AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Glycobiology in osteoclast differentiation and function

Shufa Yang1,Ziyi He2,Tuo Wu2Shunlei Wang2Hui Dai2( )
Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China

These authors contributed equally: Shufa Yang, Ziyi He

Show Author Information

Abstract

Glycans, either alone or in complex with glycan-binding proteins, are essential structures that can regulate cell biology by mediating protein stability or receptor dimerization under physiological and pathological conditions. Certain glycans are ligands for lectins, which are carbohydrate-specific receptors. Bone is a complex tissue that provides mechanical support for muscles and joints, and the regulation of bone mass in mammals is governed by complex interplay between bone-forming cells, called osteoblasts, and bone-resorbing cells, called osteoclasts. Bone erosion occurs when bone resorption notably exceeds bone formation. Osteoclasts may be activated during cancer, leading to a range of symptoms, including bone pain, fracture, and spinal cord compression. Our understanding of the role of protein glycosylation in cells and tissues involved in osteoclastogenesis suggests that glycosylation-based treatments can be used in the management of diseases. The aims of this review are to clarify the process of bone resorption and investigate the signaling pathways mediated by glycosylation and their roles in osteoclast biology. Moreover, we aim to outline how the lessons learned about these approaches are paving the way for future glycobiology-focused therapeutics.

References

1

Bieberich, E. Synthesis, processing, and function of N-glycans in N-glycoproteins. Adv. Neurobiol. 29, 65–93 (2023).

2

Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).

3

Harada, Y., Hirayama, H. & Suzuki, T. Generation and degradation of free asparagine-linked glycans. Cell Mol. Life Sci. 72, 2509–2533 (2015).

4

Hardt, B., Aparicio, R. & Bause, E. The oligosaccharyltransferase complex from pig liver: cDNA cloning, expression and functional characterization. Glycoconj. J. 17, 767–779 (2000).

5

Stigliano, I. D., Caramelo, J. J., Labriola, C. A., Parodi, A. J. & D’Alessio, C. Glucosidase II beta subunit modulates N-glycan trimming in fission yeasts and mammals. Mol. Biol. Cell 20, 3974–3984 (2009).

6

Parodi, A. J. N-glycosylation in trypanosomatid protozoa. Glycobiology 3, 193–199 (1993).

7

Bennett, E. P. et al. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22, 736–756 (2012).

8

Ju, T. et al. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res. 68, 1636–1646 (2008).

9

Iwai, T. et al. Molecular cloning and characterization of a novel UDP-GlcNAc: GalNAc-peptide beta1, 3-N-acetylglucosaminyltransferase (beta 3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J. Biol. Chem. 277, 12802–12809 (2002).

10

Yeh, J. C., Ong, E. & Fukuda, M. Molecular cloning and expression of a novel beta-1, 6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J. Biol. Chem. 274, 3215–3221 (1999).

11

Wang, Y. et al. Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase. J. Biol. Chem. 276, 40338–40345 (2001).

12

Wang, Y., Lee, G. F., Kelley, R. F. & Spellman, M. W. Identification of a GDP-L-fucose: polypeptide fucosyltransferase and enzymatic addition of O-linked fucose to EGF domains. Glycobiology 6, 837–842 (1996).

13

Okajima, T., Matsuura, A. & Matsuda, T. Biological functions of glycosyltransferase genes involved in O-fucose glycan synthesis. J. Biochem. 144, 1–6 (2008).

14

Takeuchi, H. et al. Two novel protein O-glucosyltransferases that modify sites distinct from POGLUT1 and affect Notch trafficking and signaling. Proc. Natl. Acad. Sci. USA 115, E8395–e8402 (2018).

15

Williamson, D. B. & Haltiwanger, R. S. Identification, function, and biological relevance of POGLUT2 and POGLUT3. Biochem. Soc. Trans. 50, 1003–1012 (2022).

16

Sakaidani, Y. et al. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1. Biochem. Biophys. Res. Commun. 419, 14–19 (2012).

17

Schegg, B., Hülsmeier, A. J., Rutschmann, C., Maag, C. & Hennet, T. Core glycosylation of collagen is initiated by two beta(1-O)galactosyltransferases. Mol. Cell Biol. 29, 943–952 (2009).

18

Sethi, M. K. et al. Molecular cloning of a xylosyltransferase that transfers the second xylose to O-glucosylated epidermal growth factor repeats of notch. J. Biol. Chem. 287, 2739–2748 (2012).

19

Sethi, M. K. et al. Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats. J. Biol. Chem. 285, 1582–1586 (2010).

20

Roch, C., Kuhn, J., Kleesiek, K. & Götting, C. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans. Biochem. Biophys. Res. Commun. 391, 685–691 (2010).

21

Scietti, L. et al. Molecular architecture of the multifunctional collagen lysyl hydroxylase and glycosyltransferase LH3. Nat. Commun. 9, 3163 (2018).

