AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Promising applications of D-amino acids in periprosthetic joint infection

Matthew Caldwell1Megan Hughes2Fei Wei1Christopher Ngo1Raven Pascua3Abinaya Sindu Pugazhendhi1Melanie J. Coathup1( )
Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, USA
School of Biosciences, Cardiff University, CF10 3AT Wales, UK
Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, USA
Show Author Information

Abstract

Due to the rise in our aging population, a disproportionate demand for total joint arthroplasty (TJA) in the elderly is forecast. Periprosthetic joint infection (PJI) represents one of the most challenging complications that can occur following TJA, and as the number of primary and revision TJAs continues to rise, an increasing PJI burden is projected. Despite advances in operating room sterility, antiseptic protocols, and surgical techniques, approaches to prevent and treat PJI remain difficult, primarily due to the formation of microbial biofilms. This difficulty motivates researchers to continue searching for an effective antimicrobial strategy. The dextrorotatory-isoforms of amino acids (D-AAs) are essential components of peptidoglycan within the bacterial cell wall, providing strength and structural integrity in a diverse range of species. Among many tasks, D-AAs regulate cell morphology, spore germination, and bacterial survival, evasion, subversion, and adhesion in the host immune system. When administered exogenously, accumulating data have demonstrated that D-AAs play a pivotal role against bacterial adhesion to abiotic surfaces and subsequent biofilm formation; furthermore, D-AAs have substantial efficacy in promoting biofilm disassembly. This presents D-AAs as promising and novel targets for future therapeutic approaches. Despite their emerging antibacterial efficacy, their role in disrupting PJI biofilm formation, the disassembly of established TJA biofilm, and the host bone tissue response remains largely unexplored. This review aims to examine the role of D-AAs in the context of TJAs. Data to date suggest that D-AA bioengineering may serve as a promising future strategy in the prevention and treatment of PJI.

References

1
Simpson, AHRW. Incidence, complications and novel treatment strategies: joint arthroplasty. In: Musculoskeletal Infection. Springer International Publishing; 2022: 227–282. https://doi.org/10.1007/978-3-030-83251-3_8
2

Williams, S. N., Wolford, ML. & Bercovitz, A. Hospitalization for total knee replacement among inpatients aged 45 and over:United States, 2000–2010. NCHS Data Brief. 210, 1–8 (2015).

3

Wolford, ML., Palso, K. & Bercovitz, A. Hospitalization for total hip replacement among inpatients aged 45 and over: United States, 2000–2010. NCHS Data Brief. 210, 1–8 (2015).

4

Hooper, G., Lee, A. J.-J., Rothwell, A. & Frampton, C. Current trends and projections in the utilisation rates of hip and knee replacement in New Zealand from 2001 to 2026. NZ Med. J. 127, 82–93 (2014).

5

Kaufman, M., Meaike, J. & Izaddoost, S. Orthopedic prosthetic infections: diagnosis and orthopedic salvage. Semin. Plast. Surg. 30, 066–072 (2016).

6

Kurtz, S., Ong, K., Lau, E., Mowat, F. & Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. 89, 780–785 (2007).

7

Day, J. S. et al. Prevalence and projections of total shoulder and elbow arthroplasty in the United States to 2015. J. Shoulder Elb. Surg. 19, 1115–1120 (2010).

8

Padegimas, E. M. et al. Future patient demand for shoulder arthroplasty by younger patients: national projections. Clin. Orthop. Relat. Res. 473, 1860–1867 (2015).

9

Kurtz, S. M. et al. Primary and revision arthroplasty surgery caseloads in the United States from 1990 to 2004. J. Arthroplast. 24, 195–203 (2009).

10

Sloan, M., Premkumar, A. & Sheth, N. P. Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. J. Bone Jt. Surg. 100, 1455–1460 (2018).

11
Sloan, M., Sheth, N. Projected volume of primary and revision total joint arthroplasty in the United States, 2030–2060. In: Proc. Annual Meeting of the American Academy of Orthopaedic Surgeons; 2018: 16.
12

Kurtz, S. M. et al. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin. Orthop. Relat. Res. 467, 2606–2612 (2009).

13

Singh, J. A., Yu, S., Chen, L. & Cleveland, J. D. Rates of total joint replacement in the united states: future projections to 2020–2040 using the national inpatient sample. J. Rheumatol. 46, 1134–1140 (2019).

14

Christensen, K., Doblhammer, G., Rau, R. & Vaupel, J. W. Ageing populations: the challenges ahead. Lancet 374, 1196–1208 (2009).

15

Lee, S. B., Oh, J. H., Park, J. H., Choi, S. P. & Wee, J. H. Differences in youngest-old, middle-old, and oldest-old patients who visit the emergency department. Clin. Exp. Emerg. Med. 5, 249–255 (2018).

16

Oeppen, J. & Vaupel, J. W. Broken limits to life expectancy. Science 296, 1029–1031 (2002).

17

Keely Boyle, K., Rachala, S. & Nodzo, S. R. Centers for disease control and prevention 2017 guidelines for prevention of surgical site infections: review and relevant recommendations. Curr. Rev. Musculoskelet. Med. 11, 357–369 (2018).

18

Springer, B. D., Cahue, S., Etkin, C. D., Lewallen, D. G. & McGrory, B. J. Infection burden in total hip and knee arthroplasties: an international registry-based perspective. Arthroplast. Today 3, 137–140 (2017).

19

Delanois, R. E. et al. Current epidemiology of revision total knee arthroplasty in the United States. J. Arthroplast. 32, 2663–2668 (2017).

20

Krukhaug, Y., Hallan, G., Dybvik, E., Lie, S. A. & Furnes, O. N. A survivorship study of 838 total elbow replacements: a report from the Norwegian Arthroplasty Register 1994-2016. J. Shoulder Elb. Surg. 27, 260–269 (2018).

21

Moriarty, T. F. et al. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev. 1, 89–99 (2016).

22

Kunutsor, S. K., Whitehouse, M. R., Blom, A. W. & Beswick, A. D. Patient-related risk factors for periprosthetic joint infection after total joint arthroplasty: a systematic review and meta-analysis. PLoS One 11, e0150866 (2016).

23

Phillips, J. E., Crane, T. P., Noy, M., Elliott, T. S. J. & Grimer, R. J. The incidence of deep prosthetic infections in a specialist orthopaedic hospital. J. Bone Jt. Surg. Br. 88-B, 943–948 (2006).

24

Krenek, L., Farng, E., Zingmond, D. & SooHoo, N. F. Complication and revision rates following total elbow arthroplasty. J. Hand Surg. Am. 36, 68–73 (2011).

25

VanEpps, J. S. & Younger, J. G. Implantable device-related infection. Shock 46, 597–608 (2016).

26

Lentino, J. R. Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin. Infect. Dis. 36, 1157–1161 (2003).

27

Tribble, D. R. et al. Infection-associated clinical outcomes in hospitalized medical evacuees after traumatic injury: trauma infectious disease outcome study. J. Trauma Inj. Infect. Crit. Care 71, S33–S42 (2011).

28

Ryan, D. J., Minhas, S. V., Konda, S. & Catalano, L. W. Surgical site infection after open upper extremity fracture and the effect of urgent operative intervention. J. Orthop. Trauma 34, 258–262 (2020).

29
Jaekel, D. J., Ong, K. L., Lau, E. C., Watson, H. N., Kurtz, S. M. Epidemiology of total hip and knee arthroplasty infection. In: Proc. Periprosthetic Joint Infection of the Hip and Knee. Springer New York; 2014: 1–14. https://doi.org/10.1007/978-1-4614-7928-4_1
30

Coraça-Huber, D. C. et al. Identification and morphological characterization of biofilms formed by strains causing infection in orthopedic implants. Pathogens 9, 649 (2020).

