al. Unraveling Ewing Sarcoma Tumorigenesis originating from patient-derived mesenchymal stem cells. Cancer Res. 81, 4994–5006 (2021).

198

Mannerström, B. et al. Epigenetic alterations in mesenchymal stem cells by osteosarcoma-derived extracellular vesicles. Epigenetics 14, 352–364 (2019).

199

Wang, J. Y. et al. Generation of Osteosarcomas from a combination of Rb silencing and c-Myc overexpression in human mesenchymal stem cells. Stem Cells Transl. Med. 6, 512–526 (2017).

200

Chang, X., Ma, Z., Zhu, G., Lu, Y. & Yang, J. New perspective into mesenchymal stem cells: Molecular mechanisms regulating osteosarcoma. J. Bone Oncol. 29, 100372 (2021).

201

Sun, Z., Wang, S. & Zhao, R. C. The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J. Hematol. Oncol. 7, 14 (2014).

202

Kawano, M., Tanaka, K., Itonaga, I., Iwasaki, T. & Tsumura, H. Interaction between human osteosarcoma and mesenchymal stem cells via an interleukin-8 signaling loop in the tumor microenvironment. Cell Commun. Signal 16, 13 (2018).

203

Du, L. et al. CXCR1/Akt signaling activation induced by mesenchymal stem cell-derived IL-8 promotes osteosarcoma cell anoikis resistance and pulmonary metastasis. Cell Death Dis. 9, 714 (2018).

204

Pelagalli, A., Nardelli, A., Fontanella, R. & Zannetti, A. Inhibition of AQP1 Hampers Osteosarcoma and Hepatocellular Carcinoma progression mediated by bone marrow-derived mesenchymal stem cells. Int. J. Mol. Sci. 17, 1102 (2016).

205

Deng, Q. et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. Elife 8, e50208 (2019).

206

Pietrovito, L. et al. Bone marrow-derived mesenchymal stem cells promote invasiveness and transendothelial migration of osteosarcoma cells via a mesenchymal to amoeboid transition. Mol. Oncol. 12, 659–676 (2018).

207

Baglio, S. R. et al. Blocking tumor-educated MSC Paracrine activity halts Osteosarcoma progression. Clin. Cancer Res. 23, 3721–3733 (2017).

208

Lin, L. et al. Conditioned medium of the osteosarcoma cell line U2OS induces hBMSCs to exhibit characteristics of carcinoma-associated fibroblasts via activation of IL-6/STAT3 signalling. J. Biochem. 168, 265–271 (2020).

209

Chang, A. I., Schwertschkow, A. H., Nolta, J. A. & Wu, J. Involvement of mesenchymal stem cells in cancer progression and metastases. Curr. Cancer Drug Targets 15, 88–98 (2015).

210

Lagerweij, T., Pérez-Lanzón, M. & Baglio, S. R. A preclinical mouse model of osteosarcoma to define the extracellular vesicle-mediated communication between tumor and mesenchymal stem cells. J. Vis. Exp 135, 56932 (2018).

211

Zhang, Q. et al. Exosomes originating from MSCs stimulated with TGF-β and IFN-γ promote Treg differentiation. J. Cell Physiol. 233, 6832–6840 (2018).

212

Khare, D. et al. Mesenchymal stromal cell-derived exosomes affect mRNA expression and function of B-Lymphocytes. Front. Immunol. 9, 3053 (2018).

213

Li, W. et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 10, 918 (2019).

214

Jia, X. H. et al. Activation of mesenchymal stem cells by macrophages promotes tumor progression through immune suppressive effects. Oncotarget 7, 20934–20944 (2016).

215

Mardpour, S. et al. Interaction between mesenchymal stromal cell-derived extracellular vesicles and immune cells by distinct protein content. J. Cell Physiol. 234, 8249–8258 (2019).

216

Chang, L., Asatrian, G., Dry, S. M. & James, A. W. Circulating tumor cells in sarcomas: a brief review. Med. Oncol. 32, 430 (2015).

217

Wu, Z. J., Tan, J. C., Qin, X., Liu, B. & Yuan, Z. C. Significance of circulating tumor cells in osteosarcoma patients treated by neoadjuvant chemotherapy and surgery. Cancer Manag Res. 10, 3333–3339 (2018).

218

Cortini, M. et al. Exploring metabolic adaptations to the acidic microenvironment of Osteosarcoma cells unveils Sphingosine 1-Phosphate as a valuable therapeutic target. Cancers 13, 311 (2021).

219

Zhang, Y. et al. Interleukin-6 suppression reduces tumour self-seeding by circulating tumour cells in a human osteosarcoma nude mouse model. Oncotarget 7, 446–458 (2016).

220

Liu, T. et al. Self-seeding circulating tumor cells promote the proliferation and metastasis of human osteosarcoma by upregulating interleukin-8. Cell Death Dis. 10, 575 (2019).

221

Sun, Q. et al. Nanomedicine and macroscale materials in immuno-oncology. Chem. Soc. Rev. 48, 351–381 (2019).

222

Preusser, M., Berghoff, A. S., Thallinger, C. & Zielinski, C. C. Cancer immune cycle: a video introduction to the interaction between cancer and the immune system. ESMO Open 1, e000056 (2016).

223

Kim, K. S., Youn, Y. S. & Bae, Y. H. Immune-triggered cancer treatment by intestinal lymphatic delivery of docetaxel-loaded nanoparticle. J. Control Release 311-312, 85–95 (2019).

224

Meng, Z. et al. Tumor immunotherapy boosted by R837 nanocrystals through combining chemotherapy and mild hyperthermia. J. Control Release 350, 841–856 (2022).

225

Yang, J. & Zhang, C. Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol 12, e1612 (2020).

226

Galiana, I. et al. Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic. J. Control Rel. 323, 624–634 (2020).

227

Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

228

Anfray, C., Ummarino, A., Andón, F. T. & Allavena, P. Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses. Cells 9, 46 (2019).

229

van Dalen, F. J., van Stevendaal, M., Fennemann, F. L., Verdoes, M. & Ilina, O. Molecular repolarisation of tumour-associated macrophages. Molecules 24, 9 (2018).

230

Shime, H. et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc. Natl. Acad. Sci. USA 109, 2066–2071 (2012).

231

Vidyarthi, A. et al. TLR-3 stimulation Skews M2 macrophages to M1 through IFN-αβ signaling and restricts tumor progression. Front. Immunol. 9, 1650 (2018).

232

Helleberg Madsen, N., Schnack Nielsen, B., Larsen, J. & Gad, M. In vitro 2D and 3D cancer models to evaluate compounds that modulate macrophage polarization. Cell Immunol. 378, 104574 (2022).

233

Ubil, E. et al. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J. Clin. Invest. 128, 2356–2369 (2018).

234

Pahl, J. H. et al. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ. J. Exp. Clin. Cancer Res. 33, 27 (2014).

235
Correction: All-Trans retinoic acid prevents osteosarcoma metastasis by inhibiting M2 polarization of tumor-associated macrophages. Cancer Immunol. Res. 8, 280, (2020).
236

Wang, J. C. et al. Metformin’s antitumour and anti-angiogenic activities are mediated by skewing macrophage polarization. J. Cell Mol. Med. 22, 3825–3836 (2018).

