AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis

Emilie Hascoët1Frédéric Blanchard1Claudine Blin-Wakkach2Jérôme Guicheux1( )Philippe Lesclous1Alexandra Cloitre1
Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
Université Côte d’Azur, CNRS, LP2M Nice, France
Show Author Information

Abstract

Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases leading to increased bone resorption. Preventing this inflammatory bone resorption is a major health challenge. Both diseases share immunopathogenic similarities and a common inflammatory environment. The autoimmune response or periodontal infection stimulates certain immune actors, leading in both cases to chronic inflammation that perpetuates bone resorption. Moreover, RA and periodontitis have a strong epidemiological association that could be explained by periodontal microbial dysbiosis. This dysbiosis is believed to be involved in the initiation of RA via three mechanisms. (ⅰ) The dissemination of periodontal pathogens triggers systemic inflammation. (ⅱ) Periodontal pathogens can induce the generation of citrullinated neoepitopes, leading to the generation of anti-citrullinated peptide autoantibodies. (ⅲ) Intracellular danger-associated molecular patterns accelerate local and systemic inflammation. Therefore, periodontal dysbiosis could promote or sustain bone resorption in distant inflamed joints. Interestingly, in inflammatory conditions, the existence of osteoclasts distinct from “classical osteoclasts” has recently been reported. They have proinflammatory origins and functions. Several populations of osteoclast precursors have been described in RA, such as classical monocytes, a dendritic cell subtype, and arthritis-associated osteoclastogenic macrophages. The aim of this review is to synthesize knowledge on osteoclasts and their precursors in inflammatory conditions, especially in RA and periodontitis. Special attention will be given to recent data related to RA that could be of potential value in periodontitis due to the immunopathogenic similarities between the two diseases. Improving our understanding of these pathogenic mechanisms should lead to the identification of new therapeutic targets involved in the pathological inflammatory bone resorption associated with these diseases.

References

1

Silman, A. J. & Pearson, J. E. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 4, S265–S272 (2002).

2

Mikuls, T. R., Payne, J. B., Deane, K. D. & Thiele, G. M. Autoimmunity of the lung and oral mucosa in a multisystem inflammatory disease: The spark that lights the fire in rheumatoid arthritis? J. Allergy Clin. Immunol. 137, 28–34 (2016).

3

Potempa, J., Mydel, P. & Koziel, J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 606–620 (2017).

4

Papapanou, P. N. et al. Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 45, S162–S170 (2018).

5

Eke, P. I. et al. Periodontitis in US adults: National Health and Nutrition Examination Survey 2009–2014. J. Am. Dent. Assoc. 149, 576–588.e6 (2018).

6

Kassebaum, N. J. et al. Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression. J. Dent. Res. 93, 1045–1053 (2014).

7

Costa, F. O. et al. Surgical and non-surgical procedures associated with recurrence of periodontitis in periodontal maintenance therapy: 5-year prospective study. PLoS One 10, e0140847 (2015).

8
Socransky, S. S. & Haffajee, A. D. Periodontal microbial ecology. Periodontol 38, 135–187 (2005). 2000.
9

Di Benedetto, A., Gigante, I., Colucci, S. & Grano, M. Periodontal disease: linking the primary inflammation to bone loss. Clin. Dev. Immunol. 2013, 503754 (2013).

10

Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

11

Ibáñez, L. et al. Inflammatory osteoclasts prime TNFα-Producing CD4+ T cells and express CX3CR1. J. Bone Miner. Res. 31, 1899–1908 (2016).

12

Madel, M. B. et al. Immune function and diversity of osteoclasts in normal and pathological conditions. Front. Immunol. 10, 1–18 (2019).

13

Madel, M. B. et al. Dissecting the phenotypic and functional heterogeneity of mouse inflammatory osteoclasts by the expression of cx3cr1. Elife 9, 1–22 (2020).

