AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article | Open Access

α-parvin controls chondrocyte column formation and regulates long bone development

Jifan Yuan1,2Ling Guo3Jiaxin Wang3Zhongjun Zhou2( )Chuanyue Wu1,4( )
Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
Show Author Information

Abstract

Endochondral ossification requires proper control of chondrocyte proliferation, differentiation, survival, and organization. Here we show that knockout of α-parvin, an integrin-associated focal adhesion protein, from murine limbs causes defects in endochondral ossification and dwarfism. The mutant long bones were shorter but wider, and the growth plates became disorganized, especially in the proliferative zone. With two-photon time-lapse imaging of bone explant culture, we provide direct evidence showing that α-parvin regulates chondrocyte rotation, a process essential for chondrocytes to form columnar structure. Furthermore, loss of α-parvin increased binucleation, elevated cell death, and caused dilation of the resting zones of mature growth plates. Single-cell RNA-seq analyses revealed alterations of transcriptome in all three zones (i.e., resting, proliferative, and hypertrophic zones) of the growth plates. Our results demonstrate a crucial role of α-parvin in long bone development and shed light on the cellular mechanism through which α-parvin regulates the longitudinal growth of long bones.

References

1

Hallett, S. A., Ono, W. & Ono, N. Growth plate chondrocytes: skeletal development, growth and beyond. Int. J. Mol. Sci. 20, 6009 (2019).

2

Abad, V. et al. The role of the resting zone in growth plate chondrogenesis. Endocrinology 143, 1851–1857 (2002).

3

Mizuhashi, K. et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563, 254–258 (2018).

4

Newton, P. T. et al. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature 567, 234–238 (2019).

5

Li, Y., Li, A., Junge, J. & Bronner, M. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage. Elife 6, e23279 (2017).

6

Shapiro, I. M., Adams, C. S., Freeman, T. & Srinivas, V. Fate of the hypertrophic chondrocyte: microenvironmental perspectives on apoptosis and survival in the epiphyseal growth plate. Birth Defects Res. C. Embryo Today 75, 330–339 (2005).

7

Yang, L., Tsang, K. Y., Tang, H. C., Chan, D. & Cheah, K. S. E. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc. Natl. Acad. Sci. USA 111, 12097–12102 (2014).

8

Hunziker, E. B. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc. Res. Tech. 28, 505–519 (1994).

9

Mackie, E. J., Ahmed, Y. A., Tatarczuch, L., Chen, K. S. & Mirams, M. Endochondral ossification: How cartilage is converted into bone in the developing skeleton. Int. J. Biochem. Cell Biol. 40, 46–62 (2008).

10

Humphries, J. D., Byron, A. & Humphries, M. J. Integrin ligands at a glance. J. Cell Sci. 19, 3901–3903 (2006).

11

Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

12

Legate, K. R., Wickstrom, S. A. & Fassler, R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 23, 397–418 (2009).

13

Aszodi, A., Hunziker, E. B., Brakebusch, C. & Fassler, R. Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev. 17, 2465–2479 (2003).

14

Brunner, M. et al. beta1 integrins mediate the BMP2 dependent transcriptional control of osteoblast differentiation and osteogenesis. PLoS One 13, e0196021 (2018).

15

Docheva, D., Popov, C., Alberton, P. & Aszodi, A. Integrin signaling in skeletal development and function. Birth Defects Res. C. Embryo Today 102, 13–36 (2014).

16

Salter, D. M., Godolphin, J. L. & Gourlay, M. S. Chondrocyte heterogeneity: immunohistologically defined variation of integrin expression at different sites in human fetal knees. J. Histochem. Cytochem. 43, 447–457 (1995).

17

Raducanu, A., Hunziker, E. B., Drosse, I. & Aszodi, A. Beta1 integrin deficiency results in multiple abnormalities of the knee joint. J. Biol. Chem. 284, 23780–23792 (2009).

18

Legate, K. R., Montanez, E., Kudlacek, O. & Fassler, R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nat. Rev. Mol. Cell Biol. 7, 20–31 (2006).

19

Wu, C. The PINCH-ILK-parvin complexes: assembly, functions and regulation. Biochim. Biophys. Acta 1692, 55–62 (2004).

20

Fukuda, T., Chen, K., Shi, X. H. & Wu, C. Y. PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival. J. Biol. Chem. 278, 51324–51333 (2003).

21

Sepulveda, J. L. & Wu, C. The parvins. Cell Mol. Life Sci. 63, 25–35 (2006).

22

Wickstrom, S. A., Lange, A., Montanez, E. & Fassler, R. The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase. EMBO J. 29, 281–291 (2010).

23

Lange, A. et al. Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature 461, 1002–U1269 (2009).

24

Montanez, E., Wickstrom, S. A., Altstatter, J., Chu, H. & Fassler, R. Alpha-parvin controls vascular mural cell recruitment to vessel wall by regulating RhoA/ROCK signalling. EMBO J. 28, 3132–3144 (2009).

25

Fraccaroli, A. et al. Endothelial alpha-parvin controls integrity of developing vasculature and is required for maintenance of cell-cell junctions. Circ. Res. 117, 29–40 (2015).

26

Pitter, B., Werner, A. C. & Montanez, E. Parvins are required for endothelial cell-cell junctions and cell polarity during embryonic blood vessel formation. Arterioscler Thromb. Vasc. Biol. 38, 1147–1158 (2018).