237

Uehara, T. et al. Metformin induces CD11b+-cell-mediated growth inhibition of an osteosarcoma: implications for metabolic reprogramming of myeloid cells and anti-tumor effects. Int. Immunol. 31, 187–198 (2019).

238

Maloney, C. et al. Gefitinib inhibits invasion and metastasis of Osteosarcoma via inhibition of macrophage receptor interacting Serine-Threonine Kinase 2. Mol. Cancer Ther. 19, 1340–1350 (2020).

239

Yang, M. et al. MYLK4 promotes tumor progression through the activation of epidermal growth factor receptor signaling in osteosarcoma. J. Exp. Clin. Cancer Res. 40, 166 (2021).

240

Wang, S. et al. Stattic sensitizes osteosarcoma cells to epidermal growth factor receptor inhibitors via blocking the interleukin 6-induced STAT3 pathway. Acta Biochim. Biophys. Sin. 53, 1670–1680 (2021).

241

Kallis, M. P. et al. Pharmacological prevention of surgery-accelerated metastasis in an animal model of osteosarcoma. J. Transl. Med. 18, 183 (2020).

242

Nohara, T. et al. Antitumor allium sulfides. Chem. Pharm. Bull. 65, 209–217 (2017).

243

Nohara, T. et al. Thiolane-type sulfides from garlic, onion, and Welsh onion. J. Nat. Med. 75, 741–751 (2021).

244

Fujiwara, Y., Takeya, M. & Komohara, Y. A novel strategy for inducing the antitumor effects of triterpenoid compounds: blocking the protumoral functions of tumor-associated macrophages via STAT3 inhibition. Biomed. Res. Int. 2014, 348539 (2014).

245

Chen, X. et al. Oleanolic acid inhibits osteosarcoma cell proliferation and invasion by suppressing the SOX9/Wnt1 signaling pathway. Exp. Ther. Med. 21, 443 (2021).

246

Kimura, Y. & Sumiyoshi, M. Anti-tumor and anti-metastatic actions of wogonin isolated from Scutellaria baicalensis roots through anti-lymphangiogenesis. Phytomedicine 20, 328–336 (2013).

247

Kimura, Y. & Sumiyoshi, M. Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells. Eur. J. Pharm. 746, 115–125 (2015).

248

Sumiyoshi, M., Taniguchi, M., Baba, K. & Kimura, Y. Antitumor and antimetastatic actions of xanthoangelol and 4-hydroxyderricin isolated from Angelica Keiskei roots through the inhibited activation and differentiation of M2 macrophages. Phytomedicine 22, 759–767 (2015).

249

Kimura, Y. & Sumiyoshi, M. Resveratrol prevents tumor growth and metastasis by inhibiting Lymphangiogenesis and M2 macrophage activation and differentiation in tumor-associated macrophages. Nutr. Cancer 68, 667–678 (2016).

250

Kimura, Y., Sumiyoshi, M. & Baba, K. Antitumor and antimetastatic activity of synthetic hydroxystilbenes through inhibition of lymphangiogenesis and M2 macrophage differentiation of tumor-associated macrophages. Anticancer Res. 36, 137–148 (2016).

251

Caldeira, J. C., Perrine, M., Pericle, F. & Cavallo, F. Virus-like particles as an immunogenic platform for cancer vaccines. Viruses 12, 488 (2020).

252

Ying, K. et al. Macrophage membrane-biomimetic adhesive polycaprolactone nanocamptothecin for improving cancer-targeting efficiency and impairing metastasis. Bioact. Mater. 20, 449–462 (2023).

253

Sun, L. et al. Long-term effect of mobile phone-based education and influencing factors of willingness to receive HPV vaccination among female freshmen in Shanxi Province, China. Hum. Vaccin Immunother. 18, 2051990 (2022).

254

Marcove, R. C., Miké, V., Huvos, A. G., Southam, C. M. & Levin, A. G. Vaccine trials for osteogenic sarcoma. A preliminary report. CA Cancer J. Clin. 23, 74–80 (1973).

255

Wang, Z. et al. Innate immune cells: a potential and promising cell population for treating Osteosarcoma. Front. Immunol. 10, 1114 (2019).

256

Tsukahara, T. et al. The future of immunotherapy for sarcoma. Expert Opin. Biol. Ther. 16, 1049–1057 (2016).

257

Shemesh, C. S. et al. Personalized cancer vaccines: clinical landscape, challenges, and opportunities. Mol. Ther. 29, 555–570 (2021).

258

van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991).

259

Mason, N. J. et al. Immunotherapy with a HER2-targeting Listeria Induces HER2-specific immunity and demonstrates potential therapeutic effects in a Phase I trial in Canine Osteosarcoma. Clin. Cancer Res. 22, 4380–4390 (2016).

260

Pritchard-Jones, K. et al. Immune responses to the 105AD7 human anti-idiotypic vaccine after intensive chemotherapy, for osteosarcoma. Br. J. Cancer 92, 1358–1365 (2005).

261

Ullenhag, G. J. et al. T-cell responses in osteosarcoma patients vaccinated with an anti-idiotypic antibody, 105AD7, mimicking CD55. Clin. Immunol. 128, 148–154 (2008).

262

Li, D., Toji, S., Watanabe, K., Torigoe, T. & Tsukahara, T. Identification of novel human leukocyte antigen-A*11: 01-restricted cytotoxic T-lymphocyte epitopes derived from osteosarcoma antigen papillomavirus binding factor. Cancer Sci. 110, 1156–1168 (2019).

263

Tsukahara, T. et al. Specific targeting of a naturally presented osteosarcoma antigen, papillomavirus binding factor peptide, using an artificial monoclonal antibody. J. Biol. Chem. 289, 22035–22047 (2014).

264

Holland, D. et al. Activation of the enhancer of Zeste homologue 2 gene by the human papillomavirus E7 oncoprotein. Cancer Res. 68, 9964–9972 (2008).

265

Peng, W., Huang, X. & Yang, D. EWS/FLI-l peptide-pulsed dendritic cells induces the antitumor immunity in a murine Ewing’s sarcoma cell model. Int. Immunopharmacol. 21, 336–341 (2014).

266

Tsuda, N. et al. Expression of a newly defined tumor-rejection antigen SART3 in musculoskeletal tumors and induction of HLA class I-restricted cytotoxic T lymphocytes by SART3-derived peptides. J. Orthop. Res. 19, 346–351 (2001).

267

Tsukahara, T. et al. Identification of human autologous cytotoxic T-lymphocyte-defined osteosarcoma gene that encodes a transcriptional regulator, papillomavirus binding factor. Cancer Res. 64, 5442–5448 (2004).

268

He, F. et al. GATA3/long noncoding RNA MHC-R regulates the immune activity of dendritic cells in chronic obstructive pulmonary disease induced by air pollution particulate matter. J. Hazard Mater. 438, 129459 (2022).

269

Wang, Q. et al. Lymph node-targeting nanovaccines for cancer immunotherapy. J. Control Rel. 351, 102–122 (2022).

270

Wedekind, M. F., Wagner, L. M. & Cripe, T. P. Immunotherapy for osteosarcoma: Where do we go from here? Pediatr. Blood Cancer 65, e27227 (2018).