14

Xue, J. et al. CD14+CD16-monocytes are the main precursors of osteoclasts in rheumatoid arthritis via expressing Tyro3TK. Arthritis Res. Ther. 22, 1–11 (2020).

15

Rivollier, A. et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104, 4029–4037 (2004).

16

Hasegawa, T. et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat. Immunol. 20, 1631–1643 (2019).

17

Marotte, H. et al. The association between periodontal disease and joint destruction in rheumatoid arthritis extends the link between the HLA‐DR shared epitope and severity of bone destruction. Ann. Rheum. Dis. 65, 905 (2006).

18

Stein, J., Reichert, S., Gautsch, A. & Machulla, H. K. G. Are there HLA combinations typical supporting for or making resistant against aggressive and/or chronic periodontitis? J. Periodontal. Res. 38, 508–517 (2003).

19

Qiao, Y. et al. Rheumatoid arthritis risk in periodontitis patients: a systematic review and meta-analysis. Joint Bone Spine 87, 556–564 (2020).

20

Marchesan, J. T. et al. Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis. Arthritis Res. Ther. 15, R186 (2013).

21

Corrêa, M. G. et al. Periodontitis increases rheumatic factor serum levels and citrullinated proteins in gingival tissues and alter cytokine balance in arthritic rats. PLoS One 12, e0174442 (2017).

22

Lübcke, P. M. et al. Periodontal treatment prevents arthritis in mice and methotrexate ameliorates periodontal bone loss. Sci. Rep. 9, 1–9 (2019).

23

Courbon, G. et al. Porphyromonas gingivalis experimentally induces periodontis and an anti-CCP2-associated arthritis in the rat. Ann. Rheum. Dis. 78, 594–599 (2019).

24

Li, Y. et al. The relationship between porphyromonas gingivalis and rheumatoid arthritis: a meta-analysis. Front. Cell. Infect. Microbiol. 12, 956417 (2022).

25

Berthelot, J. M. et al. Another look at the contribution of oral microbiota to the pathogenesis of rheumatoid arthritis: a narrative review. Microorganisms 10, 59 (2022).

26

Moura, M. F. et al. Nonsurgical periodontal therapy decreases the severity of rheumatoid arthritis and the plasmatic and salivary levels of RANKL and Survivin: a short-term clinical study. Clin. Oral. Investig. 25, 6643–6652 (2021).

27

Oliveira, S. R. et al. Are neutrophil extracellular traps the link for the cross-talk between periodontitis and rheumatoid arthritis physiopathology? Rheumatology 61, 174–184 (2022).

28

González-Febles, J. & Sanz, M. Periodontitis and rheumatoid arthritis: what have we learned about their connection and their treatment? Periodontology 87, 181–203 (2000).

29

Perricone, C. et al. Porphyromonas gingivalis and rheumatoid arthritis. Curr. Opin. Rheumatol. 31, 517–524 (2019).

30

Hashimoto, H., Hashimoto, S. & Shimazaki, Y. Functional impairment and periodontitis in rheumatoid arthritis. Int. Dent. J. 72, 641–647 (2022).

31

Rodríguez-Lozano, B. et al. Association between severity of periodontitis and clinical activity in rheumatoid arthritis patients: a case-control study. Arthritis Res. Ther. 21, 27 (2019).

32

Lin, Y. J., Anzaghe, M. & Schülke, S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells 9, 880 (2020).

33

Sandros, J. et al. Cytokine responses of oral epithelial cells to Porphyromonas gingivalis infection. J. Dent. Res. 79, 1808–1814 (2000).

34

Usui, M. et al. Gingival epithelial cells support osteoclastogenesis by producing receptor activator of nuclear factor kappa B ligand via protein kinase A signaling. J. Periodontal Res. 51, 462–470 (2016).

35

Jang, J. Y., Song, I. S., Baek, K. J., Choi, Y. & Ji, S. Immunologic characteristics of human gingival fibroblasts in response to oral bacteria. J. Periodontal. Res. 52, 447–457 (2017).