22

Fischöder, T., Laaf, D., Dey, C. & Elling, L. Enzymatic synthesis of N-acetyllactosamine (LacNAc) type 1 oligomers and characterization as multivalent galectin ligands. Molecules 22, 1320 (2017).

23

Hirano, K. & Furukawa, K. Biosynthesis and biological significances of LacdiNAc group on N- and O-glycans in human cancer cells. Biomolecules 12, 195 (2022).

24

Peng, W. et al. Helicobacter pylori β1, 3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans. Glycobiology 22, 1453–1464 (2012).

25

Holgersson, J. & Löfling, J. Glycosyltransferases involved in type 1 chain and Lewis antigen biosynthesis exhibit glycan and core chain specificity. Glycobiology 16, 584–593 (2006).

26

Miyoshi, E., Moriwaki, K. & Nakagawa, T. Biological function of fucosylation in cancer biology. J. Biochem. 143, 725–729 (2008).

27

Cummings, R. D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104 (2009).

28

Tsuji, S., Datta, A. K. & Paulson, J. C. Systematic nomenclature for sialyltransferases. Glycobiology 6, v–vii (1996).

29

Oriol, R., Mollicone, R., Cailleau, A., Balanzino, L. & Breton, C. Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology 9, 323–334 (1999).

30

Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446, 1023–1029 (2007).

31

Illés, T., Fischer, J. & Szabó, G. Lectin histochemistry of pathological bones. Bull. Hosp Jt. Dis. 58, 206–211 (1999).

32

Takahata, M. et al. Sialylation of cell surface glycoconjugates is essential for osteoclastogenesis. Bone 41, 77–86 (2007).

33

Takeuchi, T. et al. Glucosamine suppresses osteoclast differentiation through the modulation of glycosylation including O-GlcNAcylation. Biol. Pharm. Bull. 40, 352–356 (2017).

34

Boyle, W., Simonet, W. & Lacey, D. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

35

Dou, C. et al. Sialylation of TLR2 initiates osteoclast fusion. Bone Res. 10, 24 (2022).

36

Zhang, W. et al. RANK(+)TLR2(+) myeloid subpopulation converts autoimmune to joint destruction in rheumatoid arthritis. Elife 12, e85553 (2023).

37

Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F. & Jones, L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Investig. Urol. 17, 16–23 (1979).

38

Inder, K. et al. Cavin-1/PTRF alters prostate cancer cell-derived extracellular vesicle content and internalization to attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation. J. Extracell. Vesicles. https://doi.org/10.3402/jev.v3.23784 (2014).

39

Kaifu, T. et al. DCIR and its ligand asialo-biantennary N-glycan regulate DC function and osteoclastogenesis. J. Exp. Med. 218, e20210435 (2021).

40

Ando, M., Tu, W., Nishijima, K. & Iijima, S. Siglec-9 enhances IL-10 production in macrophages via tyrosine-based motifs. Biochem. Biophys. Res. Commun. 369, 878–883 (2008).

41

Vliet, S. V. et al. Sialic acids negatively affect the bone resorptive capacity of osteoclasts. Ann. Rheum. Dis. 78, A11 (2019).

42

Hart, G. W., Housley, M. P. & Slawson, C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).

43

Braidman, I. et al. Characterization of human N-acetyl-beta-hexosaminidase C. FEBS Lett. 41, 181–184 (1974).

44

Kreppel, L. K. & Hart, G. W. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J. Biol. Chem. 274, 32015–32022 (1999).

45

Takeuchi, T., Nagasaka, M., Shimizu, M., Tamura, M. & Arata, Y. N-acetylglucosamine suppresses osteoclastogenesis in part through the promotion of O-GlcNAcylation. Bone Rep. 5, 15–21 (2016).

46

Li, Y. N. et al. Dynamic changes in O-GlcNAcylation regulate osteoclast differentiation and bone loss via nucleoporin 153. Bone Res. 10, 51 (2022).

47

Kim, M. J. et al. Hexosamine biosynthetic pathway-derived O-GlcNAcylation is critical for RANKL-mediated osteoclast differentiation. Int. J. Mol. Sci. 22, 8888 (2021).

48

Taira, T. M. et al. HBP/O-GlcNAcylation metabolic axis regulates bone resorption outcome. J. Dent. Res. 102, 440–449 (2023).

49

Su, Y. et al. Posttranslational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals. Genes Dev. 32, 1398–1419 (2018).

50
Freeze, H. H. & Elbein, A. D. Glycosylation Precursors. In Essentials of Glycobiology (eds Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME) 2nd edition. Chapter 4. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; (2009).
51

Wang, T. T. & Ravetch, J. V. Functional diversification of IgGs through Fc glycosylation. J. Clin. Investig. 129, 3492–3498 (2019).

52

Li, T. et al. Modulating IgG effector function by Fc glycan engineering. Proc. Natl. Acad. Sci. USA 114, 3485–3490 (2017).

53

Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002).

54

Li, C. et al. Site-selective chemoenzymatic modification on the core fucose of an antibody enhances its Fcgamma receptor affinity and ADCC activity. J. Am. Chem. Soc. 143, 7828–7838 (2021).

