AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article | Open Access

Loss of Notch signaling in skeletal stem cells enhances bone formation with aging

Lindsey H. Remark1Kevin Leclerc1Malissa Ramsukh1Ziyan Lin2Sooyeon Lee1,3Backialakshmi Dharmalingam4Lauren Gillinov1Vasudev V. Nayak5Paulo El Parente1Margaux Sambon1Pablo J. Atria1Mohamed A. E. Ali6Lukasz Witek7,8,9Alesha B. Castillo1Christopher Y, Park6Ralf H. Adams4Aristotelis Tsirigos2Sophie M. Morgani1Philipp Leucht1,10( )
Department of Orthopaedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY, USA
Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA
Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
Department of Pathology, NYU Robert I. Grossman School of Medicine, New York, NY, USA
Biomaterials Division, New York University College of Dentistry, New York, NY, USA
Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York University, New York, NY, USA
Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY, USA
Show Author Information

Abstract

Skeletal stem and progenitor cells (SSPCs) perform bone maintenance and repair. With age, they produce fewer osteoblasts and more adipocytes leading to a loss of skeletal integrity. The molecular mechanisms that underlie this detrimental transformation are largely unknown. Single-cell RNA sequencing revealed that Notch signaling becomes elevated in SSPCs during aging. To examine the role of increased Notch activity, we deleted Nicastrin, an essential Notch pathway component, in SSPCs in vivo. Middle-aged conditional knockout mice displayed elevated SSPC osteo-lineage gene expression, increased trabecular bone mass, reduced bone marrow adiposity, and enhanced bone repair. Thus, Notch regulates SSPC cell fate decisions, and moderating Notch signaling ameliorates the skeletal aging phenotype, increasing bone mass even beyond that of young mice. Finally, we identified the transcription factor Ebf3 as a downstream mediator of Notch signaling in SSPCs that is dysregulated with aging, highlighting it as a promising therapeutic target to rejuvenate the aged skeleton.

References

1

Josephson, A. M. et al. Age-related inflammation triggers skeletal stem/ progenitor cell dysfunction. Proc. Natl. Acad. Sci. USA 116, 6995–7004 (2019).

2

Nishida, S., Endo, N., Yamagiwa, H., Tanizawa, T. & Takahashi, H. E. Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J. Bone Miner. Metab. 17, 171–177 (1999).

3

Noel, S. E., Santos, M. P. & Wright, N. C. Racial and ethnic disparities in bone health and outcomes in the United States. J. Bone Miner. Res. 36, 1881–1905 (2021).

4

Liang, B., Burley, G., Lin, S. & Shi, Y. C. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell. Mol. Biol. Lett. 27, 72 (2022).

5

Zou, W. et al. Ablation of fat cells in adult mice induces massive bone gain. Cell Metab. 32, 801–813.e6 (2020).

6

Ambrosi, T. H. et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20, 771–784.e6 (2017).

7

Zhong, L. et al. Single cell transcriptomics identifies a unique adipocyte population that regulates bone marrow environment. Elife 9, e54695 (2020).

8

Fazeli, P. K. et al. Marrow fat and bone-new perspectives. J. Clin. Endocrinol. Metab. 98, 935–945 (2013).

9

Schwartz, A. V. Marrow fat and bone: review of clinical findings. Front. Endocrinol. 6, 1–6 (2015).

10

Zaidi, M., Buettner, C., Sun, L. & Iqbal, J. Minireview: the link between fat and bone: does mass beget mass? Endocrinology 153, 2070–2075 (2012).

11

Bethel, M., Chitteti, B. R., Srour, E. F. & Kacena, M. A. The changing balance between osteoblastogenesis and adipogenesis in aging and its impact on hematopoiesis. Curr. Osteoporos. Rep. 11, 99–106 (2013).

12

LA, O., A, S. & JS, B. Diabetes and bone marrow adiposity. Physiol. Behav. 176, 139–148 (2017).

13

Reagan, M. R., Fairfield, H. & Rosen, C. J. Bone marrow adipocytes: a link between obesity and bone cancer. Cancers 13, 1–14 (2021).

14

Tratwal, J., Rojas-Sutterlin, S., Bataclan, C., Blum, S. & Naveiras, O. Bone marrow adiposity and the hematopoietic niche: a historical perspective of reciprocity, heterogeneity, and lineage commitment. Best. Pract. Res. Clin. Endocrinol. Metab. 35, 1–19 (2021).

15

Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168 (2014).