36

Belibasakis, G. N. et al. Regulation of RANKL and OPG gene expression in human gingival fibroblasts and periodontal ligament cells by Porphyromonas gingivalis: a putative role of the Arg-gingipains. Microb. Pathog. 43, 46–53 (2007).

37

Lefèvre, S. et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414–1420 (2009).

38

Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470.e5 (2019).

39

Sharawi, H. et al. The prevalence of gingival dendritic cell subsets in periodontal patients. J. Dent. Res. 100, 1330–1336 (2021).

40

Kinane, D. F., Stathopoulou, P. G. & Papapanou, P. N. Periodontal diseases. Nat. Rev. Dis. Prim. 3, 17038 (2017).

41

Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

42

Hajishengallis, G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15, 30–44 (2015).

43

Hajishengallis, G. & Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 21, 1 (2021).

44

Ling, M. R., Chapple, I. L. & Matthews, J. B. Peripheral blood neutrophil cytokine hyper-reactivity in chronic periodontitis. Innate Immun. 21, 714–725 (2015).

45

Coutant, F. & Miossec, P. Altered dendritic cell functions in autoimmune diseases: distinct and overlapping profiles. Nat. Rev. Rheumatol. 12, 703–715 (2016).

46

Lebre, M. C. et al. Rheumatoid arthritis synovium contains two subsets of CD83−DC-LAMP− dendritic cells with distinct cytokine profiles. Am. J. Pathol. 172, 940 (2008).

47

Jongbloed, S. L. et al. Enumeration and phenotypical analysis of distinct dendritic cell subsets in psoriatic arthritis and rheumatoid arthritis. Arthritis Res. Ther. 8, R15 (2006).

48

Segura, E. et al. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38, 336–348 (2013).

49

Page, G. & Miossec, P. Paired synovium and lymph nodes from rheumatoid arthritis patients differ in dendritic cell and chemokine expression. J. Pathol. 204, 28–38 (2004).

50

Kurgan, S. & Kantarci, A. Molecular basis for immunohistochemical and inflammatory changes during progression of gingivitis to periodontitis. Periodontol 2000 76, 51–67 (2018).

51

Rankin, L., Groom, J., Mielke, L. A., Seillet, C. & Belz, G. T. Diversity, function, and transcriptional regulation of gut innate lymphocytes. Front. Immunol. 4, 22 (2013).

52

Chemin, K., Gerstner, C. & Malmström, V. Effector functions of CD4+ T cells at the site of local autoimmune inflammation-lessons from rheumatoid arthritis. Front. Immunol. 10, 353 (2019).

53

Gemmell, E. & Seymour, G. J. Immunoregulatory control of Th1/Th2 cytokine profiles in periodontal disease. Periodontol 2000 35, 21–41 (2004).

54

Liao, C., Zhang, C. & Yang, Y. Pivotal roles of interleukin-17 as the epicenter of bone loss diseases. Curr. Pharm. Des. 23, 6302–6309 (2017).

55

de Molon, R. S., Rossa, C., Thurlings, R. M., Cirelli, J. A. & Koenders, M. I. Linkage of periodontitis and rheumatoid arthritis: current evidence and potential biological interactions. Int. J. Mol. Sci. 20, 4541 (2019).

56

Cascão, R. et al. Identification of a cytokine network sustaining neutrophil and Th17 activation in untreated early rheumatoid arthritis. Arthritis Res. Ther. 12, R196 (2010).

57

Zhang, Y., Li, Y., Lv, T. T., Yin, Z. J. & Wang, X. B. Elevated circulating Th17 and follicular helper CD4(+) T cells in patients with rheumatoid arthritis. APMIS 123, 659–666 (2015).

58

Garlet, G. P. et al. Regulatory T cells attenuate experimental periodontitis progression in mice. J. Clin. Periodontol. 37, 591–600 (2010).

59

Aletaha, D. et al. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62, 2569–2581 (2010).