55

Sehic, E. et al. Immunoglobulin G complexes without sialic acids enhance osteoclastogenesis but do not affect arthritis-mediated bone loss. Scand. J. Immunol. 93, e13009 (2021).

56

Nimmerjahn, F. & Ravetch, J. V. Fc-receptors as regulators of immunity. Adv. Immunol. 96, 179–204 (2007).

57

Westhrin, M. et al. Monoclonal immunoglobulins promote bone loss in multiple myeloma. Blood 136, 2656–2666 (2020).

58

Harre, U. et al. Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nat. Commun. 6, 6651 (2015).

59

Du, N. et al. Phytoestrogens protect joints in collagen induced arthritis by increasing IgG glycosylation and reducing osteoclast activation. Int. Immunopharmacol. 83, 106387 (2020).

60

Sokolova, M. V., Schett, G. & Steffen, U. Autoantibodies in rheumatoid arthritis: historical background and novel findings. Clin. Rev. Allergy Immunol. 63, 138–151 (2021).

61

Mouw, J., Ou, G. & Weaver, V. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15, 771–785 (2014).

62

Karamanos, N. et al. Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem. Rev. 118, 9152–9232 (2018).

63

Cylwik, B., Gruszewska, E., Gindzienska-Sieskiewicz, E., Kowal-Bielecka, O. & Chrostek, L. Comparison of hyaluronic acid in patients with rheumatoid arthritis, systemic sclerosis and systemic lupus erythematosus. Biochem. Med. 31, 020701 (2021).

64

Majeed, M., McQueen, F., Yeoman, S. & McLean, L. Relationship between serum hyaluronic acid level and disease activity in early rheumatoid arthritis. Ann. Rheum. Dis. 63, 1166–1168 (2004).

65

Nagaya, H. et al. Examination of synovial fluid and serum hyaluronidase activity as a joint marker in rheumatoid arthritis and osteoarthritis patients (by zymography). Ann. Rheum. Dis. 58, 186–188 (1999).

66

Zhang, W. et al. Secreted KIAA1199 promotes the progression of rheumatoid arthritis by mediating hyaluronic acid degradation in an ANXA1-dependent manner. Cell Death Dis. 12, 102 (2021).

67

Balazs, E., Watson, D., Duff, I. & Roseman, S. Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritis human fluids. Arthritis Rheumatism 10, 357–376 (1967).

68

Kolasinski, S. L. et al. 2019 American college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 72, 220–233 (2020).

69

Jevsevar, D. S. et al. The American Academy of Orthopedic Surgeons evidence-based guideline on: treatment of osteoarthritis of the knee, 2nd edition. J. Bone Jt. Surg. Am. 95, 1885–1886 (2013).

70

Sabha, M. & Hochberg, M. C. Nonsurgical management of hip and knee osteoarthritis; comparison of ACR/AF and OARSI 2019 and VA/DoD 2020 guidelines. Osteoarthr. Cartil. Open 4, 100232 (2022).

71
National Institute for Health and Care Excellence. Osteoarthritis: Care and Management in Adults, (NICE, 2014).
72

Lee, C. et al. Potential anti-osteoporotic activity of low-molecular weight hyaluronan by attenuation of osteoclast cell differentiation and function in vitro. Biochem. Biophys. Res. Commun. 449, 438–443 (2014).

73

Ariyoshi, W., Okinaga, T., Knudson, C., Knudson, W. & Nishihara, T. High molecular weight hyaluronic acid regulates osteoclast formation by inhibiting receptor activator of NF-κB ligand through Rho kinase,. Osteoarthr. Cartil. 22, 111–120 (2014).

74

Nakao, Y. et al. Accumulation of hyaluronic acid in stromal cells modulates osteoclast formation by regulation of receptor activator of nuclear factor kappa-B ligand expression. Biochem. Biophys. Res. Commun. 512, 537–543 (2019).

75

Ariyoshi, W. et al. Mechanisms involved in enhancement of osteoclast formation and function by low molecular weight hyaluronic acid. J. Biol. Chem. 280, 18967–18972 (2005).

76

Pivetta, E. et al. Blood-derived human osteoclast resorption activity is impaired by Hyaluronan-CD44 engagement via a p38-dependent mechanism. J. Cell Physiol. 226, 769–779 (2011).

77

Kootala, S., Ossipov, D., van den Beucken, J., Leeuwenburgh, S. & Hilborn, J. Bisphosphonate-functionalized hyaluronic acid showing selective affinity for osteoclasts as a potential treatment for osteoporosis. Biomater. Sci. 3, 1197–1207 (2015).

78

Trujillo-Nolasco, R. et al. Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Mater. Sci. Eng. C., Mater. Biol. Appl. 103, 109766 (2019).

79

Zhou, M. et al. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv. 25, 716–722 (2018).

80

Sondag, G. R. et al. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling. Exp. Mol. Med. 48, e257 (2016).