271

Dallal, R. M. et al. Paucity of dendritic cells in pancreatic cancer. Surgery 131, 135–138 (2002).

272

Morales, E., Olson, M., Iglesias, F., Luetkens, T. & Atanackovic, D. Targeting the tumor microenvironment of Ewing sarcoma. Immunotherapy 13, 1439–1451 (2021).

273

Reinhardt, B. et al. Long-term outcomes after gene therapy for adenosine deaminase severe combined immune deficiency. Blood 138, 1304–1316 (2021).

274

Mackall, C. L. et al. A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas. Clin. Cancer Res. 14, 4850–4858 (2008).

275

Ma, L. et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365, 162–168 (2019).

276

Krishnadas, D. K. et al. A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma. Cancer Immunol. Immunother. 64, 1251–1260 (2015).

277

Letizia, M. et al. Store-operated calcium entry controls innate and adaptive immune cell function in inflammatory bowel disease. EMBO Mol. Med. 14, e15687 (2022).

278

Xiao, H. et al. Effect of the cytokine levels in serum on osteosarcoma. Tumour Biol. 35, 1023–1028 (2014).

279

Challagundla, N., Shah, D., Yadav, S. & Agrawal-Rajput, R. Saga of monokines in shaping tumour-immune microenvironment: Origin to execution. Cytokine 157, 155948 (2022).

280

Wang, J., Mi, S., Ding, M., Li, X. & Yuan, S. Metabolism and polarization regulation of macrophages in the tumor microenvironment. Cancer Lett. 543, 215766 (2022).

281

Burgess, M. & Tawbi, H. Immunotherapeutic approaches to sarcoma. Curr. Treat. Options Oncol. 16, 26 (2015).

282

Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).

283

Tuzlak, S. et al. Repositioning T(H) cell polarization from single cytokines to complex help. Nat. Immunol. 22, 1210–1217 (2021).

284

Wang, T. & Secombes, C. J. The cytokine networks of adaptive immunity in fish. Fish. Shellfish Immunol. 35, 1703–1718 (2013).

285

Kubo, S. et al. Early B cell factor 4 modulates FAS-mediated apoptosis and promotes cytotoxic function in human immune cells. Proc. Natl Acad. Sci. USA 119, e2208522119 (2022).

286

Zebley, C. C. et al. Proinflammatory cytokines promote TET2-mediated DNA demethylation during CD8 T cell effector differentiation. Cell Rep. 37, 109796 (2021).

287

Kitazawa, T. & Streilein, J. W. Studies on delayed systemic effects of ultraviolet B radiation on the induction of contact hypersensitivity, 3. Dendritic cells from secondary lymphoid organs are deficient in interleukin-12 production and capacity to promote activation and differentiation of T helper type 1 cells. Immunology 99, 296–304 (2000).

288

Rudman, S. M. et al. A phase 1 study of AS1409, a novel antibody-cytokine fusion protein, in patients with malignant melanoma or renal cell carcinoma. Clin. Cancer Res. 17, 1998–2005 (2011).

289

Srinoulprasert, Y. et al. Differential cytokine profiles produced by anti-epileptic drug re-exposure of peripheral blood mononuclear cells derived from severe anti-epileptic drug patients and non-allergic controls. Cytokine 157, 155951 (2022).

290

Buddingh, E. P. et al. Chemotherapy-resistant osteosarcoma is highly susceptible to IL-15-activated allogeneic and autologous NK cells. Cancer Immunol. Immunother. 60, 575–586 (2011).

291

Meazza, C. et al. Primary metastatic osteosarcoma: results of a prospective study in children given chemotherapy and interleukin-2. Med. Oncol. 34, 191 (2017).

292

Rivoltini, L. et al. Phenotypic and functional analysis of lymphocytes infiltrating paediatric tumours, with a characterization of the tumour phenotype. Cancer Immunol. Immunother. 34, 241–251 (1992).

293

Nasr, S. et al. A phase I study of interleukin-2 in children with cancer and evaluation of clinical and immunologic status during therapy. A Pediatric Oncology Group Study. Cancer 64, 783–788 (1989).

294

Rodig, S. J. et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci. Transl. Med. 10, eaar3342 (2018).

295

Marin-Acevedo, J. A. et al. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J. Hematol. Oncol. 11, 39 (2018).

296

Melaiu, O., Lucarini, V., Giovannoni, R., Fruci, D. & Gemignani, F. News on immune checkpoint inhibitors as immunotherapy strategies in adult and pediatric solid tumors. Semin Cancer Biol. 79, 18–43 (2022).

297

Kubo, T. et al. Immunopathological basis of immune-related adverse events induced by immune checkpoint blockade therapy. Immunol. Med. 45, 108–118 (2022).

298

Kyu Shim, M., Yang, S., Sun, I. C. & Kim, K. Tumor-activated carrier-free prodrug nanoparticles for targeted cancer Immunotherapy: Preclinical evidence for safe and effective drug delivery. Adv. Drug Deliv. Rev. 183, 114177 (2022).

299

Dhupkar, P., Gordon, N., Stewart, J. & Kleinerman, E. S. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Med. 7, 2654–2664 (2018).

300

Shi, M. et al. Blockage of the IDO1 pathway by charge-switchable nanoparticles amplifies immunogenic cell death for enhanced cancer immunotherapy. Acta Biomater. 150, 353–366 (2022).

301

Tie, Y., Tang, F., Wei, Y. Q. & Wei, X. W. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J. Hematol. Oncol. 15, 61 (2022).

302

Liu, N., Chang, C. W., Steer, C. J., Wang, X. W. & Song, G. MicroRNA-15a/16-1 prevents hepatocellular carcinoma by disrupting the communication between Kupffer cells and regulatory T cells. Gastroenterology 162, 575–589 (2022).

303

Serr, I., Kral, M., Scherm, M. G. & Daniel, C. Advances in human immune system mouse models for personalized treg-based immunotherapies. Front. Immunol. 12, 643544 (2021).

304

Onda, M., Kobayashi, K. & Pastan, I. Depletion of regulatory T cells in tumors with an anti-CD25 immunotoxin induces CD8 T cell-mediated systemic antitumor immunity. Proc. Natl. Acad. Sci. USA 116, 4575–4582 (2019).

305

Hong, H. et al. Depletion of CD4+CD25+ regulatory T cells enhances natural killer T cell-mediated anti-tumour immunity in a murine mammary breast cancer model. Clin. Exp. Immunol. 159, 93–99 (2010).

306
Atif, S. M., Mack, D. G., Martin, A. K. & Fontenot, A. P. Protective role of tissue-resident Tregs in a murine model of beryllium-induced disease. JCI Insight 7, e156098 (2022).
307

Mijnheer, G. et al. Conserved human effector Treg cell transcriptomic and epigenetic signature in arthritic joint inflammation. Nat. Commun. 12, 2710 (2021).

308

Amoozgar, Z. et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat. Commun. 12, 2582 (2021).

309

Liang, Y. et al. Blockade of PD-1/PD-L1 increases effector T cells and aggravates murine chronic graft-versus-host disease. Int. Immunopharmacol. 110, 109051 (2022).