60

Gerlag, D. M. et al. Effects of B-cell directed therapy on the preclinical stage of rheumatoid arthritis: the PRAIRI study. Ann. Rheum. Dis. 78, 179–185 (2019).

61

Ohlrich, E. J., Cullinan, M. P. & Seymour, G. J. The immunopathogenesis of periodontal disease. Aust. Dent. J. 54, S2–S10 (2009).

62

Wu, F. et al. B cells in rheumatoid arthritis: pathogenic mechanisms and treatment prospects. Front. Immunol. 12, 3987 (2021).

63

Settem, R. P., Honma, K., Chinthamani, S., Kawai, T. & Sharma, A. B-Cell RANKL contributes to pathogen-induced alveolar bone loss in an experimental periodontitis mouse model. Front. Physiol. 12, 1412 (2021).

64

Hatipoğlu, M. et al. B cell depletion in patients with rheumatoid arthritis is associated with reduced IL-1β in GCF. Clin. Oral. Investig. 26, 4307–4313 (2022).

65

Wang, Y. et al. B10 cells alleviate periodontal bone loss in experimental periodontitis. Infect. Immun. 85, e00335–17 (2017).

66

R, L. et al. Rheumatoid arthritis and periodontal disease: what are the similarities and differences? Int. J. Rheum. Dis. 20, 1887–1901 (2017).

67

Lam, J. et al. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 106, 1481–1488 (2000).

68

Marahleh, A. et al. TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation. Front. Immunol. 10, 2925 (2019).

69

Brennan, F. M. & McInnes, I. B. Evidence that cytokines play a role in rheumatoid arthritis. J. Clin. Invest. 118, 3537–3545 (2008).

70

Romero-Sanchez, C. et al. Is the treatment with biological or non-biological DMARDS a modifier of periodontal condition in patients with rheumatoid arthritis. Curr. Rheumatol. Rev. 13, 139–151 (2017).

71

Avci, A. B., Feist, E. & Burmester, G. R. Targeting IL-6 or IL-6 receptor in rheumatoid arthritis: what’s the difference? BioDrugs 32, 531–546 (2018).

72

Amarasekara, D. S. et al. Regulation of osteoclast differentiation by cytokine networks. Immune Netw. 18, 1–18 (2018).

73

Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593 (1996).

74

Chabaud, M. et al. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine 12, 1092–1099 (2000).

75

Van Bezooijen, R. L., Papapoulos, S. E. & Löwik, C. W. G. M. Effect of interleukin-17 on nitric oxide production and osteoclastic bone resorption: is there dependency on nuclear factor-κB and receptor activator of nuclear factor κB (RANK)/RANK ligand signaling? Bone 28, 378–386 (2001).

76

Adibrad, M. et al. Signs of the presence of Th17 cells in chronic periodontal disease. J. Periodontal. Res. 47, 525–531 (2012).

77

Chukkapalli, S. et al. Periodontal bacterial colonization in synovial tissues exacerbates collagen-induced arthritis in B10.RⅢ mice. Arthritis Res. Ther. 18, 1–12 (2016).

78

de Aquino, S. G. et al. The aggravation of arthritis by periodontitis is dependent of IL-17 receptor A activation. J. Clin. Periodontol. 44, 881–891 (2017).

79

Kunwar, S., Dahal, K. & Sharma, S. Anti-IL-17 therapy in treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatol. Int. 3, 1065–1075 (2016).

80

Schett, G., Dayer, J. M. & Manger, B. Interleukin-1 function and role in rheumatic disease. Nat. Rev. Rheumatol. 12, 14–24 (2016).

81

Akitsu, A. et al. IL-1 receptor antagonist-deficient mice develop autoimmune arthritis due to intrinsic activation of IL-17-producing CCR2(+)Vγ6(+)γδ T cells. Nat. Commun. 6, 7464 (2015).

82

Gaffen, S. L. & Hajishengallis, G. A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J. Dent. Res. 87, 817–828 (2008).