81

Chang, E. et al. Hyaluronan inhibits osteoclast differentiation via Toll-like receptor 4. J. Cell Sci. 120, 166–176 (2007).

82

De Nardo, D., De Nardo, C. M., Nguyen, T., Hamilton, J. A. & Scholz, G. M. Signaling crosstalk during sequential TLR4 and TLR9 activation amplifies the inflammatory response of mouse macrophages. J. Immunol. 183, 8110–8118 (2009).

83

Salbach-Hirsch, J. et al. The promotion of osteoclastogenesis by sulfated hyaluronan through interference with osteoprotegerin and receptor activator of NF-κB ligand/osteoprotegerin complex formation,. Biomaterials 34, 7653–7661 (2013).

84

Salbach, J. et al. The effect of the degree of sulfation of glycosaminoglycans on osteoclast function and signaling pathways. Biomaterials 33, 8418–8429 (2012).

85

Ji, Y. et al. Synthesis of structurally defined chondroitin sulfate: Paving the way to the structure-activity relationship studies. Carbohydr. Polym. 248, 116796 (2020).

86

Cantley, M., Rainsford, K. & Haynes, D. Comparison of the ability of chondroitin sulfate derived from bovine, fish and pigs to suppress human osteoclast activity in vitro. Inflammopharmacology 21, 407–412 (2013).

87

Miyazaki, T., Miyauchi, S., Tawada, A., Anada, T. & Suzuki, O. Effect of chondroitin sulfate-E on the osteoclastic differentiation of RAW264 cells. Dent. Mater. J. 29, 403–410 (2010).

88

Miyazaki, T., Miyauchi, S., Anada, T., Tawada, A. & Suzuki, O. Chondroitin sulfate-E binds to both osteoactivin and integrin αVβ3 and inhibits osteoclast differentiation. J. Cell Biochem. 116, 2247–2257 (2015).

89

Shinmyouzu, K. et al. Dermatan sulfate inhibits osteoclast formation by binding to receptor activator of NF-kappa B ligand. Biochem. Biophys. Res. Commun. 354, 447–452 (2007).

90

Monfort, J., Pelletier, J., Garcia-Giralt, N. & Martel-Pelletier, J. Biochemical basis of the effect of chondroitin sulfate on osteoarthritis articular tissues. Ann. Rheum. Dis. 67, 735–740 (2008).

91

Muir, J. et al. Histomorphometric analysis of the effects of standard heparin on trabecular bone in vivo. Blood 88, 1314–1320 (1996).

92

Folwarczna, J., Sliwiński, L., Janiec, W. & Pikul, M. Effects of standard heparin and low-molecular-weight heparins on the formation of murine osteoclasts in vitro. Pharmacol. Rep. 57, 635–645 (2005).

93

Walton, K., Duncan, J., Deschamps, P. & Shaughnessy, S. Heparin acts synergistically with interleukin-11 to induce STAT3 activation and in vitro osteoclast formation. Blood 100, 2530–2536 (2002).

94

Rajgopal, R., Butcher, M., Weitz, J. & Shaughnessy, S. Heparin synergistically enhances interleukin-11 signaling through upregulation of the MAPK pathway. J. Biol. Chem. 281, 20780–20787 (2006).

95

Irie, A. et al. Heparin enhances osteoclastic bone resorption by inhibiting osteoprotegerin activity. Bone 41, 165–174 (2007).

96

Li, B., Lu, D., Chen, Y., Zhao, M. & Zuo, L. Unfractionated heparin promotes osteoclast formation in vitro by inhibiting osteoprotegerin activity. Int. J. Mol. Sci. 17, 613 (2016).

97

Ariyoshi, W. et al. Heparin inhibits osteoclastic differentiation and function. J. Cell Biochem. 103, 1707–1717 (2008).

98

Baud’huin, M. et al. Glycosaminoglycans inhibit the adherence and the spreading of osteoclasts and their precursors: role in osteoclastogenesis and bone resorption. Eur. J. Cell Biol. 90, 49–57 (2011).

99

Stickens, D. et al. The EXT2 multiple exostoses gene defines a family of putative tumor suppressor genes. Nat. Genet. 14, 25–32 (1996).

100

Ahn, J. et al. Cloning of the putative tumor suppressor gene for hereditary multiple exostoses (EXT1). Nat. Genet. 11, 137–143 (1995).

101

Dubail, J. et al. SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects. Nat. Commun. 9, 3087 (2018).

102

Khan, S., Sbeity, M., Foulquier, F., Barre, L. & Ouzzine, M. TMEM165 a new player in proteoglycan synthesis: loss of TMEM165 impairs elongation of chondroitin- and heparan-sulfate glycosaminoglycan chains of proteoglycans and triggers early chondrocyte differentiation and hypertrophy. Cell Death Dis. 13, 11 (2021).

103

Nozawa, S. et al. Osteoblastic heparan sulfate regulates osteoprotegerin function and bone mass. JCI Insight 3, e89624 (2018).