310

Wagner, L. M. & Adams, V. R. Targeting the PD-1 pathway in pediatric solid tumors and brain tumors. Onco. Targets Ther. 10, 2097–2106 (2017).

311

Yoshida, K. et al. Anti-PD-1 antibody decreases tumour-infiltrating regulatory T cells. BMC Cancer 20, 25 (2020).

312

Thanindratarn, P., Dean, D. C., Nelson, S. D., Hornicek, F. J. & Duan, Z. Advances in immune checkpoint inhibitors for bone sarcoma therapy. J. Bone Oncol. 15, 100221 (2019).

313

Harrison, D. J., Geller, D. S., Gill, J. D., Lewis, V. O. & Gorlick, R. Current and future therapeutic approaches for osteosarcoma. Expert Rev. Anticancer Ther. 18, 39–50 (2018).

314

Cascio, M. J. et al. Canine osteosarcoma checkpoint expression correlates with metastasis and T-cell infiltrate. Vet. Immunol. Immunopathol. 232, 110169 (2021).

315

Shen, J. K. et al. Programmed cell death ligand 1 expression in osteosarcoma. Cancer Immunol. Res. 2, 690–698 (2014).

316

Mochizuki, Y. et al. Telomerase-specific oncolytic immunotherapy for promoting efficacy of PD-1 blockade in osteosarcoma. Cancer Immunol. Immunother. 70, 1405–1417 (2021).

317

Flem-Karlsen, K., Fodstad, Ø. & Nunes-Xavier, C. E. B7-H3 immune checkpoint protein in human cancer. Curr. Med. Chem. 27, 4062–4086 (2020).

318

Lee, Y. H. et al. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 27, 1034–1045 (2017).

319

Wang, Y. et al. Comprehensive surfaceome profiling to identify and validate novel cell-surface targets in Osteosarcoma. Mol. Cancer Ther. 21, 903–913 (2022).

320

Talbot, L. J. et al. A Novel Orthotopic implantation technique for osteosarcoma produces spontaneous metastases and illustrates dose-dependent efficacy of B7-H3-CAR T Cells. Front. Immunol. 12, 691741 (2021).

321

Yin, S. J., Wang, W. J. & Zhang, J. Y. Expression of B7-H3 in cancer tissue during osteosarcoma progression in nude mice. Genet. Mol. Res. 14, 14253–14261 (2015).

322

Wang, L. et al. Roles of coinhibitory molecules B7-H3 and B7-H4 in esophageal squamous cell carcinoma. Tumour Biol. 37, 2961–2971 (2016).

323

Majzner, R. G. et al. CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin. Cancer Res. 25, 2560–2574 (2019).

324

Wang, L. et al. The tumor suppressor miR-124 inhibits cell proliferation and invasion by targeting B7-H3 in osteosarcoma. Tumour Biol. 37, 14939–14947 (2016).

325

Gill, J. & Gorlick, R. Advancing therapy for osteosarcoma. Nat. Rev. Clin. Oncol. 18, 609–624 (2021).

326

Whittle, S. B. et al. Charting a path for prioritization of novel agents for clinical trials in osteosarcoma: A report from the Children’s Oncology Group New Agents for Osteosarcoma Task Force. Pediatr. Blood Cancer 68, e29188 (2021).

327

Wang, L., Zhang, G. C., Kang, F. B., Zhang, L. & Zhang, Y. Z. hsa_circ0021347 as a potential target regulated by B7-H3 in Modulating the malignant characteristics of Osteosarcoma. Biomed. Res. Int. 2019, 9301989 (2019).

328

Aggarwal, C. et al. Dual checkpoint targeting of B7-H3 and PD-1 with enoblituzumab and pembrolizumab in advanced solid tumors: interim results from a multicenter phase I/II trial. J. Immunother. Cancer 10, e004424 (2022).

329

Hińcza-Nowak, K. et al. Immune profiling of medullary thyroid cancer-an opportunity for immunotherapy. Genes 12, 1534 (2021).

330

Callahan, M. K., Postow, M. A. & Wolchok, J. D. CTLA-4 and PD-1 pathway blockade: combinations in the clinic. Front. Oncol. 4, 385 (2014).

331

Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

332

Xiang, J., Gu, X., Qian, S. & Chen, Z. Graded function of CD80 and CD86 in initiation of T-cell immune response and cardiac allograft survival. Transpl. Int. 21, 163–168 (2008).

333

Kennedy, A. et al. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat. Immunol. 23, 1365–1378 (2022).

334

Heeren, A. M. et al. Immune landscape in vulvar cancer-draining lymph nodes indicates distinct immune escape mechanisms in support of metastatic spread and growth. J. Immunother. Cancer 9, e003623 (2021).

335

Pinato, D. J. et al. Trans-arterial chemoembolization as a loco-regional inducer of immunogenic cell death in hepatocellular carcinoma: implications for immunotherapy. J. Immunother. Cancer 9, e003311 (2021).

336

Wolchok, J. D. et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 11, 155–164 (2010).

337

Markel, J. E. et al. Using the spleen as an in vivo systemic immune barometer alongside osteosarcoma disease progression and immunotherapy with α-PD-L1. Sarcoma 2018, 8694397 (2018).

338

Wang, S. D. et al. The role of CTLA-4 and PD-1 in anti-tumor immune response and their potential efficacy against osteosarcoma. Int. Immunopharmacol. 38, 81–89 (2016).

339

Liu, S., Geng, P., Cai, X. & Wang, J. Comprehensive evaluation of the cytotoxic T-lymphocyte antigen-4 gene polymorphisms in risk of bone sarcoma. Genet. Test. Mol. Biomark. 18, 574–579 (2014).

340

He, J. et al. Association between CTLA-4 genetic polymorphisms and susceptibility to osteosarcoma in Chinese Han population. Endocrine 45, 325–330 (2014).

341

Hingorani, P. et al. Increased CTLA-4(+) T cells and an increased ratio of monocytes with loss of class II (CD14(+)HLA-DR(lo/neg)) found in aggressive pediatric sarcoma patients. J. Immunother. Cancer 3, 35 (2015).

342

Deppong, C. M. et al. CTLA4Ig inhibits effector T cells through regulatory T cells and TGF-β. J. Immunol. 191, 3082–3089 (2013).

343

Merchant, M. S. et al. Phase I Clinical trial of Ipilimumab in pediatric patients with advanced solid tumors. Clin. Cancer Res. 22, 1364–1370 (2016).

344

Carnevale, J. et al. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature 609, 174–182 (2022).

345

Nguyen, A. et al. HDACi promotes inflammatory remodeling of the tumor microenvironment to enhance epitope spreading and antitumor immunity. J. Clin. Invest. 132, e159283 (2022).

346

Huang, R. et al. GP96 and SMP30 protein priming of dendritic cell vaccination induces a more potent CTL Response against Hepatoma. J. Health. Eng. 2022, 2518847 (2022).

347

Bolhassani, A. et al. Modified DCs and MSCs with HPV E7 antigen and small HSPS: Which one is the most potent strategy for eradication of tumors? Mol. Immunol. 108, 102–110 (2019).