83

Singh, J. A. et al. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. Sao Paulo Med. J. 128, 309–310 (2010).

84

Ren, B. et al. Anti-inflammatory effect of IL-1ra-loaded dextran/PLGA microspheres on Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages in vitro and in vivo in a rat model of periodontitis. Biomed. Pharmacother. 134, 111171 (2021).

85

Pettit, A. R. et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol. 159, 1689–1699 (2001).

86

Cloitre, A. et al. IL-36γ is a pivotal inflammatory player in periodontitis-associated bone loss. Sci. Rep. 9, 1–12 (2019).

87

Kassem, A. et al. Porphyromonas gingivalis stimulates bone resorption by enhancing RANKL (receptor activator of NF-κB ligand) through activation of toll-like receptor 2 in osteoblasts. J. Biol. Chem. 290, 20147–20158 (2015).

88

Izati, A. F., Wong, K. K., Hussin, C. & Maraina, C. IL-23/IL-17 axis in the pathogenesis and treatment of systemic lupus erythematosus and rheumatoid arthritis. Malays. J. Pathol. 42, 333–347 (2020).

89

Peichl, P. et al. Abatacept retention and clinical outcomes in Austrian patients with rheumatoid arthritis: real-world data from the 2-year ACTION study. Wien. Med. Wochenschr. 170, 132–140 (2020).

90

Mayer, Y., Elimelech, R., Balbir-Gurman, A., Braun-Moscovici, Y. & Machtei, E. E. Periodontal condition of patients with autoimmune diseases and the effect of anti-tumor necrosis factor-α therapy. J. Periodontol. 84, 136–142 (2013).

91

Mayer, Y., Balbir-Gurman, A. & Machtei, E. E. Anti-tumor necrosis factor-alpha therapy and periodontal parameters in patients with rheumatoid arthritis. J. Periodontol. 80, 1414–1420 (2009).

92

Schiefelbein, R. & Jentsch, H. F. R. Periodontal conditions during arthritis therapy with TNF-α blockers. J. Clin. Diagn. Res. 12, ZC27–ZC31 (2018).

93

Ancuța, C. et al. Exploring the role of interleukin-6 receptor inhibitor tocilizumab in patients with active rheumatoid arthritis and periodontal disease. J. Clin. Med. 10, 1–12 (2021).

94

Brianti, P., Paolino, G. & Mercuri, S. R. Successful use and safety of secukinumab in psoriatic patients with periodontitis: a valid therapeutic option. Dermatol. Ther. 33, e13350 (2020).

95

Coat, J. et al. Anti-B lymphocyte immunotherapy is associated with improvement of periodontal status in subjects with rheumatoid arthritis. J. Clin. Periodontol. 42, 817–823 (2015).

96

Rooney, C. M., Mankia, K. & Emery, P. The role of the microbiome in driving RA-related autoimmunity. Front. Cell Dev. Biol. 8, 538130 (2020).

97

Carrion, J. et al. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential. J. Immunol. 189, 3178 (2012).

98

Totaro, M. C. et al. Porphyromonas gingivalis and the pathogenesis of rheumatoid arthritis: analysis of various compartments including the synovial tissue. Arthritis Res. Ther. 15, R66 (2013).

99

Corsiero, E., Pratesi, F., Prediletto, E., Bombardieri, M. & Migliorini, P. NETosis as source of autoantigens in rheumatoid arthritis. Front. Immunol. 7, 485 (2016).

100

Pratesi, F. et al. Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps. Ann. Rheum. Dis. 73, 1414–1422 (2014).

101

Zhao, Y. et al. Frontline science: characterization and regulation of osteoclast precursors following chronic Porphyromonas gingivalis infection. J. Leukoc. Biol. 108, 1037–1050 (2020).

102

Zhang, Y. et al. The association between periodontitis and inflammatory bowel disease: a systematic review and meta-analysis. Biomed. Res. Int. 2021, 6692420 (2021).