31
Varacallo, M., Luo, T. D., Johanson, N. A. Total hip arthroplasty techniques; 2022.
32

Crémet, L. et al. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells. Pathog. Dis. 73, ftv065 (2015).

33

Chen, M.-F. et al. Rapid analysis of bacterial composition in prosthetic joint infection by 16S rRNA metagenomic sequencing. Bone Jt. Res. 8, 367–377 (2019).

34

Tande, A. J. & Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev. 27, 302–345 (2014).

35

Ascione, T. et al. General assembly, diagnosis, pathogen isolation—culture matters: proceedings of international consensus on orthopedic infections. J. Arthroplast. 34, S197–S206 (2019).

36

Rosteius, T. et al. Evaluating the microbial pattern of periprosthetic joint infections of the hip and knee. J. Med. Microbiol. 67, 1608–1613 (2018).

37

Parvizi, J. et al. Resistant organisms in infected total knee arthroplasty: occurrence, prevention, and treatment regimens. Instr. Course Lect. 58, 271–278 (2009).

38

Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

39

Tsukayama, D. T., Goldberg, V. M. & Kyle, R. Diagnosis and management of infection after total knee arthroplasty. J. Bone Jt Surg.-Am. 85, 75–80 (2003).

40

McPherson, E. J. et al. Outcome of infected total knee utilizing a staging system for prosthetic joint infection. Am. J. Orthop. 28, 161–165 (1999).

41

Izakovicova, P., Borens, O. & Trampuz, A. Periprosthetic joint infection: current concepts and outlook. EFORT Open Rev. 4, 482–494 (2019).

42

Zimmerli, W. Clinical presentation and treatment of orthopaedic implantassociated infection. J. Intern Med. 276, 111–119 (2014).

43

Murdoch, D. R. et al. Infection of orthopedic prostheses after Staphylococcus aureus bacteremia. Clin. Infect. Dis. 32, 647–649 (2001).

44

Pulido, L., Ghanem, E., Joshi, A., Purtill, J. J. & Parvizi, J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin. Orthop. Relat. Res. 466, 1710–1715 (2008).

45

Egol, K. A., Gruson, K., Spitzer, A. B., Walsh, M. & Tejwani, N. C. Do Successful surgical results after operative treatment of long-bone nonunions correlate with outcomes. Clin. Orthop. Relat. Res. 467, 2979–2985 (2009).

46

Badia, J. M. et al. Impact of surgical site infection on healthcare costs and patient outcomes: a systematic review in six European countries. J. Hosp. Infect. 96, 1–15 (2017).

47

Chang, J.-D., Kim, I.-S., Lee, S.-S. & Yoo, J.-H. Acute delayed or late infection of revision total hip arthroplasty treated with debridement/antibiotic-loaded cement beads and retention of the prosthesis. Hip Pelvis 29, 35 (2017).

48

Bozic, K. J. The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization. J. Bone Jt Surg. 87, 1746 (2005).

49

Kapadia, B. H. et al. The economic impact of periprosthetic infections following total knee arthroplasty at a specialized tertiary-care center. J. Arthroplast. 29, 929–932 (2014).

50

Garrido-Gómez, J. et al. Descriptive analysis of the economic costs of periprosthetic joint infection of the knee for the public health system of Andalusia. J. Arthroplast. 28, 1057–1060 (2013).

51

Kurtz, S. M., Lau, E., Watson, H., Schmier, J. K. & Parvizi, J. Economic burden of periprosthetic joint infection in the United States. J. Arthroplast. 27, 61–65.e1 (2012).

52

Padegimas, E. M. et al. Periprosthetic shoulder infection in the United States: incidence and economic burden. J. Shoulder Elb. Surg. 24, 741–746 (2015).

53

Eckers, F. et al. Risk factor analysis for above-knee amputation in patients with periprosthetic joint infection of the knee: a case-control study. BMC Musculoskelet. Disord. 22, 884 (2021).

54

Robertsson, O., Ranstam, J., Sundberg, M., W-Dahl, A. & Lidgren, L. The Swedish knee arthroplasty register. Bone Jt. Res. 3, 217–222 (2014).

55

Fisman, D. N., Reilly, D. T., Karchmer, A. W. & Goldie, S. J. Clinical effectiveness and cost-effectiveness of 2 management strategies for infected total hip arthroplasty in the elderly. Clin. Infect. Dis. 32, 419–430 (2001).

56

Natsuhara, K. M., Shelton, T. J., Meehan, J. P. & Lum, Z. C. Mortality during total hip periprosthetic joint infection. J. Arthroplast. 34, S337–S342 (2019).

57
Stanton T. PJI & cancer: more similar than different? Am. Assoc. Orthop. Surg. Published online August 2017.
58

Teterycz, D. et al. Outcome of orthopedic implant infections due to different staphylococci. Int. J. Infect. Dis. 14, e913–e918 (2010).

59

Shah, N. B. et al. Pseudomonas prosthetic joint infections: a review of 102 episodes. J. Bone Jt Infect. 1, 25–30 (2016).

60

Bian, T., Shao, H., Zhou, Y., Huang, Y. & Song, Y. Tests for predicting reimplantation success of two-stage revision for periprosthetic joint infection: a systematic review and meta-analysis. Orthop. Traumatol. Surg. Res. 104, 1115–1123 (2018).

61

Zardi, E. M. & Franceschi, F. Prosthetic joint infection. A relevant public health issue. J. Infect. Public Health 13, 1888–1891 (2020).

62

Jeyanathan, A. et al. Lactobacillus cell‐free supernatant as a novel bioagent and biosurfactant against Pseudomonas aeruginosa in the prevention and treatment of orthopedic implant infection. J. Biomed. Mater. Res. Part B Appl. Biomater. 109, 1634–1643 (2021).

63
Pugazhendhi, A. S., Wei, F., Hughes, M., Coathup, M. Bacterial adhesion, virulence, and biofilm formation. In: Musculoskeletal Infection. Springer International Publishing; 19–64. https://doi.org/10.1007/978-3-030-83251-3_2 (2022).
64

Yin, W., Wang, Y., Liu, L. & He, J. Biofilms: the microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 20, 3423 (2019).

65

Ribeiro, M., Monteiro, F. J. & Ferraz, M. P. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2, 176–194 (2012).

66

Song, Z. et al. Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms. Orthop. Rev. 5, 14 (2013).

67

Luepke, K. H. et al. Past, present, and future of antibacterial economics: increasing bacterial resistance, limited antibiotic pipeline, and societal implications. Pharmacother. J. Hum. Pharm. Drug Ther. 37, 71–84 (2017).

68

Miyamoto, T. & Homma, H. D-Amino acid metabolism in bacteria. J. Biochem. 170, 5–13 (2021).

69

Mathur, H. et al. Bacteriocin-antimicrobial synergy: a medical and food perspective. Front. Microbiol. 8, 1205 (2017).

70
Meade, Slattery & Garvey Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: resistance is futile? Antibiotics 9, 32 (2020).
71

Balzarini, J. et al. Pradimicin S, a highly soluble nonpeptidic small-size carbohydrate-binding antibiotic, Is an anti-HIV drug lead for both microbicidal and systemic use. Antimicrob. Agents Chemother. 54, 1425–1435 (2010).

72

Thakur, P. et al. Rhamnolipid the Glycolipid Biosurfactant: emerging trends and promising strategies in the field of biotechnology and biomedicine. Micro. Cell Fact. 20, 1 (2021).

73

Amaning Danquah, C., Minkah, P. A. B., Osei Duah Junior, I., Amankwah, K. B. & Somuah, S. O. Antimicrobial compounds from microorganisms. Antibiotics 11, 285 (2022).