16

Balistreri, C. R., Madonna, R., Melino, G. & Caruso, C. The emerging role of Notch pathway in ageing: focus on the related mechanisms in age-related diseases. Ageing Res. Rev. 29, 50–65 (2016).

17

Siebel, C. & Lendahl, U. Notch signaling in development, tissue homeostasis, and disease. Physiol. Rev. 97, 1235–1294 (2017).

18

Hilton, M. J. et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat. Med. 14, 306–314 (2008).

19

Wang, C. et al. NOTCH signaling in skeletal progenitors is critical for fracture repair. J. Clin. Invest. 126, 1471–1481 (2016).

20

Zanotti, S. & Canalis, E. Notch and the Skeleton. Mol. Cell. Biol. 30, 886–896 (2010).

21

Chen, Q. et al. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ. 23, 1128–1139 (2016).

22

Sciaudone, M., Gazzerro, E., Priest, L., Delany, A. M. & Canalis, E. Notch 1 impairs osteoblastic cell differentiation. Endocrinology 144, 5631–5639 (2003).

23

Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).

24

Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932.e16 (2019).

25

Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

26

Mo, C. et al. Single‐cell transcriptomics of LepR‐positive skeletal cells reveals heterogeneous stress‐dependent stem and progenitor pools. EMBO J. 41, 1–21 (2022).

27

Farr, J. N. et al. Effects of age and estrogen on skeletal gene expression in humans as assessed by RNA sequencing. PLoS One 10, 1–22 (2015).

28

Liberzon, A. et al. The molecular signatures database hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

29

Ambrosi, T. H., Longaker, M. T. & Chan, C. K. F. A revised perspective of skeletal stem cell biology. Front. Cell Dev. Biol. 7, 189 (2019).

30

Chan, C. K. F. et al. Identification and specification of the mouse skeletal stem cell. Cell 160, 285–298 (2015).

31

Duchamp De Lageneste, O. et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat. Commun. 9, 1–15 (2018).

32

Tang, Z. et al. γ-Secretase inhibitor reverts the Notch signaling attenuation of osteogenic differentiation in aged bone marrow mesenchymal stem cells. Cell Biol. Int. 40, 439–447 (2016).

33

Lee, J. H., Kim, E. W., Croteau, D. L. & Bohr, V. A. Heterochromatin: an epigenetic point of view in aging. Exp. Mol. Med. 52, 1466–1474 (2020).

34

Cakouros, D. D. & Gronthos, S. Epigenetic regulation of bone marrow stem cell aging: revealing epigenetic signatures associated with hematopoietic and mesenchymal stem cell aging. Aging Dis. 10, 174–189 (2019).

35

Shu, H. S. et al. Tracing the skeletal progenitor transition during postnatal bone formation. Cell Stem Cell 28, 2122–2136.e3 (2021).

36

Klinakis, A. et al. A novel tumour-suppressor function for the Notch pathway inmyeloid leukaemia. Nature 473, 230–233 (2011).

37

DeFalco, J. et al. Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291, 2608–2613 (2001).

38

Liu, P. et al. Anabolic actions of Notch on mature bone. Proc. Natl. Acad. Sci. USA 113, E2152–2161 (2016).

39

Tu, X. et al. Physiological notch signaling maintains bone homeostasis via RBPjk and hey upstream of NFATc1. PLoS Genet. 8, e1002577 (2012).

40

Kwon, H. S., Johnson, T. V. & Tomarev, S. I. Myocilin stimulates osteogenic differentiation of mesenchymal stem cells through mitogen-activated protein kinase signaling. J. Biol. Chem. 288, 16882–16894 (2013).

41

Cheng, B. F. et al. Neural cell adhesion molecule regulates osteoblastic differentiation through Wnt/β-catenin and PI3K-Akt signaling pathways in MC3T3-E1 cells. Front. Endocrinol. 12, 1–9 (2021).

42

Yu, B. et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-κB. Nat. Med. 20, 1009–1017 (2014).

43

Shen, B. et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature 591, 438–444 (2021).

44

Shen, B. et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. Elife 8, 1–31 (2019).

45

Yao, Z. et al. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J. Clin. Invest. 127, 1241–1253 (2017).

46

Richard, A. J. & Stephens, J. M. Emerging roles of JAK-STAT signaling pathways in adipocytes. Trends Endocrinol. Metab. 22, 325–332 (2011).

47

Wolock, S. L. et al. Mapping distinct bone marrow niche populations and their differentiation paths. Cell Rep. 28, 302–311.e5 (2019).