103

Rogier, R. et al. Alteration of the intestinal microbiome characterizes preclinical inflammatory arthritis in mice and its modulation attenuates established arthritis. Sci. Rep. 7, 1–12 (2017).

104

Sato, K. et al. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Sci. Rep. 7, 6955 (2017).

105

Mikuls, T. R. et al. Periodontitis and Porphyromonas gingivalis in patients with rheumatoid arthritis. Arthritis Rheumatol. 66, 1090–1100 (2014).

106

Harvey, G. P. et al. Expression of peptidylarginine deiminase-2 and -4, citrullinated proteins and anti-citrullinated protein antibodies in human gingiva. J. Periodontal Res. 48, 252–261 (2013).

107

Quirke, A. M. et al. Heightened immune response to autocitrullinated Porphyromonas gingivalis peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis. Ann. Rheum. Dis. 73, 263–269 (2014).

108

Laugisch, O. et al. Citrullination in the periodontium-a possible link between periodontitis and rheumatoid arthritis. Clin. Oral. Investig. 20, 675–683 (2016).

109

Sherina, N. et al. Antibodies to a citrullinated Porphyromonas gingivalis epitope are increased in early rheumatoid arthritis, and can be produced by gingival tissue B cells: implications for a bacterial origin in RA etiology. Front. Immunol. 13, 804822 (2022).

110

Van den Steen, P. E. et al. Cleavage of denatured natural collagen type Ⅱ by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis. FASEB J. 16, 379–389 (2002).

111

Majeed, Z. N., Philip, K., Alabsi, A. M., Pushparajan, S. & Swaminathan, D. Identification of gingival crevicular fluid sampling, analytical methods, and oral biomarkers for the diagnosis and monitoring of periodontal diseases: a systematic review. Dis. Markers 2016, 1804727 (2016).

112

Guentsch, A. et al. Cleavage of IgG1 in gingival crevicular fluid is associated with the presence of Porphyromonas gingivalis. J. Periodontal Res. 48, 458–465 (2013).

113

Lundberg, K. et al. Antibodies to citrullinated alpha-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. Arthritis Rheum. 58, 3009–3019 (2008).

114

Kinloch, A. J. et al. Immunization with Porphyromonas gingivalis enolase induces autoimmunity to mammalian α-enolase and arthritis in DR4-IE-transgenic mice. Arthritis Rheum. 63, 3818–3823 (2011).

115

Jeong, E., Lee, J. Y., Kim, S. J. & Choi, J. Predominant immunoreactivity of Porphyromonas gingivalis heat shock protein in autoimmune diseases. J. Periodontal Res. 47, 811–816 (2012).

116

Hirschfeld, J. et al. Neutrophil extracellular trap formation in supragingival biofilms. Int. J. Med. Microbiol. 305, 453–463 (2015).

117

Nefla, M., Holzinger, D., Berenbaum, F. & Jacques, C. The danger from within: alarmins in arthritis. Nat. Rev. Rheumatol. 12, 669–683 (2016).

118

Lapérine, O. et al. Interleukin-33 and RANK-L interplay in the alveolar bone loss associated to periodontitis. PLoS One 11, e0168080 (2016).

119

Cai, X. et al. Enhanced dual function of osteoclast precursors following calvarial Porphyromonas gingivalis infection. J. Periodontal Res. 55, 410–425 (2020).

120
Xia, Y. et al. TGFβ reprograms TNF stimulation of macrophages towards a noncanonical pathway driving inflammatory osteoclastogenesis. Nat. Commun. 13, 1–21 (2022). 2022 131.
121

Xiao, Y. et al. Macrophages and osteoclasts stem from a bipotent progenitor downstream of a macrophage/osteoclast/dendritic cell progenitor. Blood Adv. 1, 1993–2006 (2017).

122

Charles, J. F. et al. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J. Clin. Invest. 122, 4592–4605 (2012).

123

Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762–774 (2011).