348

Qi, T., McGrath, K., Ranganathan, R., Dotti, G. & Cao, Y. Cellular kinetics: A clinical and computational review of CAR-T cell pharmacology. Adv. Drug Deliv. Rev. 188, 114421 (2022).

349

Elnaggar, M. et al. Triple MAPK inhibition salvaged a relapsed post-BCMA CAR-T cell therapy multiple myeloma patient with a BRAF V600E subclonal mutation. J. Hematol. Oncol. 15, 109 (2022).

350

Yee, C. & Lizee, G. A. Personalized therapy: tumor antigen discovery for adoptive cellular therapy. Cancer J. 23, 144–148 (2017).

351

Wang, W. et al. Hepatobiliary Tumor Organoids reveal HLA class I neoantigen landscape and antitumoral activity of neoantigen peptide enhanced with immune checkpoint inhibitors. Adv. Sci. 9, e2105810 (2022).

352

Salawu, A. et al. A Phase 2 trial of Afatinib in patients with solid tumors that harbor genomic aberrations in the HER family: The MOBILITY3 Basket Study. Target Oncol. 17, 271–281 (2022).

353

Ahmed, N. et al. Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric antigen receptor-modified T cells for the immunotherapy of HER2-Positive Sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).

354

Geary, R. L., Corrigan, L. R., Carney, D. N. & Higgins, M. J. Osteosarcoma and second malignant neoplasms: a case series. Ir. J. Med. Sci. 188, 1163–1167 (2019).

355

Huang, G. et al. Genetically modified T cells targeting interleukin-11 receptor α-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases. Cancer Res. 72, 271–281 (2012).

356

Yang, Q. et al. Membrane-anchored and tumor-targeted IL12 (attIL12)-PBMC therapy for osteosarcoma. Clin. Cancer Res. 28, 3862–3873 (2022).

357

Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra138 (2013).

358

Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

359

Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra225 (2014).

360

Théoleyre, S. et al. Phenotypic and functional analysis of lymphocytes infiltrating osteolytic tumors: use as a possible therapeutic approach of osteosarcoma. BMC Cancer 5, 123 (2005).

361

Wang, Y. et al. Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma. J. Exp. Clin. Cancer Res. 38, 168 (2019).

362

Zhao, Q. et al. Engineered TCR-T cell immunotherapy in anticancer precision medicine: pros and cons. Front. Immunol. 12, 658753 (2021).

363

Brameshuber, M. et al. Monomeric TCRs drive T cell antigen recognition. Nat. Immunol. 19, 487–496 (2018).

364

Muthana, M. et al. Macrophage delivery of an oncolytic virus abolishes tumor regrowth and metastasis after chemotherapy or irradiation. Cancer Res 73, 490–495 (2013).

365

Hinrichs, C. S. & Rosenberg, S. A. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol. Rev. 257, 56–71 (2014).

366

Sarnaik, A. A. et al. Lifileucel, a tumor-infiltrating lymphocyte therapy, in metastatic melanoma. J. Clin. Oncol. 39, 2656–2666 (2021).

367

Wang, C., Li, M., Wei, R. & Wu, J. Adoptive transfer of TILs plus anti-PD1 therapy: An alternative combination therapy for treating metastatic osteosarcoma. J. Bone Oncol. 25, 100332 (2020).

368

Lussier, D. M., Johnson, J. L., Hingorani, P. & Blattman, J. N. Combination immunotherapy with α-CTLA-4 and α-PD-L1 antibody blockade prevents immune escape and leads to complete control of metastatic osteosarcoma. J. Immunother. Cancer 3, 21 (2015).

369

D’Angelo, S. P. et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 19, 416–426 (2018).

370

Krupka, C. et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia 30, 484–491 (2016).

371

Sun, C., Dotti, G. & Savoldo, B. Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies. Blood 127, 3350–3359 (2016).

372

Tabata, R., Chi, S., Yuda, J. & Minami, Y. Emerging immunotherapy for acute myeloid leukemia. Int. J. Mol. Sci. 22, 1944 (2021).

373

Sierro, S. R. et al. Combination of lentivector immunization and low-dose chemotherapy or PD-1/PD-L1 blocking primes self-reactive T cells and induces anti-tumor immunity. Eur. J. Immunol. 41, 2217–2228 (2011).

374

Fu, J. et al. Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. Cancer Res. 74, 4042–4052 (2014).

375

Houser, K. V. et al. Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nat. Med. 28, 383–391 (2022).

376

Wang, Z., Li, B., Ren, Y. & Ye, Z. T-cell-based immunotherapy for Osteosarcoma: challenges and opportunities. Front. Immunol. 7, 353 (2016).

377

Chapuis, A. G. et al. T-cell Therapy using Interleukin-21-primed Cytotoxic T-Cell Lymphocytes combined with Cytotoxic T-Cell Lymphocyte Antigen-4 blockade results in long-term cell persistence and durable tumor regression. J. Clin. Oncol. 34, 3787–3795 (2016).

378

Curran, M. A., Montalvo, W., Yagita, H. & Allison, J. P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. USA 107, 4275–4280 (2010).

379

Fulgenzi, C. A. M. et al. Comparative efficacy of novel combination strategies for unresectable hepatocellular carcinoma: A network metanalysis of phase III trials. Eur. J. Cancer 174, 57–67 (2022).

380

Ju, F. et al. Oncolytic virus expressing PD-1 inhibitors activates a collaborative intratumoral immune response to control tumor and synergizes with CTLA-4 or TIM-3 blockade. J. Immunother. Cancer 10, e004762 (2022).

381

Mitchell, T. C. et al. Epacadostat Plus Pembrolizumab in Patients With Advanced Solid Tumors: Phase I Results From a Multicenter, Open-Label Phase I/II Trial (ECHO-202/KEYNOTE-037). J. Clin. Oncol. 36, 3223–3230 (2018).

382

Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).

383

Yu, A. L. et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363, 1324–1334 (2010).

384

Kushner, B. H. et al. Humanized 3F8 anti-GD2 Monoclonal antibody dosing with granulocyte-macrophage colony-stimulating factor in patients with resistant neuroblastoma: A Phase 1 Clinical trial. JAMA Oncol. 4, 1729–1735 (2018).

385

Zhu, W. et al. Anti-ganglioside GD2 monoclonal antibody synergizes with cisplatin to induce endoplasmic reticulum-associated apoptosis in osteosarcoma cells. Pharmazie 73, 80–86 (2018).

386

Buondonno, I. et al. Endoplasmic reticulum-targeting doxorubicin: a new tool effective against doxorubicin-resistant osteosarcoma. Cell Mol. Life Sci. 76, 609–625 (2019).

387

Xie, L. et al. Apatinib plus camrelizumab (anti-PD1 therapy, SHR-1210) for advanced osteosarcoma (APFAO) progressing after chemotherapy: a single-arm, open-label, phase 2 trial. J. Immunother. Cancer 8, e000798 (2020).

388

Regan, D. P. et al. Losartan Blocks Osteosarcoma-elicited monocyte recruitment, and combined with the kinase inhibitor toceranib, exerts significant clinical benefit in canine metastatic Osteosarcoma. Clin. Cancer Res. 28, 662–676 (2022).

389

Mahoney, K. M., Rennert, P. D. & Freeman, G. J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561–584 (2015).