74

Santovito, E. et al. Antimicrobial activity of yeast cell wall products against Clostridium perfringens. Foodborne Pathog. Dis. 16, 638–647 (2019).

75

Beutler, B. Pathogens, commensals, and immunity: from the perspective of the urinary bladder. Pathogens 5, 5 (2016).

76

LeBel, G., Piché, F., Frenette, M., Gottschalk, M. & Grenier, D. Antimicrobial activity of nisin against the swine pathogen Streptococcus suis and its synergistic interaction with antibiotics. Peptides 50, 19–23 (2013).

77

Carroll, J. et al. Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria. Int. J. Antimicrob. Agents 36, 132–136 (2010).

78
Deliorman, Orhan D. Bacteriocins produced by probiotic microorganisms. In: Advances in Probiotics. Elsevier; 2021: 277–291. https://doi.org/10.1016/B978-0-12-822909-5.00018-6
79

Tymoszewska, A., Diep, D. B., Wirtek, P. & Aleksandrzak-Piekarczyk, T. The non-lantibiotic bacteriocin garvicin Q targets Man-PTS in a broad spectrum of sensitive bacterial genera. Sci. Rep. 7, 8359 (2017).

80

Zalán, Z., Hudáček, J., Štětina, J., Chumchalová, J. & Halász, A. Production of organic acids by Lactobacillus strains in three different media. Eur. Food Res. Technol. 230, 395–404 (2010).

81

Punia Bangar, S., Suri, S., Trif, M. & Ozogul, F. Organic acids production from lactic acid bacteria: a preservation approach. Food Biosci. 46, 101615 (2022).

82

Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B. E. & Castrejón-Jiménez, N. S. Bacteriocins from lactic acid bacteria. a powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals 11, 979 (2021).

83

Paiva, A. D., Breukink, E. & Mantovani, H. C. Role of lipid Ⅱ and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrob. Agents Chemother. 55, 5284–5293 (2011).

84

Parada, J. L., Caron, C. R., Medeiros, A. B. P. & Soccol, C. R. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz. Arch. Biol. Technol. 50, 512–542 (2007).

85

Perez, R. H., Zendo, T., Sonomoto, K. Circular and leaderless bacteriocins: biosynthesis, mode of action, applications, and prospects. Front. Microbiol. 9, 2085 (2018).

86

Zhang, L. et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea: effects on diarrhoea incidence, faecal microflora and immune responses. Vet. Microbiol. 141, 142–148 (2010).

87

Alexandre, Y., Le Berre, R., Barbier, G. & Le Blay, G. Screening of Lactobacillus spp. for the prevention of Pseudomonas aeruginosa pulmonary infections. BMC Microbiol. 14, 107 (2014).

88

Zhou, B., Zhang D. Antibacterial effects of bacteriocins isolated from Lactobacillus rhamnosus (ATCC 53103) in a rabbit model of knee implant infection. Exp. Ther. Med. 15, 2985–2989 (2018).

89
Ouwehand, A. C., Salminen, S., Isolauri, E. Probiotics: an overview of beneficial effects. In: Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer Netherlands; 2002: 279–289. https://doi.org/10.1007/978-94-017-2029-8_18
90

Sikorska, H. & Smoragiewicz, W. Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections. Int. J. Antimicrob. Agents 42, 475–481 (2013).

91

da Cunha, N. B. et al. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov. Today 22, 234–248 (2017).

92

Wang, J. et al. Antimicrobial peptides: promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 39, 831–859 (2019).

93

Lakshmaiah Narayana, J. & Chen, J.-Y. Antimicrobial peptides: possible anti-infective agents. Peptides 72, 88–94 (2015).

94

Tortorella, E. et al. Antibiotics from deep-sea microorganisms: current discoveries and perspectives. Mar. Drugs 16, 355 (2018).

95

Walsh, T. J. & Giri, N. Pradimicins: a novel class of broad-spectrum antifungal compounds. Eur. J. Clin. Microbiol. Infect. Dis. 16, 93–97 (1997).

96

Bais, H. P., Fall, R. & Vivanco, J. M. Biocontrol of Bacillus subtilis against Infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134, 307–319 (2004).

97

Park, J. S., Ryu, G. R. & Kang, B. R. Target mechanism of iturinic lipopeptide on differential expression patterns of defense-related genes against Colletotrichum acutatum in Pepper. Plants 11, 1267 (2022).

98

Dunlap, C. A., Bowman, M. J., Rooney, A. P. Iturinic lipopeptide diversity in the bacillus subtilis species group—important antifungals for plant disease biocontrol applications. Front. Microbiol. 2019;10.

99

Malviya, D. et al. Lesson from ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection. Int. J. Environ. Res. Public Health 17, 1434 (2020).

100

Serino, L. et al. Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J. Bacteriol. 179, 248–257 (1997).

101

Kerr, J. R. et al. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J. Clin. Pathol. 52, 385–387 (1999).

102

Greber, E. K. & Dawgul, M. Antimicrobial peptides under clinical trials. Curr. Top. Med. Chem. 17, 620–628 (2016).

103

de Breij, A. et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. 10, eaan4044 (2018).

104

Teeri, A. E. & Josselyn, D. Effect of excess amino acids on growth of certain lactobacilli. J. Bacteriol. 66, 72–73 (1953).

105

Graham, C. et al. Studies on natural and racemic amino acids with rats. J. Biol. Chem. 185, 97–102 (1950).

106

Espaillat, A. et al. Structural basis for the broad specificity of a new family of amino-acid racemases. Acta Crystallogr. Sect. D. Biol. Crystallogr. 70, 79–90 (2014).

107

Hernández, S. B. & Cava, F. Environmental roles of microbial amino acid racemases. Environ. Microbiol. 18, 1673–1685 (2016).

108

Aliashkevich, A., Alvarez, L., Cava, F. New insights into the mechanisms and biological roles of d-amino acids in complex eco-systems. Front. Microbiol. 9, 683 (2018).

109

Radkov, A. D. & Moe, L. A. Bacterial synthesis of d-amino acids. Appl. Microbiol. Biotechnol. 98, 5363–5374 (2014).

110

Mutaguchi, Y., Ohmori, T., Wakamatsu, T., Doi, K. & Ohshima, T. Identification, purification, and characterization of a novel amino acid racemase, isoleucine 2-epimerase, from Lactobacillus species. J. Bacteriol. 195, 5207–5215 (2013).

111

Yoshimura, T. & Esak, N. Amino acid racemases: functions and mechanisms. J. Biosci. Bioeng. 96, 103–109 (2003).

112

Cava, F., Lam, H., de Pedro, M. A. & Waldor, M. K. Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cell Mol. Life Sci. 68, 817–831 (2011).

113

Lam, H. et al. D-Amino acids govern stationary phase cell wall remodeling in bacteria. Science 325, 1552–1555 (2009).

114

Ogasawara, Y., Dairi, T. Peptide epimerization machineries found in microorganisms. Front. Microbiol. 9, 156 (2018).

115

Fischer, C., Ahn, Y.-C. & Vederas, J. C. Catalytic mechanism and properties of pyridoxal 5′-phosphate independent racemases: how enzymes alter mismatched acidity and basicity. Nat. Prod. Rep. 36, 1687–1705 (2019).

116

Gao, X., Ma, Q. & Zhu, H. Distribution, industrial applications, and enzymatic synthesis of d-amino acids. Appl. Microbiol. Biotechnol. 99, 3341–3349 (2015).

117

Bucher, T., Oppenheimer-Shaanan, Y., Savidor, A., Bloom-Ackermann, Z. & Kolodkin-Gal, I. Disturbance of the bacterial cell wall specifically interferes with biofilm formation. Environ. Microbiol. Rep. 7, 990–1004 (2015).