124
Meirow, Y. et al. Specific inflammatory osteoclast precursors induced during chronic inflammation give rise to highly active osteoclasts associated with inflammatory bone loss. Bone Res. 10, 1–17 (2022). 2022 101.
125

Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

126

Zhao, Z. et al. TNF induction of NF-κB RelB enhances RANKL-induced osteoclastogenesis by promoting inflammatory macrophage differentiation but also limits it through suppression of NFATc1 expression. PLoS One 10, e0135728 (2015).

127

Ammari, M. et al. Delivery of miR-146a to Ly6Chigh monocytes inhibits pathogenic bone erosion in inflammatory arthritis. Theranostics 8, 5972 (2018).

128

Puchner, A. et al. Non-classical monocytes as mediators of tissue destruction in arthritis. Ann. Rheum. Dis. 77, 1490–1497 (2018).

129

Chiu, Y. G. et al. CD16 (FcRγⅢ) as a potential marker of osteoclast precursors in psoriatic arthritis. Arthritis Res. Ther. 12, 1–14 (2010).

130

Almubarak, A., Tanagala, K. K. K., Papapanou, P. N., Lalla, E. & Momen-Heravi, F. Disruption of monocyte and macrophage homeostasis in periodontitis. Front. Immunol. 11, 1–11 (2020).

131

Ansalone, C. et al. TNF is a homoeostatic regulator of distinct epigenetically primed human osteoclast precursors. Ann. Rheum. Dis. 80, 748–757 (2021).

132

Sprangers, S., Schoenmaker, T., Cao, Y., Everts, V. & de Vries, T. J. Different blood-borne human osteoclast precursors respond in distinct ways to IL-17A. J. Cell. Physiol. 231, 1249–1260 (2016).

133

Drevinge, C. et al. Intermediate monocytes correlate with CXCR3+ Th17 cells but not with bone characteristics in untreated early rheumatoid arthritis. PLoS One 16, 1–17 (2021).

134

Lapérine, O., Blin-Wakkach, C., Guicheux, J., Beck-Cormier, S. & Lesclous, P. Dendritic-cell-derived osteoclasts: a new game changer in bone-resorption-associated diseases. Drug Discov. Today 21, 1345–1354 (2016).

135

Wakkach, A. et al. Bone marrow microenvironment controls the in vivo differentiation of murine dendritic cells into osteoclasts. Blood 112, 5074–5083 (2008).

136

Speziani, C. et al. Murine dendritic cell transdifferentiation into osteoclasts is differentially regulated by innate and adaptive cytokines. Eur. J. Immunol. 37, 747–757 (2007).

137

Alnaeeli, M., Penninger, J. M. & Teng, Y.-T. A. Immune interactions with CD4 + T cells promote the development of functional osteoclasts from murine CD11c + dendritic cells. J. Immunol. 177, 3314–3326 (2006).

138

Gallois, A. et al. Genome-wide expression analyses establish dendritic cells as a new osteoclast precursor able to generate bone-resorbing cells more efficiently than monocytes. J. Bone Miner. Res. 25, 661–672 (2010).

139

Page, G. & Miossec, P. RANK and RANKL expression as markers of dendritic cell-T cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthritis Rheum. 52, 2307–2312 (2005).

140

Ciucci, T. et al. Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD. Gut 64, 1072–1081 (2015).

141

Leipe, J. et al. Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum. 62, 2876–2885 (2010).

142

Tucci, M. et al. Immature dendritic cells in multiple myeloma are prone to osteoclast-like differentiation through interleukin-17A stimulation. Br. J. Haematol. 161, 821–831 (2013).

143

Ribeiro Souto, G., Queiroz, C. M., Nogueira Guimarães De Abreu, M. H., Oliveira Costa, F. & Alves Mesquita, R. Pro-inflammatory, Th1, Th2, Th17 cytokines and dendritic cells: a cross-sectional study in chronic periodontitis. PLoS One 9, e91636 (2014).

144

Cardoso, C. R. et al. Evidence of the presence of T helper type 17 cells in chronic lesions of human periodontal disease. Oral. Microbiol. Immunol. 24, 1–6 (2009).