390

Yamada, N. et al. Immunotherapy with interleukin-18 in combination with preoperative chemotherapy with ifosfamide effectively inhibits postoperative progression of pulmonary metastases in a mouse osteosarcoma model. Tumour Biol. 30, 176–184 (2009).

391

He, X., Lin, H., Yuan, L. & Li, B. Combination therapy with L-arginine and α-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biol. Ther. 18, 94–100 (2017).

392

Kawano, M. et al. Dendritic cells combined with doxorubicin induces immunogenic cell death and exhibits antitumor effects for osteosarcoma. Oncol. Lett. 11, 2169–2175 (2016).

393

Zhang, Y. et al. Hyaluronate-based self-stabilized nanoparticles for immunosuppression reversion and immunochemotherapy in osteosarcoma treatment. ACS Biomater. Sci. Eng. 7, 1515–1525 (2021).

394

Ramos-Cardona, X. E., Luo, W. & Mohammed, S. I. Advances and challenges of CAR T therapy and suitability of animal models (Review). Mol. Clin. Oncol. 17, 134 (2022).

395

Wu, L. et al. Biomimetic nanocarriers guide extracellular ATP Homeostasis to remodel energy metabolism for activating innate and adaptive immunity system. Adv. Sci. 9, e2105376 (2022).

396

Gao, S., Yang, X., Xu, J., Qiu, N. & Zhai, G. Nanotechnology for boosting cancer immunotherapy and remodeling tumor microenvironment: the horizons in cancer treatment. ACS Nano 15, 12567–12603 (2021).

397

Li, Q. et al. A Three-in-One Immunotherapy Nanoweapon via Cascade-amplifying cancer-immunity cycle against tumor metastasis, relapse, and postsurgical regrowth. Nano Lett. 19, 6647–6657 (2019).

398

Zhang, D. et al. Cold to Hot: Rational design of a minimalist multifunctional photo-immunotherapy nanoplatform toward boosting immunotherapy capability. ACS Appl. Mater. Interfaces 11, 32633–32646 (2019).

399

Zhou, S. et al. Rational design of a minimalist nanoplatform to maximize immunotherapeutic efficacy: Four birds with one stone. J. Control Rel. 328, 617–630 (2020).

400

Ren, X. et al. An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway. Acta Biomater. 124, 179–190 (2021).

401

Vitale, M. et al. Oncolytic adenoviral vector-mediated expression of an Anti-PD-L1-scFv improves anti-tumoral efficacy in a Melanoma Mouse Model. Front. Oncol. 12, 902190 (2022).

402

Duan, X., Chan, C. & Lin, W. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem. Int. Ed. Engl. 58, 670–680 (2019).

403

Buondonno, I. et al. Mitochondria-targeted Doxorubicin: A new therapeutic strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 15, 2640–2652 (2016).

404

Kepp, O., Senovilla, L. & Kroemer, G. Immunogenic cell death inducers as anticancer agents. Oncotarget 5, 5190–5191 (2014).

405

Jin, J. et al. Mitochondria-targeting polymer Micelle of Dichloroacetate induced pyroptosis to enhance osteosarcoma immunotherapy. ACS Nano, 16, 10327–10340 (2022).

406

Ge, Y. X. et al. Enhancement of anti-PD-1/PD-L1 immunotherapy for osteosarcoma using an intelligent autophagy-controlling metal organic framework. Biomaterials 282, 121407 (2022).

407

Liao, J., Han, R., Wu, Y. & Qian, Z. Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res. 9, 18 (2021).

408

Yu, W. et al. A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: from basic to deep. Oncotarget 8, 39833–39848 (2017).

409

Huang, X. et al. Rationally designed Heptamethine Cyanine photosensitizers that amplify tumor-specific endoplasmic reticulum stress and boost antitumor immunity. Small 18, e2202728 (2022).

410

Wang, C. et al. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 26, 8154–8162 (2014).

411

Lou, H. et al. A small-molecule based organic nanoparticle for photothermal therapy and near-infrared-iib imaging. ACS Appl. Mater. Interfaces 14, 35454–35465 (2022).

412

Huang, X. et al. Black phosphorus-synergic nitric oxide nanogasholder spatiotemporally regulates tumor microenvironments for self-amplifying immunotherapy. ACS Appl Mater. Interfaces 14, 37466–37477 (2022).

413

Guevara, M. L., Persano, F. & Persano, S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin Cancer Biol. 69, 238–248 (2021).

414

Tian, H. et al. A targeted nanomodulator capable of manipulating tumor microenvironment against metastasis. J. Control. Release 348, 590-600 (2022).

415

Zhu, M. et al. Bioinspired design of seco-chlorin photosensitizers to overcome phototoxic effects in photodynamic therapy. Angew. Chem. Int. Ed. Engl. 61, e202204330 (2022).

416

Ren, Q., Yi, C., Pan, J., Sun, X. & Huang, X. Smart Fe(3)O(4)@ZnO core-shell nanophotosensitizers potential for combined chemo and photodynamic skin cancer therapy controlled by UVA radiation. Int. J. Nanomed. 17, 3385–3400 (2022).

417

Li, Z. et al. Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency. Adv. Sci. 9, e2201734 (2022).

418

Alves, C. G. et al. Heptamethine cyanine-loaded nanomaterials for cancer immuno-photothermal/photodynamic therapy: a review. Pharmaceutics 14, 1015 (2022).

419

Chen, Q., Chen, M. & Liu, Z. Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses. Chem. Soc. Rev. 48, 5506–5526 (2019).

420

Liu, Y. et al. In situ tumor vaccination with calcium-linked degradable coacervate nanocomplex co-delivering photosensitizer and TLR7/8 agonist to trigger effective anti-tumor immune responses. Adv. Mater. 11, e2102781 (2022).

421

Zhu, L., Meng, D., Wang, X. & Chen, X. Ferroptosis-driven nanotherapeutics to reverse drug resistance in tumor microenvironment. ACS Appl. Bio Mater. 5, 2481–2506 (2022).

422

Yanase, S. et al. Enhancement of the effect of 5-aminolevulinic acid-based photodynamic therapy by simultaneous hyperthermia. Int. J. Oncol. 27, 193–201 (2005).

423

Ding, M. et al. A prodrug hydrogel with tumor microenvironment and near-infrared light dual-responsive action for synergistic cancer immunotherapy. Acta Biomater. 149, 334–346 (2022).

424

Li, Z. et al. Immunogenic cell death augmented by manganese zinc sulfide nanoparticles for metastatic Melanoma Immunotherapy. ACS Nano 16, 15471–15483 (2022).

425

Li, X. et al. Protein-delivering nanocomplexes with Fenton reaction-triggered cargo release to boost cancer immunotherapy. ACS Nano 16, 14982–14999 (2022).

426

Xiong, G. et al. Near-Infrared-II light-induced mild Hyperthermia activate Cisplatin-Artemisinin nanoparticle for enhanced chemo/chemodynamic therapy and immunotherapy. Small Methods 6, e2200379 (2022).

427

Fu, L., Zhang, W., Zhou, X., Fu, J. & He, C. Tumor cell membrane-camouflaged responsive nanoparticles enable MRI-guided immuno-chemodynamic therapy of orthotopic osteosarcoma. Bioact. Mater. 17, 221–233 (2022).