118

Kolodkin-Gal, I. et al. d-Amino acids trigger biofilm disassembly. Science 328, 627–629 (2010).

119

Vollmer, W., Blanot, D. & De Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

120

Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660–703 (2006).

121

Pollegioni, L. & Molla, G. The conundrum in enzymatic reactions related to biosynthesis of d‐amino acids in bacteria. FEBS J. 289, 5895–5898 (2022).

122

Hsu, Y.-P., Booher, G., Egan, A., Vollmer, W. & VanNieuwenhze, M. S. d-Amino acid derivatives as in situ probes for visualizing bacterial peptidoglycan biosynthesis. Acc. Chem. Res. 52, 2713–2722 (2019).

123

Dramsi, S., Magnet, S., Davison, S. & Arthur, M. Covalent attachment of proteins to peptidoglycan. FEMS Microbiol. Rev. 32, 307–320 (2008).

124

Bellais, S. et al. Aslfm, the D-aspartate ligase responsible for the addition of D-aspartic acid onto the peptidoglycan precursor of Enterococcus faecium. J. Biol. Chem. 281, 11586–11594 (2006).

125

Sieradzki, K. A highly vancomycin-resistant laboratory mutant of Staphylococcus aureus. FEMS Microbiol. Lett. 142, 161–166 (1996).

126

Veiga, P. et al. Identification of an essential gene responsible for d-Asp incorporation in the Lactococcus lactis peptidoglycan crossbridge. Mol. Microbiol. 62, 1713–1724 (2006).

127

Reynolds, P. E. & Courvalin, P. Vancomycin resistance in Enterococci due to synthesis of precursors terminating in d-Alanyl- d-Serine. Antimicrob. Agents Chemother. 49, 21–25 (2005).

128

Cava, F., de Pedro, M. A., Lam, H., Davis, B. M. & Waldor, M. K. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. EMBO J. 30, 3442–3453 (2011).

129

Wang, Q. et al. In vitro and in vivo activity of d-serine in combination with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. Acta Pharm. Sin. B 9, 496–504 (2019).

130

Tremp, M. et al. Clostridial infection after open fractures of the lower extremity – report of two cases and discussion of pathomechanism and treatment. In Vivo 34, 291–298 (2020).

131

Stroud, G. & Vandiver, J. W. Clostridium perfringens as an unusual cause of a prosthetic joint infection following total knee arthroplasty. IDCases 20, e00789 (2020).

132

Tehri, N., Kumar, N., Raghu, H. & Vashishth, A. Biomarkers of bacterial spore germination. Ann. Microbiol. 68, 513–523 (2018).

133

Tehri, N., Kumar, N., Yadav, A., Raghu, H. V. & Singh, N. A. Sugars mediated germination in spores of Bacillus megaterium. Int. J. Microbiol. Res. 10, 1058 (2018).

134

Tennen, R., Setlow, B., Davis, K. L., Loshon, C. A. & Setlow, P. Mechanisms of killing of spores of Bacillus subtilis by iodine, glutaraldehyde and nitrous acid. J. Appl Microbiol 89, 330–338 (2000).

135

Atluri, S., Ragkousi, K., Cortezzo, D. E. & Setlow, P. Cooperativity between different nutrient receptors in germination of spores of Bacillus subtilis and reduction of this cooperativity by alterations in the GerB Receptor. J. Bacteriol. 188, 28–36 (2006).

136

Chesnokova, O. N., McPherson, S. A., Steichen, C. T. & Turnbough, C. L. The spore-specific alanine racemase of Bacillus anthracis and its role in suppressing germination during spore development. J. Bacteriol. 191, 1303–1310 (2009).

137

McKevitt, M. T. et al. Effects of endogenous d-alanine synthesis and autoinhibition of bacillus anthracis germination on in vitro and in vivo infections. Infect. Immun. 75, 5726–5734 (2007).

138

Hu, H., Emerson, J. & Aronson, A. I. Factors involved in the germination and inactivation of Bacillus anthracis spores in murine primary macrophages. FEMS Microbiol. Lett. 272, 245–250 (2007).

139

Hood, M. I. & Skaar, E. P. Nutritional immunity: transition metals at the pathogen–host interface. Nat. Rev. Microbiol. 10, 525–537 (2012).

140

Corbin, B. D. et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319, 962–965 (2008).

141

Hennigar, S. R. & McClung, J. P. Nutritional immunity. Am. J. Lifestyle Med. 10, 170–173 (2016).

142

Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).

143

Ghssein, G. et al. Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus. Science 352, 1105–1109 (2016).

144

Anfora, A. T., Haugen, B. J., Roesch, P., Redford, P. & Welch, R. A. Roles of serine accumulation and catabolism in the colonization of the murine urinary tract by Escherichia coli CFT073. Infect. Immun. 75, 5298–5304 (2007).

145

Connolly, J. P. et al. The host metabolite D-serine contributes to bacterial niche specificity through gene selection. ISME J. 9, 1039–1051 (2015).

146

O’Boyle, N. & Roe, A. J. Heterogeneity in populations of enterohaemorrhagic Escherichia coli undergoing d-serine adaptation. Curr. Genet. 67, 221–224 (2021).

147

Lee, R. J. et al. Bacterial d-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Sci. Signal. 10, eaam7703 (2017).

148

Tecle, T., Tripathi, S. & Hartshorn, K. L. Review: defensins and cathelicidins in lung immunity. Innate Immun. 16, 151–159 (2010).

149

Lee, R. J. et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J. Clin. Investig. 124, 1393–1405 (2014).

150

Kepert, I. et al. D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J. Allergy Clin. Immunol. 139, 1525–1535 (2017).

151

An, Y. H. & Friedman, R. J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 43, 338–348 (1998).

152

Katsikogianni, M. & Missirlis, Y. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur. Cells Mater. 8, 37–57 (2004).

153

Kline, K. A., Fälker, S., Dahlberg, S., Normark, S. & Henriques-Normark, B. Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5, 580–592 (2009).

154

Ishihama, H. et al. An antibacterial coated polymer prevents biofilm formation and implant-associated infection. Sci. Rep. 11, 3602 (2021).

155

Teughels, W., Van Assche, N., Sliepen, I. & Quirynen, M. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral. Implants Res. 17(S2), 68–81 (2006).

156

Katainen, J., Paajanen, M., Ahtola, E., Pore, V. & Lahtinen, J. Adhesion as an interplay between particle size and surface roughness. J. Colloid Interface Sci. 304, 524–529 (2006).

157

Truong, V. K. et al. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 31, 3674–3683 (2010).

158

Whitehead, K. A., Colligon, J. & Verran, J. Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions. Colloids Surf. B Biointerfaces 41, 129–138 (2005).

159

Webster, T. J., Tong, Z., Liu, J. & Banks, M. K. Adhesion of Pseudomonas fluorescens onto nanophase materials. Nanotechnology 16, S449–S457 (2005).

160

Colon, G., Ward, B. C. & Webster, T. J. Increased osteoblast and decreasedStaphylococcus epidermidis functions on nanophase ZnO and TiO2. J. Biomed. Mater. Res. Part A 78A, 595–604 (2006).

161

Merritt, K., Shafer, J. W. & Brown, S. A. Implant site infection rates with porous and dense materials. J. Biomed. Mater. Res. 13, 101–108 (1979).

162

Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T.-F. & Alarcon, E. I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4, e01067 (2018).

163

Wolden, R. et al. Identification of surface proteins in a clinical Staphylococcus haemolyticus isolate by bacterial surface shaving. BMC Microbiol. 20, 80 (2020).