145

Nagasawa, T. et al. LPS-stimulated human gingival fibroblasts inhibit the differentiation of monocytes into osteoclasts through the production of osteoprotegerin. Clin. Exp. Immunol. 130, 338 (2002).

146

Boutet, M. A. et al. Novel insights into macrophage diversity in rheumatoid arthritis synovium. Autoimmun. Rev. 77, 102758 (2021).

147

Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

148

Hasegawa, T. Updating the pathophysiology of arthritic bone destruction: identifying and visualizing pathological osteoclasts in pannus. Immunol. Med. 0, 1–6 (2021).

149
Furuya, M. et al. Direct cell–cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nat. Commun. 9, 1–12 (2018). 2018 91.
150

Hasegawa, T., Kikuta, J. & Ishii, M. Imaging of bone and joints in vivo: pathological osteoclastogenesis in arthritis. Int. Immunol. 33, 679–686 (2021).

151

Hasegawa, T. et al. Development of an intravital imaging system for the synovial tissue reveals the dynamics of CTLA-4 Ig in vivo. Sci. Rep. 10, 13480 (2020).

152

McDonald, M. M. et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell 184, 1330–1347.e13 (2021).

153

Mabilleau, G., Libouban, H. & Geoffroy, V. Osteomorphs as a tool for personalized medicine. Trends Endocrinol. Metab. 32, 655–656 (2021).

154

Bozec, A. et al. T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway. Sci. Transl. Med. 6, 235ra60 (2014).

155

Bluestone, J. A., St. Clair, E. W. & Turka, L. A. CTLA4Ig: bridging the basic immunology with clinical application. Immunity 24, 233–238 (2006).

156

Sokolove, J. et al. Impact of baseline anti-cyclic citrullinated peptide-2 antibody concentration on efficacy outcomes following treatment with subcutaneous abatacept or adalimumab: 2-year results from the AMPLE trial. Ann. Rheum. Dis. 75, 709–714 (2016).

157

Cutolo, M. et al. CTLA4-Ig interacts with cultured synovial macrophages from rheumatoid arthritis patients and downregulates cytokine production. Arthritis Res. Ther. 11, R176 (2009).

158

Oi, K. et al. Tumour necrosis factor α augments the inhibitory effects of CTLA‐4‐Ig on osteoclast generation from human monocytes via induction of CD80 expression. Clin. Exp. Immunol. 196, 392 (2019).

159

Agemura, T., Hasegawa, T., Yari, S., Kikuta, J. & Ishii, M. Arthritis-associated osteoclastogenic macrophages (AtoMs) participate in pathological bone erosion in rheumatoid arthritis. Immunol. Med. 0, 1–5 (2021).

160

Wang, W. et al. FOXM1/LINC00152 feedback loop regulates proliferation and apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via Wnt/β-catenin signaling pathway. Biosci. Rep. 40, BSR20191900 (2020).

161

Zeng, R. et al. FOXM1 activates JAK1/STAT3 pathway in human osteoarthritis cartilage cell inflammatory reaction. Exp. Biol. Med. 246, 644–653 (2021).

162

Weivoda, M. M., Lee, S. K. & Monroe, D. G. miRNAs in osteoclast biology. Bone 143, 115757 (2021).

163

Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

164

Chen, Y. et al. Single-cell RNA landscape of the osteoimmunology microenvironment in periodontitis. Theranostics 2022, 1074–1096 (2022).

165

Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).

Bone Research
Article number: 26
Cite this article:
Hascoët E, Blanchard F, Blin-Wakkach C, et al. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Research, 2023, 11: 26. https://doi.org/10.1038/s41413-023-00257-w

132

Views

1

Downloads

16

Crossref

12

Web of Science

15

Scopus

Altmetrics

Received: 13 October 2022
Revised: 02 March 2023
Accepted: 09 March 2023
Published: 22 May 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return