428

Jin, T., Wu, H., Wang, Y. & Peng, H. Capsaicin induces immunogenic cell death in human osteosarcoma cells. Exp. Ther. Med. 12, 765–770 (2016).

429

Mori, K., Rédini, F., Gouin, F., Cherrier, B. & Heymann, D. Osteosarcoma: current status of immunotherapy and future trends (Review). Oncol. Rep. 15, 693–700 (2006).

430

Leleux, J. & Roy, K. Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv. Health. Mater. 2, 72–94 (2013).

431

Musetti, S. & Huang, L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano 12, 11740–11755 (2018).

432

Lybaert, L., Vermaelen, K., De Geest, B. G. & Nuhn, L. Immunoengineering through cancer vaccines - A personalized and multi-step vaccine approach towards precise cancer immunity. J. Control Rel. 289, 125–145 (2018).

433

Irvine, D. J., Swartz, M. A. & Szeto, G. L. Engineering synthetic vaccines using cues from natural immunity. Nat. Mater. 12, 978–990 (2013).

434

Maiti, G. et al. Matrix lumican endocytosed by immune cells controls receptor ligand trafficking to promote TLR4 and restrict TLR9 in sepsis. Proc. Natl Acad. Sci. USA 118, e2100999118 (2021).

435

Shen, C. F. et al. Innate immune responses of vaccinees determine early neutralizing antibody production after ChAdOx1nCoV-19 vaccination. Front. Immunol. 13, 807454 (2022).

436

Min, Y. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 12, 877–882 (2017).

437

Anderson, K. G., Stromnes, I. M. & Greenberg, P. D. Obstacles posed by the tumor microenvironment to T cell Activity: A case for synergistic therapies. Cancer Cell 31, 311–325 (2017).

438

Li, Q. et al. Elastic nanovaccine enhances dendritic cell-mediated tumor immunotherapy. Small 18, e2201108 (2022).

439

Tuohy, J. L. et al. Assessment of a novel nanoparticle hyperthermia therapy in a murine model of osteosarcoma. Vet. Surg. 47, 1021–1030 (2018).

440

Richard-Fiardo, P. et al. Effect of fractalkine-Fc delivery in experimental lung metastasis using DNA/704 nanospheres. Cancer Gene Ther. 18, 761–772 (2011).

441

Wang, G. et al. The Anti-fibrosis drug Pirfenidone modifies the immunosuppressive tumor microenvironment and prevents the progression of renal cell carcinoma by inhibiting tumor autocrine TGF-β. Cancer Biol. Ther. 23, 150–162 (2022).

442

Zhang, J. et al. Arginine supplementation targeting tumor-killing immune cells reconstructs the tumor microenvironment and enhances the antitumor immune response. ACS Nano, 16, 12964–12978 (2022).

443

Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Disco. 18, 197–218 (2019).

444

Wang, M. et al. Pyroptosis remodeling tumor microenvironment to enhance pancreatic cancer immunotherapy driven by membrane anchoring photosensitizer. Adv. Sci. 9, e2202914 (2022).

445

Wu, P. et al. Manipulating offense and defense signaling to fight cold tumors with carrier-free nanoassembly of fluorinated Prodrug and siRNA. Adv. Mater. 34, e2203019 (2022).

446

Björnmalm, M., Thurecht, K. J., Michael, M., Scott, A. M. & Caruso, F. Bridging bio-nano science and cancer nanomedicine. ACS Nano 11, 9594–9613 (2017).

447

Li, T. et al. Spatially targeting and regulating tumor-associated macrophages using a raspberry-like micellar system sensitizes pancreatic cancer chemoimmunotherapy. Nanoscale 14, 13098–13112 (2022).

448

Xia, T. et al. Immune cell atlas of cholangiocarcinomas reveals distinct tumor microenvironments and associated prognoses. J. Hematol. Oncol. 15, 37 (2022).

449

Dai, Y., Xu, C., Sun, X. & Chen, X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev. 46, 3830–3852 (2017).

450

Bhatia, S. N., Chen, X., Dobrovolskaia, M. A. & Lammers, T. Cancer nanomedicine. Nat. Rev. Cancer 22, 550–556 (2022).

451

Sanseviero, E., Kim, R. & Gabrilovich, D. I. Isolation and phenotyping of splenic myeloid-derived suppressor cells in murine cancer Models. Methods Mol. Biol. 2236, 19–28 (2021).

452

Chen, H. et al. METTL3 inhibits antitumor immunity by targeting m(6)A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer. Gastroenterology 163, 891–907 (2022).

453

Fan, Q. et al. Nanoengineering a metal-organic framework for osteosarcoma chemo-immunotherapy by modulating indoleamine-2,3-dioxygenase and myeloid-derived suppressor cells. J. Exp. Clin. Cancer Res. 41, 162 (2022).

454

Barth, B. M. et al. PhotoImmunoNanoTherapy reveals an anticancer role for sphingosine kinase 2 and dihydrosphingosine-1-phosphate. ACS Nano 7, 2132–2144 (2013).

455

Guo, R. et al. NIR responsive injectable nanocomposite thermogel system against osteosarcoma recurrence. Macromol. Rapid Commun. 43, e2200255 (2022).

456

Yu, W. et al. Autophagy inhibitor enhance ZnPc/BSA nanoparticle induced photodynamic therapy by suppressing PD-L1 expression in osteosarcoma immunotherapy. Biomaterials 192, 128–139 (2019).

457

Raglow, Z. et al. Targeting glycans for CAR therapy: The advent of sweet CARs. Mol. Ther. 30, 2881–2890 (2022).

458

Klatt, M. G. et al. A TCR mimic CAR T cell specific for NDC80 is broadly reactive with solid tumors and hematologic malignancies. Blood 140, 861–874 (2022).

459

Pant, A. & Jackson, C. M. Supercharged chimeric antigen receptor T cells in solid tumors. J. Clin. Invest. 132, e162322 (2022).

460

Li, H. et al. Scattered seeding of CAR T cells in solid tumors augments anticancer efficacy. Natl. Sci. Rev. 9, nwab172 (2022).

461

Luo, M., Zhang, H., Zhu, L., Xu, Q. & Gao, Q. CAR-T cell therapy: challenges and optimization. Crit. Rev. Immunol. 41, 77–87 (2021).

462

Zuo, Y. H., Zhao, X. P. & Fan, X. X. Nanotechnology-based chimeric antigen receptor T-cell therapy in treating solid tumor. Pharmacol. Res. 184, 106454 (2022).

463

Wang, G. et al. CXCL11-armed oncolytic adenoviruses enhance CAR-T cell therapeutic efficacy and reprogram tumor microenvironment in glioblastoma. Mol. Ther. 31, 134–153 (2023).

464

Young, R. M., Engel, N. W., Uslu, U., Wellhausen, N. & June, C. H. Next-generation CAR T-cell therapies. Cancer Discov. 12, 1625–1633 (2022).

465

Ma, X. et al. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol. 38, 448–459 (2020).

466

Tian, Y., Li, Y., Shao, Y. & Zhang, Y. Gene modification strategies for next-generation CAR T cells against solid cancers. J. Hematol. Oncol. 13, 54 (2020).