164

Campoccia, D. et al. Orthopedic implant infections: Incompetence of Staphylococcus epidermidis, Staphylococcus lugdunensis, and Enterococcus faecalis to invade osteoblasts. J. Biomed. Mater. Res. Part A 104, 788–801 (2016).

165

Kubica, M. et al. A potential new pathway for staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocytederived macrophages. PLoS One 3, e1409 (2008).

166

Wen, Q., Gu, F., Sui, Z., Su, Z. & Yu, T. The process of osteoblastic infection by Staphylococcus Aureus. Int. J. Med. Sci. 17, 1327–1332 (2020).

167

Proctor, R. A. et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat. Rev. Microbiol. 4, 295–305 (2006).

168

Bui, L. M. G., Conlon, B. P. & Kidd, S. P. Antibiotic tolerance and the alternative lifestyles of Staphylococcus aureus. Essays Biochem. 61, 71–79 (2017).

169

Hochbaum, A. I. et al. Inhibitory effects of d-amino acids on staphylococcus aureus biofilm development. J. Bacteriol. 193, 5616–5622 (2011).

170

Xing, S.-F. et al. D-Amino acids inhibit initial bacterial adhesion: thermodynamic evidence. Biotechnol. Bioeng. 112, 696–704 (2015).

171

Yu, C. et al. Inhibition of biofilm formation by d-tyrosine: effect of bacterial type and d-tyrosine concentration. Water Res. 92, 173–179 (2016).

172

Su, X., Cheng, X., Wang, Y. & Luo, J. Effect of different D-amino acids on biofilm formation of mixed microorganisms. Water Sci. Technol. 85, 116–124 (2022).

173

Xu, H. & Liu, Y. Reduced microbial attachment by d-amino acid-inhibited AI-2 and EPS production. Water Res. 45, 5796–5804 (2011).

174

Rumbo, C. et al. Assessment of antivirulence activity of several d-amino acids against Acinetobacter baumannii and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 71, 3473–3481 (2016).

175

Lupoli, T. J. et al. Transpeptidase-mediated incorporation of d-amino acids into bacterial peptidoglycan. J. Am. Chem. Soc. 133, 10748–10751 (2011).

176

Gupta, P., Sarkar, S., Das, B., Bhattacharjee, S. & Tribedi, P. Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch. Microbiol. 198, 1–15 (2016).

177

Wu, H., Moser, C., Wang, H.-Z., Høiby, N. & Song, Z.-J. Strategies for combating bacterial biofilm infections. Int. J. Oral. Sci. 7, 1–7 (2015).

178

Davey, M. E. & O’toole, G. A. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847–867 (2000).

179

Wildeman, P. et al. Genomic characterization and outcome of prosthetic joint infections caused by Staphylococcus aureus. Sci. Rep. 10, 5938 (2020).

180

Corvec, S., Portillo, M. E., Pasticci, B. M., Borens, O. & Trampuz, A. Epidemiology and new developments in the diagnosis of prosthetic joint infection. Int. J. Artif. Organs 35, 923–934 (2012).

181

Arciola, C. R., Campoccia, D., Speziale, P., Montanaro, L. & Costerton, J. W. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33, 5967–5982 (2012).

182

Brady, R. A., Leid, J. G., Calhoun, J. H., Costerton, J. W. & Shirtliff, M. E. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol. Med. Microbiol 52, 13–22 (2008).

183

Suligoy, C. M. et al. Mutation of Agr is associated with the adaptation of Staphylococcus aureus to the Host during Chronic Osteomyelitis. Front. Cell Infect. Microbiol. 8, 18 (2018).

184

Sanchez, C. J. et al. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect. Dis. 13, 47 (2013).

185

Junka, A. et al. Bad to the bone: on in vitro and ex vivo microbial biofilm ability to directly destroy colonized bone surfaces without participation of host immunity or osteoclastogenesis. PLoS One 12, e0169565 (2017).

186

Lister, J. L. & Horswill, A. R. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front. Cell Infect. Microbiol. 4, 178 (2014).

187

Archer, N. K. et al. Staphylococcus aureus biofilms. Virulence 2, 445–459 (2011).

188

Beenken, K. E. et al. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS One 5, e10790 (2010).

189

Cucarella, C. et al. a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 183, 2888–2896 (2001).

190

Geoghegan, J. A. et al. Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J. Bacteriol. 192, 5663–5673 (2010).

191

O’Neill, E. et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J. Bacteriol. 190, 3835–3850 (2008).

192

Schroeder, K. et al. Molecular characterization of a novel Staphylococcus aureus surface protein (SasC) involved in cell aggregation and biofilm accumulation. PLoS One 4, e7567 (2009).

193

Sarkar, S. & Pires, M. M. d-Amino acids do not inhibit biofilm formation in Staphylococcus aureus. PLoS One 10, e0117613 (2015).

194

Sanchez, C. J. et al. Effects of local delivery of d-amino acids from biofilm-dispersive scaffolds on infection in contaminated rat segmental defects. Biomaterials 34, 7533–7543 (2013).

195

Harmata, A. J. et al. d-Amino acid inhibits biofilm but not new bone formation in an ovine model. Clin. Orthop. Relat. Res. 473, 3951–3961 (2015).

196

Li, Y. et al. Effects of intra-articular D-amino acids combined with systemic vancomycin on an experimental Staphylococcus aureus-induced periprosthetic joint infection. J. Microbiol. Immunol. Infect. 55, 716–727 (2022).

197

Sanchez, C. J. et al. d-Amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 58, 4353–4361 (2014).

198

Yang, H., Wang, M., Yu, J. & Wei, H. Aspartate inhibits Staphylococcus aureus biofilm formation. FEMS Microbiol, Lett. 362, fnv025 (2015).

199

Wickramasinghe, S. et al. Photoactivated gold nanorod hydrogel composite containing d-amino acids for the complete eradication of bacterial biofilms on metal alloy implant materials. ACS Appl Nano Mater. 3, 5862–5873 (2020).

200

Xu, Z. et al. Whole genome sequence and comparative genomics analysis of multi-drug resistant environmental Staphylococcus epidermidis ST59. G3 GenesGenomesGenet. 8, 2225–2230 (2018).

201

Arciola, C. R. et al. Antibiotic resistance in exopolysaccharide-forming Staphylococcus epidermidis clinical isolates from orthopaedic implant infections. Biomaterials 26, 6530–6535 (2005).

202

Fey, P. D. & Olson, M. E. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol. 5, 917–933 (2010).

203

Rohde, H. et al. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol. Microbiol. 55, 1883–1895 (2005).

204

Vuong, C., Kocianova, S., Yao, Y., Carmody, A. B. & Otto, M. Increased colonization of indwelling medical devices by quorum‐sensing mutants of Staphylococcus epidermidis in vivo. J. Infect. Dis. 190, 1498–1505 (2004).

205

Ramón-Peréz, M. L. et al. D-Amino acids inhibit biofilm formation in Staphylococcus epidermidis strains from ocular infections. J. Med. Microbiol. 63, 1369–1376 (2014).

206

Ebert, S., Meier, C., Meili, S., Wahl, P. Lessons learned from an implant-related infection with bacillus spp of the proximal femur: a rare and insidious complication after internal fixation of closed fractures. Biomed. J. Sci. Technol. Res. 19. https://doi.org/10.26717/BJSTR.2019.19.003274 (2019).

207

Dubouix, A. et al. Bacillus cereus infections in Traumatology–Orthopaedics Department: retrospective investigation and improvement of healthcare practices. J. Infect. 50, 22–30 (2005).