27
Altstatter, J., Hess, M. W., Costell, M. & Montanez, E. alpha-parvin is required for epidermal morphogenesis, hair follicle development and basal keratinocyte polarity. PLoS One 15, e0230380 (2020). ARTN.
28

Huang, J. et al. The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression. Nat. Commun. 10, 2876 (2019).

29

Li, Y. et al. Discs large 1 controls daughter-cell polarity after cytokinesis in vertebrate morphogenesis. Proc. Natl. Acad. Sci. USA 115, E10859–E10868 (2018).

30

Li, Y. et al. Dynamic imaging of the growth plate cartilage reveals multiple contributors to skeletal morphogenesis. Nat. Commun. 6, 6798 (2015).

31

Romereim, S. M., Conoan, N. H., Chen, B. & Dudley, A. T. A dynamic cell adhesion surface regulates tissue architecture in growth plate cartilage. Development 141, 2085–2095 (2014).

32

Hirota, K. et al. Live imaging analysis of the growth plate in a murine long bone explanted culture system. Sci. Rep. 8, 10332 (2018).

33

Mizuhashi, K., Nagata, M., Matsushita, Y., Ono, W. & Ono, N. Growth plate borderline chondrocytes behave as transient mesenchymal precursor cells. J. Bone Min. Res. 34, 1387–1392 (2019).

34

Usami, Y. et al. Possible contribution of Wnt-responsive chondroprogenitors to the postnatal murine growth plate. J. Bone Min. Res. 34, 964–974 (2019).

35

Li, P. et al. Mice lacking the matrilin family of extracellular matrix proteins develop mild skeletal abnormalities and are susceptible to age-associated osteoarthritis. Int. J. Mol. Sci. 21, 666 (2020).

36
Morinobu, A. et al. Expression and functions of immediate early response gene X-1 (IEX-1) in rheumatoid arthritis synovial fibroblasts. PLoS One 11, e0164350 (2016). ARTN.
37

Murayama, M. A. et al. CTRP3 plays an important role in the development of collagen-induced arthritis in mice. Biochem. Biophys. Res. Commun. 443, 42–48 (2014).

38

Sun, C. et al. A2M inhibits inflammatory mediators of chondrocytes by blocking IL-1beta/NF-kappaB pathway. J. Orthop. Res. 41, 241–248 (2023).

39

Zhu, S. P. et al. Protein Cytl1: its role in chondrogenesis, cartilage homeostasis, and disease. Cell. Mol. Life Sci. 76, 3515–3523 (2019).

40
Choi, S. et al. Kruppel-like factor 4 positively regulates autoimmune arthritis in mouse models and rheumatoid arthritis in patients via modulating cell survival and inflammation factors of fibroblast-like synoviocyte. Front. Immunol. 9, 1339 (2018). ARTN.
41

Graner, F. Can surface-adhesion drive cell-rearrangement.1. Biological cell-sorting. J. Theor. Biol. 164, 455–476 (1993).

42

Graner, F. & Sawada, Y. Can surface-adhesion drive cell rearrangement.2. A geometrical model. J. Theor. Biol. 164, 477–506 (1993).

43

Wallingford, J. B., Fraser, S. E. & Harland, R. M. Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev. Cell 2, 695–706 (2002).

44

Bottcher, R. T. et al. Profilin 1 is required for abscission during late cytokinesis of chondrocytes. Embo J. 28, 1157–1169 (2009).

45

Grashoff, C., Aszodi, A., Sakai, T., Hunziker, E. B. & Fassler, R. Integrin-linked kinase regulates chondrocyte shape and proliferation. EMBO Rep. 4, 432–438 (2003).

46

Terpstra, L. et al. Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. J. Cell Biol. 162, 139–148 (2003).

47
Hallett, S. A. et al. Chondrocytes in the resting zone of the growth plate are maintained in a Wnt-inhibitory environment. Elife 10, e64513 (2021). ARTN.
48
Muruganandan, S. et al. A FoxA2+long-term stem cell population is necessary for growth plate cartilage regeneration after injury. Nat. Commun. 13, 2515 (2022). ARTN.
49

Oichi, T. et al. Nutrient-regulated dynamics of chondroprogenitors in the postnatal murine growth plate. Bone Res. 11, 20 (2023).

50

Ellis, S. J. & Tanentzapf, G. Integrin-mediated adhesion and stem-cell-niche interactions. Cell Tissue Res. 339, 121–130 (2010).

51

Jones, R. G. et al. Conditional deletion of beta1 integrins in the intestinal epithelium causes a loss of Hedgehog expression, intestinal hyperplasia, and early postnatal lethality. J. Cell Biol. 175, 505–514 (2006).

52

Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300 (2008).

53
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021). e3529.
54

Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

55

Choudhary, S. & Satija, R. Comparison and evaluation of statistical error models for scRNA-seq. Genome Biol. 23, 27 (2022).

56

Kolberg, L., Raudvere, U., Kuzmin, I., Vilo, J. & Peterson, H. gprofiler2 – an Rpackage for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. F1000Res. 9, ELIXIR-70 (2020).

Bone Research
Article number: 46
Cite this article:
Yuan J, Guo L, Wang J, et al. α-parvin controls chondrocyte column formation and regulates long bone development. Bone Research, 2023, 11: 46. https://doi.org/10.1038/s41413-023-00284-7

112

Views

1

Downloads

2

Crossref

1

Web of Science

1

Scopus

Altmetrics

Received: 19 April 2023
Revised: 09 July 2023
Accepted: 19 July 2023
Published: 22 August 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return