48

Farmer, S. R. Transcriptional control of adipocyte formation. Cell Metab. 4, 263–273 (2006).

49

Yue, R., Zhou, B. O., Shimada, I. S., Zhao, Z. & Morrison, S. J. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 18, 782–796 (2016).

50

Matsushita, K. et al. LIF/STAT3/SOCS3 signaling pathway in murine bone marrow stromal cells suppresses osteoblast differentiation. J. Cell. Biochem. 115, 1262–1268 (2014).

51

Infante, A. & Rodríguez, C. I. Osteogenesis and aging: lessons from mesenchymal stem cells. Stem Cell Res. Ther. 9, 244 (2018).

52

Kim, J. B. et al. Bone regeneration is regulated by Wnt signaling. J. Bone Miner. Res. 22, 1913–1923 (2007).

53

Campbell, T. M., Wong, W. T. & Mackie, E. J. Establishment of a model of cortical bone repair in mice. Calcif. Tissue Int. 73, 49–55 (2003).

54

Kopan, R. & Ilagan, M. X. G. The canonical notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

55

Seike, M., Omatsu, Y., Watanabe, H., Kondoh, G. & Nagasawa, T. Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes Dev. 32, 359–372 (2018).

56

Lee, J.-E., Schmidt, H., Lai, B. & Ge, K. Transcriptional and epigenomic regulation of adipogenesis. Mol. Cell. Biol. 39, 1–20 (2019).

57

Gao, H. et al. LINC01119 negatively regulates osteogenic differentiation of mesenchymal stem cells via the Wnt pathway by targeting FZD4. Stem Cell Res. Ther. 13, 1–13 (2022).

58

Galán-Díez, M. & Kousteni, S. A bone marrow niche-derived molecular switch between osteogenesis and hematopoiesis. Genes Dev. 32, 324–326 (2018).

59

Liu, Z. et al. Ectopic resurrection of embryonic/developmental genes in aging. Curr. Med. 1, 4–7 (2022).

60

Penton, A. L., Leonard, L. D. & Spinner, N. B. Notch signaling in human development and disease. Andrea 23, 450–457 (2013).

61

Tikhonova, A. N., Lasry, A., Austin, R. & Aifantis, I. Cell-by-cell deconstruction of stem cell niches. Cell Stem Cell 27, 19–34 (2020).

62

Glatt, V., Canalis, E., Stadmeyer, L. & Bouxsein, M. L. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J. Bone Miner. Res. 22, 1197–1207 (2007).

63

Zhang, X. et al. A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease. Elife 10, 1–28 (2021).

64

Nieminen-Pihala, V. et al. Age-progressive and gender-dependent bone phenotype in mice lacking both Ebf1 and Ebf2 in Prrx1-expressing mesenchymal cells. Calcif. Tissue Int. 110, 746–758 (2022).

65

Li, H. et al. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J. Clin. Invest. 127, 1241–1253 (2017).

66

Logan, M. et al. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33, 77–80 (2002).

67

Engin, F. et al. Dimorphic effects of Notch signaling in bone homeostasis. Nat. Med. 14, 299–305 (2008).

68

Dong, Y. et al. RBPjκ-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development 137, 1461–1471 (2010).

69

Anusewicz, D., Orzechowska, M. & Bednarek, A. K. Notch Signaling Pathway in Cancer — Review with bioinformatic analysis. Cancers 13, 768 (2021).

70

Young, R. N. & Grynpas, M. D. Targeting therapeutics to bone by conjugation with bisphosphonates. Curr. Opin. Pharmacol. 40, 87–94 (2018).

71

Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468–1486 (2010).

72

Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 66, 123–143 (2003).

73

Kaur, G., Ahn, J., Hankenson, K. D. & Ashley, J. W. Stimulation of notch signaling in mouse osteoclast precursors. J. Vis. Exp. 2017, 1–7 (2017).

74

Lee, A. S. et al. Notch-Wnt signal crosstalk regulates proliferation and differentiation of osteoprogenitor cells during intramembranous bone healing. NPJ Regen. Med. 6, 29 (2021).

Bone Research
Article number: 50
Cite this article:
Remark LH, Leclerc K, Ramsukh M, et al. Loss of Notch signaling in skeletal stem cells enhances bone formation with aging. Bone Research, 2023, 11: 50. https://doi.org/10.1038/s41413-023-00283-8

135

Views

2

Downloads

3

Crossref

2

Web of Science

3

Scopus

Altmetrics

Received: 04 January 2023
Revised: 06 July 2023
Accepted: 19 July 2023
Published: 27 September 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return