208

Gallo, P. H. et al. Demonstration of Bacillus cereus in orthopaedic-implant-related infection with use of a multi-primer polymerase chain reaction-mass spectrometric assay. J. Bone Jt Surg. 93, e85 (2011).

209

Ha, J., Park, Y. J., Kim, Y. J., Oh, H. C. & Kim, Y. A. Late prosthetic joint infection and bacteremia by Bacillus cereus confirmed by 16S rRNA sequencing and hip joint tissue pathology. Ann. Clin. Microbiol 19, 54 (2016).

210

Mitton, B., Rule, R., Mbelle, N., van Hougenhouck-Tulleken, W., Said, M. Postprocedural Bacillus cereus septic arthritis in a patient with systemic lupus erythematosus. Afr. J. Lab. Med. 9, 1119 (2020).

211

Wiedermann, C. J., Stockner, I. & Plattner, B. Bacillus species infective arthritis after knee arthroscopy. Surg. Infect. 11, 555–558 (2010).

212

Romero, D., Aguilar, C., Losick, R. & Kolter, R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl. Acad. Sci. 107, 2230–2234 (2010).

213

Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. & Kolter, R. Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol 11, 157–168 (2013).

214

Kobayashi, K. & Iwano, M. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol. Microbiol. 85, 51–66 (2012).

215

Romero, D., Vlamakis, H., Losick, R. & Kolter, R. An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol. Microbiol. 80, 1155–1168 (2011).

216

Kearns, D. B., Chu, F., Branda, S. S., Kolter, R. & Losick, R. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55, 739–749 (2004).

217

Branda, S. S. et al. Genes involved in formation of structured multicellular communities by Bacillus subtilis. J. Bacteriol. 186, 3970–3979 (2004).

218

Cámara-Almirón, J. et al. Dual functionality of the amyloid protein TasA in Bacillus physiology and fitness on the phylloplane. Nat. Commun. 11, 1859 (2020).

219

Leiman, S. A. et al. D-Amino acids indirectly inhibit biofilm formation in bacillus subtilis by interfering with protein synthesis. J. Bacteriol. 195, 5391–5395 (2013).

220

Sonohata, M., Kitajima, M., Kawano, S. & Mawatari, M. Acute hematogenous infection of revision total hip arthroplasty by oral bacteria in a patient without a history of dental procedures: case report. Open Orthop. J. 8, 56–59 (2014).

221

Olson, L. B., Turner, D. J., Cox, G. M. & Hostler, C. J. Streptococcus salivarius prosthetic joint infection following dental cleaning despite antibiotic prophylaxis. Case Rep. Infect. Dis. 2019, 1–4 (2019).

222

Friedlander, A. H. Presence of staphylococci in mouth and presence of streptococci in late infections of knee and hip joint prostheses: antibiotic prophylaxis, a conundrum. Spec. Care Dent. 29, 226–228 (2009).

223

Mathur, A. & Chen, A. F. Streptococcus viridans periprosthetic joint infections. Ann. Jt 2, 36–36 (2017).

224

Takahashi, N. & Nyvad, B. The role of bacteria in the caries process. J. Dent. Res. 90, 294–303 (2011).

225

Koo, H., Falsetta, M. L. & Klein, M. I. The exopolysaccharide matrix. J. Dent. Res. 92, 1065–1073 (2013).

226

Lemos, J. A., et al. The biology of Streptococcus mutans. Microbiol. Spectr. 7. https://doi.org/10.1128/microbiolspec.GPP3-0051-2018 (2019).

227

Bowen, W. H. & Koo, H. Biology of <i>Streptococcus mutans-</i>derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 45, 69–86 (2011).

228

Brady, L. J. et al. The changing faces of Streptococcus antigen Ⅰ/Ⅱ polypeptide family adhesins. Mol. Microbiol. 77, 276–286 (2010).

229

Tong, Z. et al. An in vitro study on the effect of free amino acids alone or in combination with Nisin on biofilms as well as on planktonic bacteria of Streptococcus mutans. PLoS One 9, e99513 (2014).

230

Rasouli, M. R. et al. Low rate of infection control in enterococcal periprosthetic joint infections. Clin. Orthop. Relat. Res. 470, 2708–2716 (2012).

231

Fernandes, A. The microbiological profiles of infected prosthetic implants with an emphasis on the organisms which form biofilms. J Clin DIAGNOSTIC Res. 7, 219–223 (2013).

232

Osmon, D. R. et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of Americaa. Clin. Infect. Dis. 56, e1–e25 (2013).

233

Tornero, E. et al. Characteristics of prosthetic joint infections due to Enterococcus sp. and predictors of failure: a multi-national study. Clin. Microbiol. Infect. 20, 1219–1224 (2014).

234

Sandoe, J. A. T., Wysome, J., West, A. P., Heritage, J. & Wilcox, M. H. Measurement of ampicillin, vancomycin, linezolid and gentamicin activity against enterococcal biofilms. J. Antimicrob. Chemother. 57, 767–770 (2006).

235

Renz, N., Trebse, R., Akgün, D., Perka, C. & Trampuz, A. Enterococcal periprosthetic joint infection: clinical and microbiological findings from an 8-year retrospective cohort study. BMC Infect. Dis. 19, 1083 (2019).

236

Thompson, O., Rasmussen, M., Stefánsdóttir, A., Christensson, B. & Åkesson, P. A population-based study on the treatment and outcome of enterococcal prosthetic joint infections. A consecutive series of 55 cases. J. Bone Jt. Infect. 4, 285–291 (2019).

237

Holmberg, A., Thórhallsdóttir, V. G., Robertsson, O., W-Dahl, A. & Stefánsdóttir, A. 75% success rate after open debridement, exchange of tibial insert, and antibiotics in knee prosthetic joint infections. Acta Orthop. 86, 457–462 (2015).

238

Lam, A., Rasmussen, M. & Thompson, O. Successful outcome for patients with streptococcal prosthetic joint infections—a retrospective population-based study. Infect. Dis. 50, 593–600 (2018).

239

Paganelli, F. L., Willems, R. J. & Leavis, H. L. Optimizing future treatment of enterococcal infections: attacking the biofilm. Trends Microbiol. 20, 40–49 (2012).

240

Zheng, J. et al. Characterization of biofilm formation by Enterococcus faecalis isolates derived from urinary tract infections in China. J. Med. Microbiol 67, 60–67 (2018).

241

Kayaoglu, G., Ørstavik, D. V. Virulence factors of enterococcus faecalis: relationship to endodontic disease. Crit. Rev. Oral. Biol. Med. 15, 308–320 (2004).

242

Park, S. Y., Kim, K. M., Lee, J. H., Seo, S. J. & Lee, I. H. Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infect. Immun. 75, 1861–1869 (2007).

243

Chuang-Smith, O. N., Wells, C. L., Henry-Stanley, M. J. & Dunny, G. M. Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization. PLoS One 5, e15798 (2010).

244

Afonina, I., Lim, X. N., Tan, R. & Kline, K. A. Planktonic Interference and Biofilm Alliance between Aggregation Substance and Endocarditis- and BiofilmAssociated Pili in Enterococcus faecalis. J. Bacteriol. 200, e00361–18 (2018).

245

Zilm, P. S. et al. D-amino acids reduce Enterococcus faecalis biofilms in vitro and in the presence of antimicrobials used for root canal treatment. PLoS One 12, e0170670 (2017).

246

Rosen, E., Tsesis, I., Elbahary, S., Storzi, N., Kolodkin-Gal, I. Eradication of Enterococcus faecalis biofilms on human dentin. Front. Microbiol. 7, 2055 (2016).

247

Pestrak, M. J. et al. Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments. PLOS Pathog. 14, e1006842 (2018).