104

Li, M. & Xu, D. Antiresorptive activity of osteoprotegerin requires an intact heparan sulfate-binding site. Proc. Natl. Acad. Sci. USA 117, 17187–17194 (2020).

105

Li, M., Yang, S. & Xu, D. Heparan sulfate regulates the structure and function of osteoprotegerin in osteoclastogenesis. J. Biol. Chem. 291, 24160–24171 (2016).

106

Kim, J., Lee, K., Kim, M., Shin, H. & Jeong, D. Suppressive effect of syndecan ectodomains and N-desulfated heparins on osteoclastogenesis via direct binding to macrophage-colony stimulating factor. Cell Death Dis. 9, 2018 (1119).

107

Van Raemdonck, K. et al. Interleukin-34 reprograms glycolytic and osteoclastic rheumatoid arthritis Macrophages via syndecan 1 and MAcrophage Colony-stimulating Factor Receptor. Arthritis Rheumatol. 73, 2003–2014 (2021).

108

Li, J. et al. Syndecan 4 contributes to osteoclast differentiation induced by RANKL through enhancing autophagy. Int. Immunopharmacol. 91, 107275 (2021).

109

Ishihara, M. et al. Structural features in heparin which modulate specific biological activities mediated by basic fibroblast growth factor. Glycobiology 4, 451–458 (1994).

110

Ling, L. et al. Synergism between Wnt3a and heparin enhances osteogenesis via a phosphoinositide 3-kinase/Akt/RUNX2 pathway. J. Biol. Chem. 285, 26233–26244 (2010).

111

Nakano, K., Okada, Y., Saito, K. & Tanaka, Y. Induction of RANKL expression and osteoclast maturation by the binding of fibroblast growth Factor 2 to heparan sulfate proteoglycan on rheumatoid synovial fibroblasts. Arthritis Rheumatism 50, 2450–2458 (2004).

112

Yu, Y., Shen, M., Song, Q. & Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr. Polym. 183, 91–101 (2018).

113

Nishihara, T. et al. Actinobacillus actinomycetemcomitans Y4 capsular-polysaccharide-like polysaccharide promotes osteoclast-like cell formation by interleukin-1 alpha production in mouse marrow cultures. Infect. Immun. 63, 1893–1898 (1995).

114

Kwon, H. et al. Mutan: A mixed linkage α-[(1,3)- and (1,6)]-d-glucan from Streptococcus mutans, that induces osteoclast differentiation and promotes alveolar bone loss. Carbohydr. Polym. 137, 561–569 (2016).

115

Hou, G. et al. Lipopolysaccharide (LPS) promotes osteoclast differentiation and activation by enhancing the MAPK pathway and COX-2 expression in RAW264.7 cells. Int. J. Mol. Med. 32, 503–510 (2013).

116

Song, C. et al. Evaluation of efficacy on RANKL induced osteoclast from RAW264.7 cells. J. Cell Physiol. 234, 11969–11975 (2019).

117

Xiao, Y. et al. Cellular study of the LPS-induced osteoclastic multinucleated cell formation from RAW264.7 cells. J. Cell Physiol. 235, 421–428 (2020).

118

Xing, Q., de Vos, P., Faas, M., Ye, Q. & Ren, Y. LPS promotes preosteoclast activity by upregulating CXCR4 via TLR-4. J. Dent. Res. 90, 157–162 (2011).

119

AlQranei, M., Senbanjo, L., Aljohani, H., Hamza, T. & Chellaiah, M. Lipopolysaccharide- TLR-4 Axis regulates Osteoclastogenesis independent of RANKL/RANK signaling. BMC Immunol. 22, 23 (2021).

120

Zeng, X. et al. Artesunate attenuates LPS-induced osteoclastogenesis by suppressing TLR4/TRAF6 and PLCγ1-Ca-NFATc1 signaling pathway,. Acta Pharm. Sin. 41, 229–236 (2020).

121

He, L. et al. Sinomenine downregulates TLR4/TRAF6 expression and attenuates lipopolysaccharide-induced osteoclastogenesis and osteolysis. Eur. J. Pharm. 779, 66–79 (2016).

122

Fujihara, M. et al. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharm. Ther. 100, 171–194 (2003).

123

Watanabe, K. et al. Involvement of toll-like receptor 4 in alveolar bone loss and glucose homeostasis in experimental periodontitis. J. Periodontal Res. 46, 21–30 (2011).

124

Liu, X. et al. LPS-induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF-kappaB, STAT3 or AP-1 activation,. Mol. Med. Rep. 17, 5484–5491 (2018).

125

Taubman, M. A., Valverde, P., Han, X. & Kawai, T. Immune response: the key to bone resorption in periodontal disease. J. Periodontol. 76, 2033–2041 (2005).

126

Hofbauer, L. C. et al. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25, 255–259 (1999).

127

Kikuchi, T. et al. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. J. Immunol. 166, 3574–3579 (2001).