467

Dangaj, D. et al. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell 35, 885–900.e810 (2019).

468

Chen, X. et al. Enhancing adoptive T cell therapy for solid tumor with cell-surface anchored immune checkpoint inhibitor nanogels. Nanomedicine 45, 102591 (2022).

469

Kiru, L. et al. In vivo imaging of nanoparticle-labeled CAR T cells. Proc. Natl. Acad. Sci. USA 119, e2102363119 (2022).

470

Song, Y. J. et al. Immune landscape of the tumor microenvironment identifies prognostic gene signature CD4/CD68/CSF1R in Osteosarcoma. Front. Oncol. 10, 1198 (2020).

471

Bishop, M. W., Janeway, K. A. & Gorlick, R. Future directions in the treatment of osteosarcoma. Curr. Opin. Pediatr. 28, 26–33 (2016).

472

Song, Y. J. et al. Gene expression classifier reveals prognostic osteosarcoma microenvironment molecular subtypes. Front. Immunol. 12, 623762 (2021).

473

Yu, W., Liu, R., Zhou, Y. & Gao, H. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci. 6, 100–116 (2020).

474

Şimşek, M., Ataş, E., Bağrıaçık, E., Günal, A. & Ünay, B. Type 4 hypersensitivity development in a case due to mifamurtide. Turk. J. Pediatr. 62, 694–699 (2020).

475

van Dongen, M. et al. Anti-inflammatory M2 type macrophages characterize metastasized and tyrosine kinase inhibitor-treated gastrointestinal stromal tumors. Int J. Cancer 127, 899–909 (2010).

476

Wolf-Dennen, K., Gordon, N. & Kleinerman, E. S. Exosomal communication by metastatic osteosarcoma cells modulates alveolar macrophages to an M2 tumor-promoting phenotype and inhibits tumoricidal functions. Oncoimmunology 9, 1747677 (2020).

477

Locati, M., Curtale, G. & Mantovani, A. Diversity, mechanisms, and significance of macrophage plasticity. Annu. Rev. Pathol. 15, 123–147 (2020).

478

Tsagozis, P., Eriksson, F. & Pisa, P. Zoledronic acid modulates antitumoral responses of prostate cancer-tumor associated macrophages. Cancer Immunol. Immunother. 57, 1451–1459 (2008).

479

Punzo, F. et al. Mifamurtide and TAM-like macrophages: effect on proliferation, migration and differentiation of osteosarcoma cells. Oncotarget 11, 687–698 (2020).

480

Ségaliny, A. I. et al. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment. Int. J. Cancer 137, 73–85 (2015).

481

Guan, Y. et al. Inhibition of IL-18-mediated myeloid derived suppressor cell accumulation enhances anti-PD1 efficacy against osteosarcoma cancer. J. Bone Oncol. 9, 59–64 (2017).

482

Hu, J. et al. Cell membrane-anchored and tumor-targeted IL-12 (attIL12)-T cell therapy for eliminating large and heterogeneous solid tumors. J. Immunother. Cancer 10, e003633 (2022).

483

Jeong, S. N. & Yoo, S. Y. Novel oncolytic virus armed with cancer suicide gene and normal vasculogenic gene for improved anti-tumor activity. Cancers 12, 1070 (2020).

484

Yahiro, K. et al. Activation of TLR4 signaling inhibits progression of osteosarcoma by stimulating CD8-positive cytotoxic lymphocytes. Cancer Immunol. Immunother. 69, 745–758 (2020).

485

Xin Yu, J. et al. Trends in clinical development for PD-1/PD-L1 inhibitors. Nat. Rev. Drug Discov. 19, 163–164 (2020).

486

Gao, W., Zhou, J. & Ji, B. Evidence of Interleukin 21 reduction in Osteosarcoma patients due to PD-1/PD-L1-mediated suppression of follicular helper T cell functionality. DNA Cell Biol. 36, 794–800 (2017).

487

Alsaab, H. O. et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front. Pharm. 8, 561 (2017).

488

Li, Y. & Yee, C. IL-21 mediated Foxp3 suppression leads to enhanced generation of antigen-specific CD8+ cytotoxic T lymphocytes. Blood 111, 229–235 (2008).

489

Kraehenbuehl, L., Weng, C. H., Eghbali, S., Wolchok, J. D. & Merghoub, T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 19, 37–50 (2022).

490

Huang, W., Ran, R., Shao, B. & Li, H. Prognostic and clinicopathological value of PD-L1 expression in primary breast cancer: a meta-analysis. Breast Cancer Res. Treat. 178, 17–33 (2019).

491

Chi, Y. et al. Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J. Control Rel. 261, 113–125 (2017).

492

Yin, J. et al. MXene-based hydrogels endow polyetheretherketone with effective osteogenicity and combined treatment of osteosarcoma and bacterial infection. ACS Appl Mater. Interfaces 12, 45891–45903 (2020).

493

Yang, F., Wen, X., Ke, Q. F., Xie, X. T. & Guo, Y. P. pH-responsive mesoporous ZSM-5 zeolites/chitosan core-shell nanodisks loaded with doxorubicin against osteosarcoma. Mater. Sci. Eng. C. Mater. Biol. Appl. 85, 142–153 (2018).

494

Huang, X. et al. Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma. Acta Biomater. 109, 229–243 (2020).

495

Zhang, Y. et al. 3D-printed bioceramic scaffolds with a Fe(3)O(4)/graphene oxide nanocomposite interface for hyperthermia therapy of bone tumor cells. J. Mater. Chem. B 4, 2874–2886 (2016).

496

Yue, J. et al. Bull serum albumin coated Au@Agnanorods as SERS probes for ultrasensitive osteosarcoma cell detection. Talanta 150, 503–509 (2016).

497

Miao, Y. et al. Single-walled carbon nanotube: One specific inhibitor of cancer stem cells in osteosarcoma upon downregulation of the TGFβ1 signaling. Biomaterials 149, 29–40 (2017).

498

Li, Y., Hou, H., Zhang, P. & Zhang, Z. Co-delivery of doxorubicin and paclitaxel by reduction/pH dual responsive nanocarriers for osteosarcoma therapy. Drug Deliv. 27, 1044–1053 (2020).

499

Gonçalves, M. et al. Dendrimer-assisted formation of fluorescent nanogels for drug delivery and intracellular imaging. Biomacromolecules 15, 492–499 (2014).

500

Wang, S. Q., Zhang, Q., Sun, C. & Liu, G. Y. Ifosfamide-loaded lipid-core-nanocapsules to increase the anticancer efficacy in MG63 osteosarcoma cells. Saudi J. Biol. Sci. 25, 1140–1145 (2018).

501

Wei, H. et al. A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro. Int. J. Nanomed. 14, 8603–8610 (2019).

Bone Research
Article number: 11
Cite this article:
Tian H, Cao J, Li B, et al. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Research, 2023, 11: 11. https://doi.org/10.1038/s41413-023-00246-z

207

Views

1

Downloads

57

Crossref

50

Web of Science

52

Scopus

Altmetrics

Received: 20 October 2022
Revised: 17 December 2022
Accepted: 29 December 2022
Published: 27 February 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return