248

Cerioli, M. et al. Pseudomonas aeruginosa implant-associated bone and joint infections: experience in a regional reference center in France. Front. Med. 7, 513242 (2020).

249

Seyman, D., Ozen, N. S., Inan, D., Ongut, G. & Ogunc, D. Pseudomonas aeruginosa septic arthritis of knee after intra-articular ozone injection. N. Microbiol. 35, 345–348 (2012).

250

Yilmaz, M., Arslan, F. & Mert, A. Community acquired chronic arthritis due to Pseudomonas aeruginosa in a previously healthy pregnant woman. Case Rep. Infect. Dis. 2014, 1–2 (2014).

251

Sudduth, J. D. et al. Open fractures: are we still treating the same types of infections. Surg. Infect. 21, 766–772 (2020).

252

Triffault-Fillit, C. et al. Microbiologic epidemiology depending on time to occurrence of prosthetic joint infection: a prospective cohort study. Clin. Microbiol. Infect. 25, 353–358 (2019).

253

Lora-Tamayo, J. et al. Infected hip hemiarthroplasties and total hip arthroplasties: differential findings and prognosis. J. Infect. 67, 536–544 (2013).

254

Ascione, T. et al. Factors related to outcome of early and delayed prosthetic joint infections. J. Infect. 70, 30–36 (2015).

255

Veltman, E. S., Vos, F. J., Meis, J. F. & Goosen, J. H. M. Debridement, antibiotics and implant retention in early postoperative infection with Pseudomonas aeruginosa. J. Infect. 70, 307–309 (2015).

256

Semmler, A. B. T., Whitchurch, C. B. & Mattick, J. S. A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology 145, 2863–2873 (1999).

257

Thi, M. T. T., Wibowo, D. & Rehm, B. H. A. Pseudomonas aeruginosa bbiofilms. Int. J. Mol. Sci. 21, 8671 (2020).

258

Chang, C.-Y. Surface sensing for biofilm formation in Pseudomonas aeruginosa. Front. Microbiol. 8, 2671 (2018).

259

Colvin, K. M. et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol. 14, 1913–1928 (2012).

260

Colvin, K. M. et al. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 7, e1001264 (2011).

261

Kao, W. T. K., Frye, M., Gagnon, P., Vogel, J. P. & Chole, R. D-amino acids do not inhibit Pseudomonas aeruginosa biofilm formation. Laryngosc. Investig. Otolaryngol. 2, 4–9 (2017).

262

He, W., Li, C. & Lu, C.-D. Regulation and characterization of the dadRAX Locus for d-amino acid catabolism in Pseudomonas aeruginosa PAO1. J. Bacteriol. 193, 2107–2115 (2011).

263

Brandenburg, K. S. et al. Tryptophan inhibits biofilm formation by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57, 1921–1925 (2013).

264

Ruer, S., Stender, S., Filloux, A. & de Bentzmann, S. Assembly of fimbrial structures in Pseudomonas aeruginosa: functionality and specificity of chaperone-usher machineries. J. Bacteriol. 189, 3547–3555 (2007).

265

Conrad, J. C. et al. Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys. J. 100, 1608–1616 (2011).

266

Seifert, H. et al. Distribution of Acinetobacter species on human skin: comparison of phenotypic and genotypic identification methods. J. Clin. Microbiol. 35, 2819–2825 (1997).

267

Colquhoun, J. M. & Rather, P. N. Insights into mechanisms of biofilm formation in Acinetobacter baumannii and Implications for Uropathogenesis. Front. Cell.Infect. Microbiol. 10, 253 (2020).

268

Choe, H. et al. Staphylococcus aureus and Acinetobacter baumannii inhibit osseointegration of orthopedic implants. Infect. Immun. 90, e0066921 (2022).

269

Lob, S. H., Hoban, D. J., Sahm, D. F. & Badal, R. E. Regional differences and trends in antimicrobial susceptibility of Acinetobacter baumannii. Int. J. Antimicrob. Agents 47, 317–323 (2016).

270

Giammanco, A., Calà, C., Fasciana, T. & Dowzicky, M. J. Global assessment of the activity of tigecycline against multidrug-resistant gram-negative pathogens between 2004 and 2014 as part of the tigecycline evaluation and surveillance trial. mSphere. 2, e00310–16 (2017).

271

Ramirez, M. S., Bonomo, R. A. & Tolmasky, M. E. Carbapenemases: transforming acinetobacter baumannii into a yet more dangerous menace. Biomolecules 10, 720 (2020).

272

Benito, N. et al. The different microbial etiology of prosthetic joint infections according to route of acquisition and time after prosthesis implantation, including the role of multidrug-resistant organisms. J. Clin. Med. 8, 673 (2019).

273

Benito, N. et al. Time trends in the aetiology of prosthetic joint infections: a multicentre cohort study. Clin. Microbiol. Infect. 22, 732.e1–732.e8 (2016).

274

da Silva, R. B., Araujo, R. O. & Salles, M. J. Non-elective and revision arthroplasty are independently associated with hip and knee prosthetic joint infection caused by Acinetobacter baumannii: a Brazilian single center observational cohort study of 98 patients. BMC Musculoskelet. Disord. 22, 511 (2021).

275

Silva, R. et al. Orthopedic-implant associated infection due to gram-negative bacilli: the worrisome impact of Acinetobacter baumannii multidrug resistance in a Brazilian center. Open Forum Infect. Dis. 4(suppl_1), S111–S112 (2017).

276

Johnson, E. N., Burns, T. C., Hayda, R. A., Hospenthal, D. R. & Murray, C. K. Infectious complications of open type iii tibial fractures among combat casualties. Clin. Infect. Dis. 45, 409–415 (2007).

277

Fily, F. et al. Post-traumatic osteomyelitis in Middle East war-wounded civilians: resistance to first-line antibiotics in selected bacteria over the decade 2006–2016. BMC Infect. Dis. 19, 103 (2019).

278

Petersen, K. et al. Trauma-related infections in battlefield casualties from Iraq. Ann. Surg. 245, 803–811 (2007).

279

De Gregorio, E. et al. Biofilm-associated proteins: news from Acinetobacter. BMC Genom. 16, 933 (2015).

280

Jariyarattanarach, P., Klubthawee, N., Wongchai, M., Roytrakul, S. & Aunpad, R. Novel D-form of hybrid peptide (D-AP19) rapidly kills Acinetobacter baumannii while tolerating proteolytic enzymes. Sci. Rep. 12, 15852 (2022).

281

Sasabe, J. et al. Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota. Nat. Microbiol. 1, 16125 (2016).

282

Kawase, T. et al. Gut microbiota of mice putatively modifies amino acid metabolism in the host brain. Br. J. Nutr. 117, 775–783 (2017).

283

Ding, X., Ma, N., Nagahama, M., Yamada, K. & Semba, R. Localization of d-serine and serine racemase in neurons and neuroglias in mouse brain. Neurol. Sci. 32, 263–267 (2011).

284

Kartvelishvily, E., Shleper, M., Balan, L., Dumin, E. & Wolosker, H. Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J. Biol. Chem. 281, 14151–14162 (2006).

285

Williams, S. M., Diaz, C. M., Macnab, L. T., Sullivan, R. K. P. & Pow, D. V. Immunocytochemical analysis ofD-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 53, 401–411 (2006).

286

Kiriyama, Y. & Nochi, H. D-Amino acids in the nervous and endocrine systems. Science 2016, 1–9 (2016).

287

Beltrán-Castillo, S. et al. D-serine released by astrocytes in brainstem regulates breathing response to CO2 levels. Nat. Commun. 8, 838 (2017).

288

Beltrán-Castillo, S., Eugenín, J. & von Bernhardi, R. Impact of aging in microglia-mediated D-serine balance in the CNS. Mediators Inflamm. 2018, 1–11 (2018).