128

Liu, J. et al. Molecular mechanism of the bifunctional role of lipopolysaccharide in osteoclastogenesis. J. Biol. Chem. 284, 12512–12523 (2009).

129

Takami, M., Kim, N., Rho, J. & Choi, Y. Stimulation by toll-like receptors inhibits osteoclast differentiation. J. Immunol. 169, 1516–1523 (2002).

130

Chen, C. et al. WSS25, a sulfated polysaccharide, inhibits RANKL-induced mouse osteoclast formation by blocking SMAD/ID1 signaling. Acta Pharm. Sin. 36, 1053–1064 (2015).

131

Wang, J. et al. ASP2-1, a polysaccharide from Acorus tatarinowii Schott, inhibits osteoclastogenesis via modulation of NFATc1 and attenuates LPS-induced bone loss in mice. Int. J. Biol. Macromol. 165, 2219–2230 (2020).

132

Lu, S., Hsia, Y., Shih, K. & Chou, T. Fucoidan prevents RANKL-stimulated osteoclastogenesis and LPS-induced inflammatory bone loss via regulation of Akt/GSK3β/PTEN/NFATc1 signaling pathway and calcineurin activity, Mar Drugs. 17, 345 (2019).

133

Song, D. et al. Poria cocos polysaccharide attenuates RANKL-induced osteoclastogenesis by suppressing NFATc1 activity and phosphorylation of ERK and STAT3. Arch. Biochem. Biophys. 647, 76–83 (2018).

134

Song, D. et al. Achyranthes bidentata polysaccharide suppresses osteoclastogenesis and bone resorption by inhibiting RANKL signaling. J. Cell Biochem. 119, 4826–4835 (2018).

135

Song, D. et al. Cistanche deserticola polysaccharide attenuates osteoclastogenesis and bone resorption by inhibiting RANKL signaling and reactive oxygen species production. J. Cell Physiol. 233, 9674–9684 (2018).

136

Ueno, M. et al. Inhibitory effect of sulfated polysaccharide porphyran (isolated from Porphyra yezoensis) on RANKL-induced differentiation of RAW264.7 cells into osteoclasts. Phytother. Res. 32, 452–458 (2018).

137

Xu, H. et al. Tea polysaccharide inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells and ameliorates ovariectomy-induced osteoporosis in rats. Biomed. Pharmacother. 102, 539–548 (2018).

138

Liu, H., Zhang, H., Fan, H., Tang, S. & Weng, J. The preventive effect of Cuscutae Semen polysaccharide on bone loss in the ovariectomized rat model. Biomed. Pharmacother. 130, 110613 (2020).

139

Shang, Z. et al. Dendrobium huoshanense stem polysaccharide ameliorates rheumatoid arthritis in mice via inhibition of inflammatory signaling pathways. Carbohydr. Polym. 258, 117657 (2021).

140

Miyata, T. et al. Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J. Am. Soc. Nephrol. 8, 260–270 (1997).

141

Miyata, T., Kawai, R., Taketomi, S. & Sprague, S. Possible involvement of advanced glycation end-products in bone resorption. Nephrol., Dialysis, Transplant. 11, 54–57 (1996).

142

Park, S., Choi, K., Jun, J. & Chung, H. Effects of advanced glycation end products on differentiation and function of osteoblasts and osteoclasts. J. Korean Med. Sci. 36, e239 (2021).

143

Tanaka, K. et al. Glycolaldehyde-modified advanced glycation end-products inhibit differentiation of human monocytes into osteoclasts via upregulation of IL-10. Bone 128, 115034 (2019).

144

Li, Z. et al. Advanced glycation end products biphasically modulate bone resorption in osteoclast-like cells. Am. J. Physiol. Endocrinol. Metab. 310, E355–E366 (2016).

145

Cui, S. et al. APPswe/Aβ regulation of osteoclast activation and RAGE expression in an age-dependent manner,. J. Bone Miner. Res. 26, 1084–1098 (2011).

146

Zhuang, J. et al. Age-related accumulation of advanced oxidation protein products promotes osteoclastogenesis through disruption of redox homeostasis. Cell Death Dis. 12, 1160 (2021).

147

Ding, K. et al. Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem. Biophys. Res. Commun. 340, 1091–1097 (2006).

148

Zhou, Z. et al. Regulation of osteoclast function and bone mass by RAGE. J. Exp. Med. 203, 1067–1080 (2006).

149

Yan, W. & Li, X. Impact of diabetes and its treatments on skeletal diseases. Front. Med. 7, 81–90 (2013).

150

Montagnani, A., Gonnelli, S., Alessandri, M. & Nuti, R. Osteoporosis and risk of fracture in patients with diabetes: an update. Aging Clin. Exp. Res. 23, 84–90 (2011).

151

Karim, L. & Bouxsein, M. L. Effect of type 2 diabetes-related nonenzymatic glycation on bone biomechanical properties. Bone 82, 21–27 (2016).

152

Bell, D. & Goncalves, E. Why do falls and lower limb fractures occur more frequently in the diabetic patient and how can they be prevented? Diabetes Ther. 11, 1687–1694 (2020).