289

von Bernhardi, R., Eugenín-von Bernhardi, L. & Eugenín, J. Microglial cell dysregulation in brain aging and neurodegeneration. Front. Aging Neurosci. 7, 124 (2015).

290

Ollivaux, C., Soyez, D. & Toullec, J.-Y. Biogenesis of d-amino acid containing peptides/proteins: where, when and how? J. Pept. Sci. 20, 595–612 (2014).

291

Madeira, C. et al. d-serine levels in Alzheimer’s disease: implications for novel biomarker development. Transl. Psychiatry 5, e561–e561 (2015).

292

Lin, C.-H., Yang, H.-T., Chiu, C.-C. & Lane, H.-Y. Blood levels of D-amino acid oxidase vs. D-amino acids in reflecting cognitive aging. Sci. Rep. 7, 14849 (2017).

293

Guercio, G. D., Panizzutti, R. Potential and challenges for the clinical use of d-serine as a cognitive enhancer. Front. Psychiatry. 9, 14 (2018).

294

Klatte, K. et al. Impaired D-serine-mediated cotransmission mediates cognitive dysfunction in epilepsy. J. Neurosci. 33, 13066–13080 (2013).

295

Takarada, T. et al. Osteoclastogenesis is negatively regulated by D-serine produced by osteoblasts. J. Cell Physiol. 227, 3477–3487 (2012).

296

Rivera-Villaseñor, A. et al. NMDA receptor hypofunction in the aging-associated malfunction of peripheral tissue. Front. Physiol. 12, 687121 (2021).

297

D’Aniello, S., Somorjai, I., Garcia‐Fernàndez, J., Topo, E. & D’Aniello, A. D‐Aspartic acid is a novel endogenous neurotransmitter. FASEB J. 25, 1014–1027 (2011).

298

Errico, F. et al. A role for D-aspartate oxidase in schizophrenia and in schizophrenia-related symptoms induced by phencyclidine in mice. Transl. Psychiatry 5, e512–e512 (2015).

299

Fujii, N., Takata, T., Fujii, N., Aki, K. & Sakaue, H. D-Amino acids in protein: the mirror of life as a molecular index of aging. Biochim. Biophys. Acta - Proteins Proteom. 1866, 840–847 (2018).

300

Patton, A., Genever, P., Birch, M., Suva, L. & Skerry, T. Expression of an N-methyl-D-aspartate-type receptor by human and rat osteoblasts and osteoclasts suggests a novel glutamate signaling pathway in bone. Bone 22, 645–649 (1998).

301

Ho, M.-L. et al. Down-regulation of N-methyl D-aspartate receptor in ratmodeled disuse osteopenia. Osteoporos. Int. 16, 1780–1788 (2005).

302

Cloos, P. A. C. & Fledelius, C. Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential. Biochem. J. 345, 473–480 (2000).

303

Fujii, N. et al. The presence of d-β-aspartic acid-containing peptides in elastic fibers of sun-damaged skin: a potent marker for ultraviolet-induced skin aging. Biochem. Biophys. Res. Commun. 294, 1047–1051 (2002).

304

Hooi, M. Y. S. & Truscott, R. J. W. Racemisation and human cataract. d-Ser, d-Asp/Asn and d-Thr are higher in the lifelong proteins of cataract lenses than in age-matched normal lenses. Age 33, 131–141 (2011).

305

Nagata, Y. et al. High concentrations of D-amino acids in human gastric juice. Amino Acids 32, 137–140 (2007).

306

Zhang, Z. et al. Non-invasive detection of gastric cancer relevant d-amino acids with luminescent DNA/silver nanoclusters. Nanoscale 9, 19367–19373 (2017).

307

Han, M. et al. Development and validation of a rapid, selective, and sensitive LC–MS/MS method for simultaneous determination of d- and l-amino acids in human serum: application to the study of hepatocellular carcinoma. Anal. Bioanal. Chem. 410, 2517–2531 (2018).

308

Huang, J.-L., Chen, X.-L., Guo, C. & Wang, Y.-X. Contributions of spinal d-amino acid oxidase to bone cancer pain. Amino Acids 43, 1905–1918 (2012).

309

Wang, Y.-X. et al. Biological implications of oxidation and unidirectional chiral inversion of D-amino acids. Curr. Drug Metab. 13, 321–331 (2012).

310

Rosini, E., Pollegioni, L., Ghisla, S., Orru, R. & Molla, G. Optimization of d-amino acid oxidase for low substrate concentrations - towards a cancer enzyme therapy. FEBS J. 276, 4921–4932 (2009).

311

El Sayed, S. M. et al. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects. J. Bioenerg. Biomembr. 44, 513–523 (2012).

312

Bava, A. et al. D-amino acid oxidase–nanoparticle system: a potential novel approach for cancer enzymatic therapy. Nanomedicine 8, 1797–1806 (2013).

313

Kimura, T. et al. Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease. Sci. Rep. 6, 26137 (2016).

314

Hesaka, A. et al. D-Serine reflects kidney function and diseases. Sci. Rep. 9, 5104 (2019).

315

Visser, W. F. et al. A sensitive and simple ultra-high-performance-liquid chromatography–tandem mass spectrometry based method for the quantification of d-amino acids in body fluids. J. Chromatogr. A 1218, 7130–7136 (2011).

316

Tsai, G. E., Yang, P., Chang, Y.-C. & Chong, M.-Y. D-Alanine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 59, 230–234 (2006).

317

Tsai, G., Yang, P., Chung, L.-C., Lange, N. & Coyle, J. T. D-serine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 44, 1081–1089 (1998).

318

Shi, Y., Hussain, Z. & Zhao, Y. Promising application of D-amino acids toward clinical therapy. Int. J. Mol. Sci. 23, 10794 (2022).

319

Rawson, M., Haggard, W. & Jennings, J. A. Osteocompatibility of Biofilm Inhibitors. Open Orthop. J. 8, 442–449 (2014).

320

Ercal, N., Luo, X., Matthews, R. H. & Armstrong, D. W. In vitro study of the metabolic effects of D-amino acids. Chirality 8, 24–29 (1996).

321

Hsu, Y.-P. et al. Full color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls. Chem. Sci. 8, 6313–6321 (2017).

322

Hsu, Y.-P. et al. Fluorogenic d-amino acids enable real-time monitoring of peptidoglycan biosynthesis and high-throughput transpeptidation assays. Nat. Chem. 11, 335–341 (2019).

323

Kuru, E., Tekkam, S., Hall, E., Brun, Y. V. & Van Nieuwenhze, M. S. Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ. Nat. Protoc. 10, 33–52 (2015).

324

Neumann, K. D. et al. Imaging active infection in vivo using D-amino acid derived PET radiotracers. Sci. Rep. 7, 7903 (2017).

325

Parker, M. F. L. et al. Sensing living bacteria in vivo using d-alanine-derived 11 C radiotracers. ACS Cent. Sci. 6, 155–165 (2020).

326

Ogawa, K. et al. Evaluation of Ga-DOTA-(D-Asp)n as bone imaging agents: D-aspartic acid peptides as carriers to bone. Sci. Rep. 7, 13971 (2017).

Bone Research
Article number: 14
Cite this article:
Caldwell M, Hughes M, Wei F, et al. Promising applications of D-amino acids in periprosthetic joint infection. Bone Research, 2023, 11: 14. https://doi.org/10.1038/s41413-023-00254-z

156

Views

2

Downloads

9

Crossref

8

Web of Science

8

Scopus

Altmetrics

Received: 17 December 2022
Revised: 02 February 2023
Accepted: 10 February 2023
Published: 10 March 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return