153

Angata, T. Siglecs that associate with DAP12. Adv. Exp. Med Biol. 1204, 215–230 (2020).

154

Sun, J., Lu, Q., Sanmamed, M. F. & Wang, J. Siglec-15 as an emerging target for next-generation cancer immunotherapy. Clin. Cancer Res. 27, 680–688 (2021).

155

Angata, T. Siglec-15: a potential regulator of osteoporosis, cancer, and infectious diseases. J. Biomed. Sci. 27, 10 (2020).

156

Kang, F. B., Chen, W., Wang, L. & Zhang, Y. Z. The diverse functions of Siglec-15 in bone remodeling and antitumor responses. Pharm. Res. 155, 104728 (2020).

157

Angata, T., Tabuchi, Y., Nakamura, K. & Nakamura, M. Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 17, 838–846 (2007).

158

Korn, M. et al. Siglec-15 on osteoclasts is crucial for bone erosion in serum-transfer arthritis. J. Immunol. 205, 2595–2605 (2020).

159

Hiruma, Y., Hirai, T. & Tsuda, E. Siglec-15, a member of the sialic acid-binding lectin, is a novel regulator for osteoclast differentiation. Biochem Biophys. Res. Commun. 409, 424–429 (2011).

160

Hiruma, Y. et al. Impaired osteoclast differentiation and function and mild osteopetrosis development in Siglec-15-deficient mice. Bone 53, 87–93 (2013).

161

Kameda, Y. et al. Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis. Bone 71, 217–226 (2015).

162

Shimizu, T. et al. Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) mediates periarticular bone loss, but not joint destruction, in murine antigen-induced arthritis. Bone 79, 65–70 (2015).

163

Ishida-Kitagawa, N. et al. Siglec-15 protein regulates formation of functional osteoclasts in concert with DNAX-activating protein of 12 kD (DAP12). J. Biol. Chem. 287, 17493–17502 (2012).

164

Chang, L. et al. Identification of Siglec ligands using a proximity labeling method. J. Proteome Res. 16, 3929–3941 (2017).

165

Kameda, Y. et al. Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling Adaptor DAP12. J. Bone Min. Res. 28, 2463–2475 (2013).

166

Zhen, G. et al. An antibody against Siglec-15 promotes bone formation and fracture healing by increasing TRAP mononuclear cells and PDGF-BB secretion. Bone Res. 9, 47 (2021).

167

Sato, D. et al. Siglec-15-targeting therapy protects against glucocorticoid-induced osteoporosis of growing skeleton in juvenile rats. Bone 135, 115331 (2020).

168

Liang, H. et al. Siglec15 checkpoint blockade for simultaneous immunochemotherapy and osteolysis inhibition in lung adenocarcinoma spinal metastasis via a hollow nanoplatform. Small 18, e2107787 (2022).

169

Andes, F. et al. The human sialic acid-binding immunoglobulin-like lectin Siglec-9 and its murine homolog Siglec-E control osteoclast activity and bone resorption. Bone 143, 115665 (2021).

170

Rabinovich, G. & Toscano, M. Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 9, 338–352 (2009).

171

Liu, F. & Rabinovich, G. Galectins as modulators of tumor progression. Nat. Rev. Cancer 5, 29–41 (2005).

172

Liu, F. T. & Stowell, S. R. The role of galectins in immunity and infection. Nat. Rev. Immunol. 23, 479–494 (2023).

173

Sartim, M. A. et al. Galatrox is a C-type lectin in Bothrops atrox snake venom that selectively binds LacNAc-terminated glycans and can induce acute inflammation. Glycobiology 24, 1010–1021 (2014).

174

Nakajima, K. et al. Galectin-3 in bone tumor microenvironment: a beacon for individual skeletal metastasis management. Cancer Metastasis Rev. 35, 333–346 (2016).

175

Niida, S., Amizuka, N., Hara, F., Ozawa, H. & Kodama, H. Expression of Mac-2 antigen in the preosteoclast and osteoclast identified in the op/op mouse injected with macrophage colony-stimulating factor. J. Bone Miner. Res. 9, 873–881 (1994).

176

Nakajima, K. et al. Galectin-3 cleavage alters bone remodeling: different outcomes in breast and prostate cancer skeletal metastasis. Cancer Res. 76, 1391–1402 (2016).

177

Iacobini, C. et al. Galectin-3 is essential for proper bone cell differentiation and activity, bone remodeling and biomechanical competence in mice. Metabolism 83, 149–158 (2018).

178

Nielsen, M. et al. Increased synovial galectin-3 induce inflammatory fibroblast activation and osteoclastogenesis in patients with rheumatoid arthritis. Scand. J. Rheumatol. 52, 33–41 (2023).

179

McMichael, B. K., Wysolmerski, R. B. & Lee, B. S. Regulated proteolysis of nonmuscle myosin IIA stimulates osteoclast fusion. J. Biol. Chem. 284, 12266–12275 (2009).

180

Zhu, L. et al. Proteolytic regulation of a galectin-3/Lrp1 axis controls osteoclast-mediated bone resorption. J. Cell Biol. 222, e202206121 (2023).

181

Li, Y. et al. A possible suppressive role of galectin-3 in upregulated osteoclastogenesis accompanying adjuvant-induced arthritis in rats. Lab. Investig. 89, 26–37 (2009).

182

Simon, D. et al. Galectin-3 as a novel regulator of osteoblast-osteoclast interaction and bone homeostasis. Bone 105, 35–41 (2017).

183

Gu, J. et al. Galectin-3 contributes to the inhibitory effect of lα,25-(OH)D on osteoclastogenesis. Int. J. Mol. Sci. 22, 13334 (2021).

184

Gu, J. et al. The role of Galectin-3 in 1α,25(OH)D-regulated osteoclast formation from white leghorn chickens in vitro. Vet. Sci. 8, 234 (2021).

185

Vinik, Y. et al. The mammalian lectin galectin-8 induces RANKL expression, osteoclastogenesis, and bone mass reduction in mice. eLife 4, e05914 (2015).

186

Muller, J. et al. Loss of stromal galectin-1 enhances multiple myeloma development: emphasis on a role in osteoclasts. Cancers 11, 261 (2019).

187

An, G. et al. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood 128, 1590–1603 (2016).

188

Moriyama, K. et al. Regulation of osteoclastogenesis through Tim-3: possible involvement of the Tim-3/galectin-9 system in the modulation of inflammatory bone destruction. Lab. Investig. 94, 1200–1211 (2014).

189

Fusaro, M. et al. Two novel homozygous mutations in phosphoglucomutase 3 leading to severe combined immunodeficiency, skeletal dysplasia, and malformations. J. Clin. Immunol. 41, 958–966 (2021).

190

Frishberg, Y. et al. Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth Factor 23. J. Bone Miner. Res. 22, 235–242 (2007).

191

Amor, D. et al. Pathogenic variants in GPC4 cause Keipert syndrome. Am. J. Hum. Genet. 104, 914–924 (2019).

192

Wang, J. et al. A method to identify trace sulfated IgG N-glycans as biomarkers for rheumatoid arthritis. Nat. Commun. 8, 631 (2017).

193

Bondt, A. et al. ACPA IgG galactosylation associates with disease activity in pregnant patients with rheumatoid arthritis. Ann. Rheum. Dis. 77, 1130–1136 (2018).

194

Rombouts, Y. et al. Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann. Rheum. Dis. 74, 234–241 (2015).

195

Kissel, T. et al. IgG anti-citrullinated protein antibody variable domain glycosylation increases before the onset of rheumatoid arthritis and stabilizes thereafter: a cross-sectional study encompassing ~1500 samples. Arthritis Rheumatol. 74, 1147–1158 (2022).

196

Hafkenscheid, L. et al. N-Linked glycans in the variable domain of IgG anti-citrullinated protein antibodies predict the development of rheumatoid arthritis. Arthritis Rheumatol. 71, 1626–1633 (2019).

197

Wang, Y. et al. Loss of α2-6 sialylation promotes the transformation of synovial fibroblasts into a pro-inflammatory phenotype in arthritis. Nat. Commun. 12, 2343 (2021).

198

Yang, Y. et al. Heparanase enhances local and systemic osteolysis in multiple myeloma by upregulating the expression and secretion of RANKL. Cancer Res. 70, 8329–8338 (2010).

199

Yang, Y. et al. Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood 105, 1303–1309 (2005).

200

Esposito, M. et al. Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat. Cell Biol. 21, 627–639 (2019).

201

Xu, W. et al. Early matrix change of a nanostructured bone grafting substitute in the rat. J. Biomed. Mater. Res. B Appl. Biomater. 91, 692–699 (2009).

202

Sanyasi, S., Kumar, A., Goswami, C., Bandyopadhyay, A. & Goswami, L. A carboxy methyl tamarind polysaccharide matrix for adhesion and growth of osteoclast-precursor cells. Carbohydr. Polym. 101, 1033–1042 (2014).

203

Chakraborty, R. et al. Hydrogel-mediated release of TRPV1 modulators to fine tune osteoclastogenesis. ACS Omega 7, 9537–9550 (2022).

204

Yu, P. et al. Thermosensitive polysaccharide hydrogel as a versatile platform for prolonged salmon calcitonin release and calcium regulation. ACS Biomater. Sci. Eng. 6, 4077–4086 (2020).

Bone Research
Article number: 55
Cite this article:
Yang S, He Z, Wu T, et al. Glycobiology in osteoclast differentiation and function. Bone Research, 2023, 11: 55. https://doi.org/10.1038/s41413-023-00293-6

135

Views

1

Downloads

2

Crossref

1

Web of Science

1

Scopus

Altmetrics

Received: 11 February 2023
Revised: 20 August 2023
Accepted: 07 September 2023
Published: 26 October 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return